11,056 research outputs found

    Assets focus risk management framework for critical infrastructure cybersecurity risk management

    Get PDF
    Critical infrastructure (CI) is vital for the overall economic growth and its reliable and safe operation is essential for a nation's stability and people's safety. Proper operation of the assets is essential for such a system and any threats that could negatively impact the asset could have a severe disruption. Risk management is an important aspect of the protection of CI. There are several frameworks and methodologies for identifying assets, quantifying and analysing vulnerabilities. However, there is a lack of focus on the interdependencies among the assets and cascading effect of the inherent vulnerabilities on the asset. This study attempts to bridge that gap by presenting a novel asset focus risk management approach for the CI. It presents a systematic methodology for identifying and analysing critical assets, their potential vulnerabilities, threats and risks facing CI. This work taking into account cascading vulnerability impacts on assets leading to threats and causing risk. The authors use a running example from a smart grid system to demonstrate the usability of the approach. The result shows that some assets are prioritised and more vulnerable than other assets for the power grid system and it can severely impact on the overall business continuity

    The future of Cybersecurity in Italy: Strategic focus area

    Get PDF
    This volume has been created as a continuation of the previous one, with the aim of outlining a set of focus areas and actions that the Italian Nation research community considers essential. The book touches many aspects of cyber security, ranging from the definition of the infrastructure and controls needed to organize cyberdefence to the actions and technologies to be developed to be better protected, from the identification of the main technologies to be defended to the proposal of a set of horizontal actions for training, awareness raising, and risk management

    How does intellectual capital align with cyber security?

    Get PDF
    Purpose – To position the preservation and protection of intellectual capital as a cyber security concern. We outline the security requirements of intellectual capital to help Boards of Directors and executive management teams to understand their responsibilities and accountabilities in this respect.Design/Methodology/Approach – The research methodology is desk research. In other words, we gathered facts and existing research publications that helped us to define key terms, to formulate arguments to convince BoDs of the need to secure their intellectual capital, and to outline actions to be taken by BoDs to do so.Findings – Intellectual capital, as a valuable business resource, is related to information, knowledge and cyber security. Hence, preservation thereof is also related to cyber security governance, and merits attention from boards of directors.Implications – This paper clarifies boards of directors’ intellectual capital governance responsibilities, which encompass information, knowledge and cyber security governance.Social Implications – If boards of directors know how to embrace their intellectual capital governance responsibilities, this will help to ensure that such intellectual capital is preserved and secured.Practical Implications – We hope that boards of directors will benefit from our clarifications, and especially from the positioning of intellectual capital in cyber space.Originality/Value – This paper extends a previous paper published by Von Solms and Von Solms (2018), which clarified the key terms of information and cyber security, and the governance thereof. The originality and value is the focus on the securing of intellectual capital, a topic that has not yet received a great deal of attention from cyber security researchers

    National Security Space Launch

    Get PDF
    The United States Space Force’s National Security Space Launch (NSSL) program, formerly known as the Evolved Expendable Launch Vehicle (EELV) program, was first established in 1994 by President William J. Clinton’s National Space Transportation Policy. The policy assigned the responsibility for expendable launch vehicles to the Department of Defense (DoD), with the goals of lowering launch costs and ensuring national security access to space. As such, the United States Air Force Space and Missile Systems Center (SMC) started the EELV program to acquire more affordable and reliable launch capability for valuable U.S. military satellites, such as national reconnaissance satellites that cost billions per satellite. In March 2019, the program name was changed from EELV to NSSL, which reflected several important features: 1.) The emphasis on “assured access to space,” 2.) transition from the Russian-made RD-180 rocket engine used on the Atlas V to a US-sourced engine (now scheduled to be complete by 2022), 3.) adaptation to manifest changes (such as enabling satellite swaps and return of manifest to normal operations both within 12 months of a need or an anomaly), and 4.) potential use of reusable launch vehicles. As of August 2019, Blue Origin, Northrop Grumman Innovation Systems, SpaceX, and United Launch Alliance (ULA) have all submitted proposals. From these, the U.S. Air Force will be selecting two companies to fulfill approximately 34 launches over a period of five years, beginning in 2022. This paper will therefore first examine the objectives for the NSSL as presented in the 2017 National Security Strategy, Fiscal Year 2019, Fiscal Year 2020, and Fiscal Year 2021 National Defense Authorization Acts (NDAA), and National Presidential Directive No. 40. The paper will then identify areas of potential weakness and gaps that exist in space launch programs as a whole and explore the security implications that impact the NSSL specifically. Finally, the paper will examine how the trajectory of the NSSL program could be adjusted in order to facilitate a smooth transition into new launch vehicles, while maintaining mission success, minimizing national security vulnerabilities, and clarifying the defense acquisition process.No embargoAcademic Major: EnglishAcademic Major: International Studie

