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Abstract: The emerging technology of wearable inertial sensors has shown its advantages in collecting
continuous longitudinal gait data outside laboratories. This freedom also presents challenges in
collecting high-fidelity gait data. In the free-living environment, without constant supervision from
researchers, sensor-based gait features are susceptible to variation from confounding factors such as
gait speed and mounting uncertainty, which are challenging to control or estimate. This paper is one
of the first attempts in the field to tackle such challenges using statistical modeling. By accepting the
uncertainties and variation associated with wearable sensor-based gait data, we shift our efforts from
detecting and correcting those variations to modeling them statistically. From gait data collected on
one healthy, non-elderly subject during 48 full-factorial trials, we identified four major sources of
variation, and quantified their impact on one gait outcome—range per cycle—using a random effects
model and a fixed effects model. The methodology developed in this paper lays the groundwork
for a statistical framework to account for sources of variation in wearable gait data, thus facilitating
informative statistical inference for free-living gait analysis.

Keywords: pervasive gait analysis; mounting location uncertainty; gait speed variation; gait data
quality; sources of variation; gyroscope; accelerometer; statistical characterization; random effects
models; fixed effects models

1. Introduction

In recent years, wearable inertial sensors have emerged as a promising tool for gait analysis,
with the potential to provide continuous assessment of gait-associated disorders and diseases in
free-living environments [1]. Medical applications range from the assessment of neurological
or neuropathic disorders [2–6] and fall risks [7–10], to evaluating the efficacy of prosthetics and
orthoses [11–13]. Assessment of these disorders and diseases can greatly benefit from the continuous
out-of-lab assessment of gait. Ideally, effective use involves sending the sensors to patients’ homes,
and patients will simply strap the sensors around their arm or leg (following instructions from the
medical researchers or caregivers), and wear the sensors as they go about their everyday life.

However, the freedom of having patients essentially self-administer the test comes with certain
challenges. One major challenge is that such flexibility introduces sources of variation that can
greatly impact gait data quality, such as mounting uncertainty and physiological variation in the
free-living environment [1]. For example, while gait speed is often considered an important feature
in predicting frailty in the elderly [7] and assessing gait pathologies [14], it is also intertwined
with physiological variation due to mood, types of shoe, terrain, and energy levels, among other
factors [15–17]. Meanwhile, with the current strap-on method of mounting sensors, the sensors can at
times move around body segments without detection. Since inertial sensors are sensitive to orientation
changes, mounting location shifts can also cause significant variations in sensor data. While these
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issues can be mitigated in a controlled laboratory environment by adopting elaborate calibration
procedures [18] before and after data collection, it is very challenging to control or correct these
factors in the free-living environment during continuous data collection. Therefore, these factors
must be characterized by statistical modeling before the gait analysis results can be applied to assist
clinical inference.

The first step to achieving this is to properly identify sources of variation and quantify their
impact on gait data. While we currently know that factors such as speed and mounting location can
contribute to changes in sensor readings, the degree to which each factor drives variation has not been
statistically established. Therefore, in this paper, we propose a statistical framework for decomposing
and quantifying sources of variation. First, we collect gait data by conducting a full-factorial experiment
with 48 factorial combinations of four commonly identified sources of variation. Secondly, we analyze
the gait data using a random effects model and a fixed effects model to quantify sources of variation in
one gait outcome (range per gait cycle), elaborating the methodology and demonstrating the viability
of the proposed method. Lastly, we discuss the results from this statistical framework and their
implications for wearable sensor-based gait analysis.

2. Related Work

Previous work has sought to identify and remedy errors and variation due to sensor mounting
uncertainty from an engineering perspective. Chen et al. devised a simple procedure—applied
prior to data collection—that aligns the inertial frame to the global frame and remedies mounting
errors [19]. To mitigate mounting shifts, they used an elastic strap with a tennis grip to maximize
the friction. Amini et al. developed an autonomous method to determine the mounting location
on the body for activity recognition [20]. However, their method can only identify different body
segments, rather than the finer location within a body segment, which is required for high-precision
gait analysis [20]. Seel et al. devised a method that allows for arbitrary mounting locations for joint
knee angle calculation [21]. Although this method is effective and practical, it does not address the
issue of mounting location shift and is only applicable to that particular gait outcome. In general,
these methods are limited to providing accurate one-time calibration. Even with proper pre- and
post-calibration to detect mounting location shifts [18], these shifts can still be unnoticed during
continuous data collection in day-to-day use, despite proper precautions to prevent sensor shift.

