3,468 research outputs found

    Assessment of walking features from foot inertial sensing

    Get PDF
    An ambulatory monitoring system is developed for the estimation of spatio-temporal gait parameters. The inertial measurement unit embedded in the system is composed of one biaxial accelerometer and one rate gyroscope, and it reconstructs the sagittal trajectory of a sensed point on the instep of the foot. A gait phase segmentation procedure is devised to determine temporal gait parameters, including stride time and relative stance; the procedure allows to define the time intervals needed for carrying an efficient implementation of the strapdown integration, which allows to estimate stride length, walking speed, and incline. The measurement accuracy of walking speed and inclines assessments is evaluated by experiments carried on adult healthy subjects walking on a motorized treadmill. Root-mean-square errors less than 0.18 km/h (speed) and 1.52% (incline) are obtained for tested speeds and inclines varying in the intervals [3, 6] km/h and [ 5, +15]%, respectively. Based on the results of these experiments, it is concluded that foot inertial sensing is a promising tool for the reliable identification of subsequent gait cycles and the accurate assessment of walking speed and incline

    Ambulatory Assessment of Ankle and Foot Dynamics

    Get PDF
    Ground reaction force (GRF) measurement is important in the analysis of human body movements. The main drawback of the existing measurement systems is the restriction to a laboratory environment. This paper proposes an ambulatory system for assessing the dynamics of ankle and foot, which integrates the measurement of the GRF with the measurement of human body movement. The GRF and the center of pressure (CoP) are measured using two six-degrees-of-freedom force sensors mounted beneath the shoe. The movement of foot and lower leg is measured using three miniature inertial sensors, two rigidly attached to the shoe and one on the lower leg. The proposed system is validated using a force plate and an optical position measurement system as a reference. The results show good correspondence between both measurement systems, except for the ankle power estimation. The root mean square (RMS) difference of the magnitude of the GRF over 10 evaluated trials was (0.012 plusmn 0.001) N/N (mean plusmn standard deviation), being (1.1 plusmn 0.1)% of the maximal GRF magnitude. It should be noted that the forces, moments, and powers are normalized with respect to body weight. The CoP estimation using both methods shows good correspondence, as indicated by the RMS difference of (5.1 plusmn 0.7) mm, corresponding to (1.7 plusmn 0.3)% of the length of the shoe. The RMS difference between the magnitudes of the heel position estimates was calculated as (18 plusmn 6) mm, being (1.4 plusmn 0.5)% of the maximal magnitude. The ankle moment RMS difference was (0.004 plusmn 0.001) Nm/N, being (2.3 plusmn 0.5)% of the maximal magnitude. Finally, the RMS difference of the estimated power at the ankle was (0.02 plusmn 0.005) W/N, being (14 plusmn 5)% of the maximal power. This power difference is caused by an inaccurate estimation of the angular velocities using the optical reference measurement system, which is due to considering the foot as a single segment. The ambulatory system considers separat- - e heel and forefoot segments, thus allowing an additional foot moment and power to be estimated. Based on the results of this research, it is concluded that the combination of the instrumented shoe and inertial sensing is a promising tool for the assessment of the dynamics of foot and ankle in an ambulatory setting

    Gait Analysis of Horses for Lameness Detection with Radar Sensors

    Get PDF
    This paper presents the preliminary investigation of the use of radar signatures to detect and assess lameness of horses and its severity. Radar sensors in this context can provide attractive contactless sensing capabilities, as a complementary or alternative technology to the current techniques for lameness assessment using video-graphics and inertial sensors attached to the horses' body. The paper presents several examples of experimental data collected at the Weipers Centre Equine Hospital at the University of Glasgow, showing the micro- Doppler signatures of horses and preliminary results of their analysis

    Real-time human ambulation, activity, and physiological monitoring:taxonomy of issues, techniques, applications, challenges and limitations

    Get PDF
    Automated methods of real-time, unobtrusive, human ambulation, activity, and wellness monitoring and data analysis using various algorithmic techniques have been subjects of intense research. The general aim is to devise effective means of addressing the demands of assisted living, rehabilitation, and clinical observation and assessment through sensor-based monitoring. The research studies have resulted in a large amount of literature. This paper presents a holistic articulation of the research studies and offers comprehensive insights along four main axes: distribution of existing studies; monitoring device framework and sensor types; data collection, processing and analysis; and applications, limitations and challenges. The aim is to present a systematic and most complete study of literature in the area in order to identify research gaps and prioritize future research directions