    An Integrated Cybersecurity Risk Management (I-CSRM) Framework for Critical Infrastructure Protection

    Get PDF
    Risk management plays a vital role in tackling cyber threats within the Cyber-Physical System (CPS) for overall system resilience. It enables identifying critical assets, vulnerabilities, and threats and determining suitable proactive control measures to tackle the risks. However, due to the increased complexity of the CPS, cyber-attacks nowadays are more sophisticated and less predictable, which makes risk management task more challenging. This research aims for an effective Cyber Security Risk Management (CSRM) practice using assets criticality, predication of risk types and evaluating the effectiveness of existing controls. We follow a number of techniques for the proposed unified approach including fuzzy set theory for the asset criticality, machine learning classifiers for the risk predication and Comprehensive Assessment Model (CAM) for evaluating the effectiveness of the existing controls. The proposed approach considers relevant CSRM concepts such as threat actor attack pattern, Tactic, Technique and Procedure (TTP), controls and assets and maps these concepts with the VERIS community dataset (VCDB) features for the purpose of risk predication. Also, the tool serves as an additional component of the proposed framework that enables asset criticality, risk and control effectiveness calculation for a continuous risk assessment. Lastly, the thesis employs a case study to validate the proposed i-CSRM framework and i-CSRMT in terms of applicability. Stakeholder feedback is collected and evaluated using critical criteria such as ease of use, relevance, and usability. The analysis results illustrate the validity and acceptability of both the framework and tool for an effective risk management practice within a real-world environment. The experimental results reveal that using the fuzzy set theory in assessing assets' criticality, supports stakeholder for an effective risk management practice. Furthermore, the results have demonstrated the machine learning classifiers’ have shown exemplary performance in predicting different risk types including denial of service, cyber espionage, and Crimeware. An accurate prediction can help organisations model uncertainty with machine learning classifiers, detect frequent cyber-attacks, affected assets, risk types, and employ the necessary corrective actions for its mitigations. Lastly, to evaluate the effectiveness of the existing controls, the CAM approach is used, and the result shows that some controls such as network intrusion, authentication, and anti-virus show high efficacy in controlling or reducing risks. Evaluating control effectiveness helps organisations to know how effective the controls are in reducing or preventing any form of risk before an attack occurs. Also, organisations can implement new controls earlier. The main advantage of using the CAM approach is that the parameters used are objective, consistent and applicable to CPS

    Cyber Babel: Finding the Lingua Franca in Cybersecurity Regulation

    Get PDF
    Cybersecurity regulations have proliferated over the past few years as the significance of the threat has drawn more attention. With breaches making headlines, the public and their representatives are imposing requirements on those that hold sensitive data with renewed vigor. As high-value targets that hold large amounts of sensitive data, financial institutions are among the most heavily regulated. Regulations are necessary. However, regulations also come with costs that impact both large and small companies, their customers, and local, national, and international economies. As the regulations have proliferated so have those costs. The regulations will inevitably and justifiably diverge where different governments view the needs of their citizens differently. However, that should not prevent regulators from recognizing areas of agreement. This Note examines the regulatory regimes governing the data and cybersecurity practices of financial institutions implemented by the Securities and Exchange Commission, the New York Department of Financial Services, and the General Data Protection Regulations of the European Union to identify areas where requirements overlap, with the goal of suggesting implementations that promote consistency, clarity, and cost reduction
    • …
    corecore