Besides mounting location, gait speed is another uncontrollable source of variation that can affect
gait analysis. In the laboratory setting, gait speed is fairly easy to measure using a treadmill or a stop
watch and tape measures, and can then be adjusted for in post analysis. However, these conditions
do not exist in the natural setting. Since it is difficult for inertial sensors to measure accurate spatial
information for an extended period [19], it is inappropriate to rely on inertial sensors to provide ground
truth gait speed information in a free-living situation.

Therefore, for real-world deployment, researchers must be ready to accept the uncertainties that
come with wearable sensor-based gait analysis. Although the uncertainties cannot be easily controlled,
they can be identified, characterized, and modeled using statistical methods. The quantified variation
can help researchers determine the sample size required through statistical power analysis and identify
variables that need to be accounted for during data analysis. By moving the burden of dealing with
variation onto analysis, we avoid the use of ad-hoc correction algorithms that may distort raw data,
and encourage a more communicable biostatistical framework to account for intra-/inter-subject
gait variability.

3. Experimental Design

Our experiment employed four Shimmer3 sensor nodes (Shimmer Sensing, Doublin, Ireland).
Each sensor node consists of a three-axis accelerometer, a three-axis gyroscope, and a three-axis
magnetometer. Both accelerometer and gyroscope sensors were manually calibrated with the aid of
Shimmer 9 Degrees of Freedom (9 DOF) Calibration software prior to data collection [22].
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3.1. Full-Factorial Setup

To identify factors that may potentially contribute to sensor variability, a single-subject
full-factorial experiment was designed and conducted, as shown in Figure 1. Four factors of interest
were examined: mounting location, mounting leg, sensor, and speed. These factors were chosen due to
their relative importance in obtaining an accurate sensor reading. The factorial design ensures that
each combination of the factors is tested, which enables us to test how each factor contributes to total
variation and compare interaction effects between factors.

Figure 1. Experimental setup: a single subject getting ready for full-factorial trials on a treadmill.

In freestyle walking situation, mounting location can shift around the leg transversely or along
the leg longitudinally. In this paper, we focus on investigating the transverse shifts, randomizing the
mounting locations to four equidistant extremes: outer, inner, front, and back of the leg, as shown in
Figure 2. Additionally, the mounting legs were randomized so that the sensor was mounted on either
the left or right leg. Two different sensors were also interchanged to test for differences between them.
Gait speed was the final variable randomized and controlled by treadmill, varying at 1.8 mph, 2.4 mph,
and 3.0 mph. These speeds were intended to encompass typical walking speeds for healthy human
subjects. A third reference sensor was mounted on the outer right leg to provide ground truth data for
each session.

(a) Outer Leg. (b) Front Leg. (c) Inner Leg. (d) Back Leg.

Figure 2. Overview of mounting locations (left leg).

In total, 48 factorial combinations were tested from the four sources of variation. For each
combination, an approximately one-minute treadmill session was performed. The data was recorded
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at 120 Hz, totalling 245,277 data points spread across the 48 sessions. Once the collection phase
was over, sensor data was cleaned to remove non-walking data and concatenated with the design
matrix which contains the indicator variables for each session. Data management was performed in
MATLAB R©.

3.2. Random Effects Modeling

Gait variation from the full-factorial design was quantified using a random effects model.
The random effects model—also known as a variance component model—can provide a breakdown
of the variation contributed by each factor; i.e., the percentage of total variability explained by each
factor [23]. Factors with a small percentage are of comparatively less concern in analysis because they
contribute less to differences in gait outcomes. On the other hand, a large percentage indicates that
special care must be taken to control for this variable in the analysis, and thus during measurement.
The model used in this paper is demonstrated by

Yijklt = µ + αi + β j + γk + δl + (αβ)ij + (αγ)ik + (αδ)il + (βγ)jk + (βδ)jl + (γδ)kl + εijklt. (1)

In Equation (1), each individual coefficient corresponds to the amount of variance explained by a
given factor. Specifically:

Yijklt is the gait outcome given some combination of factor levels,
µ is the grand mean outcome,
αi is the main effect of the ith mounting location,
β j is the main effect of the jth speed,
γk is the main effect of the kth sensor,
δl is the main effect of the mounting leg,
αβij, αγik, αδil , βγjk, βδjl , and γδkl are two-way interaction effects
εijklt is a random error term capturing unexplainable time-to-time variability, for time index t.

The outcome Yijklt represents either the y-axis angular velocity (GY) or the x-axis acceleration (AX),
depending on which outcome is being analyzed. All terms except mu in Equation (1) are normally
distributed with respective variances of σ2

α , σ2
β, σ2

γ, σ2
δ , σ2

αβ , σ2
αγ, σ2

αδ, σ2
βγ, σ2

βδ, σ2
γδ, and σ2

ε . The physical
meanings of the indices are listed in Table 1.

Table 1. Identified sources of variation in factorial design.