    Is the timed-up and go test feasible in mobile devices? A systematic review

    Get PDF
    The number of older adults is increasing worldwide, and it is expected that by 2050 over 2 billion individuals will be more than 60 years old. Older adults are exposed to numerous pathological problems such as Parkinson’s disease, amyotrophic lateral sclerosis, post-stroke, and orthopedic disturbances. Several physiotherapy methods that involve measurement of movements, such as the Timed-Up and Go test, can be done to support efficient and effective evaluation of pathological symptoms and promotion of health and well-being. In this systematic review, the authors aim to determine how the inertial sensors embedded in mobile devices are employed for the measurement of the different parameters involved in the Timed-Up and Go test. The main contribution of this paper consists of the identification of the different studies that utilize the sensors available in mobile devices for the measurement of the results of the Timed-Up and Go test. The results show that mobile devices embedded motion sensors can be used for these types of studies and the most commonly used sensors are the magnetometer, accelerometer, and gyroscope available in off-the-shelf smartphones. The features analyzed in this paper are categorized as quantitative, quantitative + statistic, dynamic balance, gait properties, state transitions, and raw statistics. These features utilize the accelerometer and gyroscope sensors and facilitate recognition of daily activities, accidents such as falling, some diseases, as well as the measurement of the subject's performance during the test execution.info:eu-repo/semantics/publishedVersio

    Ambulatory Monitoring of Activities and Motor Symptoms in Parkinson's Disease

    Get PDF
    Ambulatory monitoring of motor symptoms in Parkinson's disease (PD) can improve our therapeutic strategies, especially in patients with motor fluctuations. Previously published monitors usually assess only one or a few basic aspects of the cardinal motor symptoms in a laboratory setting. We developed a novel ambulatory monitoring system that provides a complete motor assessment by simultaneously analyzing current motor activity of the patient (e.g., sitting, walking, etc.) and the severity of many aspects related to tremor, bradykinesia, and hypokinesia. The monitor consists of a set of four inertial sensors. Validity of our monitor was established in seven healthy controls and six PD patients treated with deep brain stimulation (DBS) of the subthalamic nucleus. The patients were tested at three different levels of DBS treatment. Subjects were monitored while performing different tasks, including motor tests of the Unified PD Rating Scale (UPDRS). Output of the monitor was compared to simultaneously recorded videos. The monitor proved very accurate in discriminating between several motor activities. Monitor output correlated well with blinded UPDRS ratings during different DBS levels. The combined analysis of motor activity and symptom severity by our PD monitor brings true ambulatory monitoring of a wide variety of motor symptoms one step close

    Quantifying Variation in Gait Features from Wearable Inertial Sensors Using Mixed Effects Models

    Get PDF
    The emerging technology of wearable inertial sensors has shown its advantages in collecting continuous longitudinal gait data outside laboratories. This freedom also presents challenges in collecting high-fidelity gait data. In the free-living environment, without constant supervision from researchers, sensor-based gait features are susceptible to variation from confounding factors such as gait speed and mounting uncertainty, which are challenging to control or estimate. This paper is one of the first attempts in the field to tackle such challenges using statistical modeling. By accepting the uncertainties and variation associated with wearable sensor-based gait data, we shift our efforts from detecting and correcting those variations to modeling them statistically. From gait data collected on one healthy, non-elderly subject during 48 full-factorial trials, we identified four major sources of variation, and quantified their impact on one gait outcome—range per cycle—using a random effects model and a fixed effects model. The methodology developed in this paper lays the groundwork for a statistical framework to account for sources of variation in wearable gait data, thus facilitating informative statistical inference for free-living gait analysis

    Wearable sensors system for an improved analysis of freezing of gait in Parkinson's disease using electromyography and inertial signals

    Get PDF
    We propose a wearable sensor system for automatic, continuous and ubiquitous analysis of Freezing of Gait (FOG), in patients affected by Parkinson's disease. FOG is an unpredictable gait disorder with different clinical manifestations, as the trembling and the shuffling-like phenotypes, whose underlying pathophysiology is not fully understood yet. Typical trembling-like subtype features are lack of postural adaptation and abrupt trunk inclination, which in general can increase the fall probability. The targets of this work are detecting the FOG episodes, distinguishing the phenotype and analyzing the muscle activity during and outside FOG, toward a deeper insight in the disorder pathophysiology and the assessment of the fall risk associated to the FOG subtype. To this aim, gyroscopes and surface electromyography integrated in wearable devices sense simultaneously movements and action potentials of antagonist leg muscles. Dedicated algorithms allow the timely detection of the FOG episode and, for the first time, the automatic distinction of the FOG phenotypes, which can enable associating a fall risk to the subtype. Thanks to the possibility of detecting muscles contractions and stretching exactly during FOG, a deeper insight into the pathophysiological underpinnings of the different phenotypes can be achieved, which is an innovative approach with respect to the state of art
    • 

    corecore