Factor α Factor β Factor γ Factor δ

i Mounting Location j Speed k Sensor Node l Mounting Leg

0 Outer Leg 0 1.8 mph 0 Sensor Node 1 0 Left Leg
1 Back Leg 1 2.4 mph 1 Sensor Node 2 1 Right Leg
2 Inner Leg 2 3.0 mph
3 Front Leg

The random-effects model represented by Equation (1) analyzes the main and two-way interaction
effects of the four factors in the full-factorial design. These interactions allow us to examine whether
one factor affects the gait variability differently across the factor levels of another factor.

3.3. Outcome Variables

The first step to fitting the random effects model is selecting an informative transformation of
each outcome variable. While choosing the raw data as the outcome may seem intuitive, inertial
sensor signals are mean centered around some constant. The random effects model relies on detecting
differences between group means. The consequence is that the mean differences are virtually zero,
attributing virtually none of the total outcome variability to the between-group differences, but all to
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the within-group differences. This manifests itself in a large ε term, indicating that the majority of the
variation is unexplained. The zero-mean phenomenon is captured in Figure 3, where 800 consecutive
samples from each trial are displayed along with their means.

Figure 3. Raw x-axis accelerometer signals and y-axis gyroscope signals from the 48 trials.

Therefore, we picked a gait feature that transforms the raw data to meaningful positive quantities
as our outcome variable Yijktl . To avoid errors introduced by more complex feature extraction
algorithms, we picked a statistical gait feature that is resilient to feature extraction error – range
per gait cycle. Since gait cycle detection algorithms [19] can accurately segment gait cycles when the
temporal resolution of the signal is sufficiently high (e.g., sampling rate of 120 Hz), this feature can be
extracted by calculating the difference between the maximum and minimum value in each gait cycle.
The cycle segmentation and range calculation process are demonstrated by Figure 4, where purple
circles indicate cycle maxima and red stars indicate minima. This range feature can easily be applied
to the raw data from all nine axes of a typical 9DOF inertial sensor.

Figure 4. Segmentation of y-axis gyroscope data.
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In this paper, we focus on the analysis of two variables: y-axis gyroscope and x-axis accelerometer
data, capturing sagittal-plane angular velocity and walking-direction acceleration, respectively, when
the sensor is mounted on the outer side of the leg. These two variables are selected due to their
straightforward clinical interpretations.

4. Results

The results of fitting the random-effects models in Equation (1) are captured in Table 2.

Table 2. Percentages of variance explained in range data.

Source GY AX

α (Location) 83.59% 27.22%
β (Speed) 4.47% 53.10%
γ (Sensor) 0% 0%

δ (Leg) 0% 0%
αβ 5.57% 2.56%
αγ 0.66% 0.03%
αδ 3.18% 1.23%
βγ 0.03% 1.33%
βδ 0.43% 2.50%
γδ 0% 0.34%

Unexplained (ε) 2.07% 11.70%

Table 2 lists the total outcome variability explained by the four factors and their interaction
terms. Each percentage in the table is the percentage of the variance explained by a given factor
relative to the overall variance. The range feature of y-axis gyroscope data (GY) is greatly affected by
transverse shifts of mounting location, explaining 83.59% of the total variation. The varying gait speed
contributes 4.47% to the the total variation, and the location by speed and location by leg interaction
effects explain 5.57% and 3.18%, respectively. The contribution of other factors to the total variation is
comparatively very small. The amount of unexplained variance is 2.07%, suggesting that the main
and interaction variables explain the vast majority of the variation. For the range feature of x-axis
accelerometer data (AX), mounting location and speed explain 27.22% and 53.10% of the total variation,
respectively. The variability explained by the interaction terms is comparatively trivial. In the case of
the accelerometer, 11.70% of the total variance remains unexplained.

To gain a better understanding of the interplay between factors and outcomes, we fit fixed effects
models using only two factors: mounting location and speed. These two factors were selected based on
Bayesian information criterion (BIC) [24]. Our preliminary analysis shows that speed is linearly related
to acceleration and angular velocity, so it is included as a quantitative variable. Mounting location was
coded by three different dummy variables, indicating back (LB), inside (LI), and front locations (LF) on
the leg. The model is

Yt = β0 + β1LBt + β2LIt + β3LFt + β4(St − 1.8) + εt, (2)

where outcome Yt is either y-axis angular velocity (GY) or x-axis acceleration (AX), LB, LI , LF are
dummy variables such that:

LB =

{
1, if sensor is mounted on the back o f the leg

0, otherwise

LI =

{
1, if sensor is mounted on the inside o f the leg

0, otherwise



Sensors 2017, 17, 466 7 of 10

LF =

{
1, if sensor is mounted on the f ront o f the leg

0, otherwise.

If the sensor is mounted on the outer portion of the leg, all dummy variables will be 0. St is the
quantitative speed (i.e. 1.8 mph, 2.4 mph and 3 mph), centered at the lowest speed. Therefore, the
intercept β0 represents the mean outcome at the lowest speed, 1.8 mph, with outer leg mounting.

The results are summarized in Table 3 for both the accelerometer and the gyroscope, with fixed
effect estimates followed by their standard errors in parentheses.

Table 3. Analysis of linear regression models.

Source Coefficient GY AX

Outer Leg (Intercept) β0 448.87 (3.24) 16.49 (0.13)
Back Leg (LB) β1 −310.96 ∗∗ (3.89) 5.27 ∗∗ (0.15)
Inner leg (LI) β2 8.06 ∗ (3.80) −0.04 (0.15)
Front Leg (LF) β3 −314.48 ∗∗ (3.70) −1.50 ∗∗ (0.15)

Speed (S) β4 67.35 ∗∗ (2.86) 6.80 ∗∗ (0.11)

Note: * indicates p-value < 0 .05 and ** indicates p-value < 0.01.

Examining the range feature from the y-axis gyroscope data, we see that relative to outer leg
mounting, back and front leg mounting locations had large negative gaps in their mean ranges of
angular velocity (−310.96 and −314.48, respectively); in contrast, inner leg mounting had a modest
positive gap in mean range (8.06), controlling for the speed. Speed was positively associated with the
gyroscope outcome (67.35), controlling for the mounting location.

The impact of inner leg mounting on the range of acceleration was not significantly different from
outer leg mounting (−0.04), controlling for the gait speed. On the other hand, with controlled gait
speed, the back and front leg mountings had positive (5.27) and negative (−1.50) gaps in comparison
to outer leg mounting, respectively. With perfect mounting, it is expected that front and back leg
mounting should produce virtually identical coefficients, as is the case between inner and outer leg
mounting. Our findings indicate that this is not the case. The data suggest mounting location induces
extra variability in the range of acceleration. Naturally, speed is positively associated with the range of
motion, controlling for the mounting location.

5. Discussion

Our proposed models and experimental results shed light on the breakdown of uncertainty in
wearable sensor-based gait data, using range per cycle as an example of gait outcomes. The results
of the random-effects model reveal that of the four main factors and their two-way interactions,
mounting location shift accounts for 27.22% and 83.59% of the total variability in walking-direction
acceleration and sagittal plane angular velocity respectively, while gait speed accounts for 53.10% and
4.47% of the total variability. Analysis of the fixed effects model (2) reveals that the gait variability from
the mounting location can be substantially reduced by avoiding front and back leg mounting locations.

For walking-direction accelerometer data, the variation of the gait range feature is mostly
influenced by gait speed. In the natural setting, this varies due to uncontrollable factors such as
mood and energy levels, and is challenging to measure accurately. Therefore, when analyzing gait
in freestyle walking, range-related features extracted from walking-direction accelerometer data
should be analyzed with care, adjusting for gait speed. For y-axis gyroscope data, the variation is
mostly influenced by mounting location—a factor that is controllable through good mounting practice.
Although ideally, mounting location should not vary, it is difficult to achieve in reality. So if the
mounting location has to vary, it is better for it to vary between inner and outer leg mounting locations.
Since we used extreme mounting shift to characterize this factor, we expect the impact of this factor on
both gyroscope and accelerometer data to be smaller in reality. It is interesting to note that for both
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outcome variables, little variation is contributed by changing sensors or by swapping sensors between
legs. This means that with proper sensor calibration prior to data collection, the gait data variation
from using different sensor nodes is negligible. Furthermore, for healthy subjects with symmetric gait,
a single inertial sensor node is sufficient to characterize their bilateral gait patterns.

The results of the fixed effects models highlighted the discrepancies between front–back mounting
versus inner–outer mounting, shown by the differences in the coefficients between the four mounting
locations in Table 3. While mounting on the inner and outer shank show similar effects on the range
feature, the vast difference in range between these combinations suggests that mixing front or back
mounting with either inner or outer mounting would result in poor-quality data. This is due to the
drastic mismatch between the latent measurement and the assumed sensing axes when mounting
location is shifted from the side of the shank to the front or back of the shank. In other words, when
mounted on the side of the shank, the gyroscope axis capturing the sagittal plane motion will instead
capture frontal plane motion once shifted to the front or back of the shank. A similar issue occurs with
accelerometers shifting away from walking-direction acceleration and measuring the acceleration of
lateral leg movement instead.

Our random effects model explains about 98% of the variation in gyroscope data and 88% of
the variation in accelerometer data. The unexplained variation can be caused by a number of factors.
For example, during data collection in our full-factorial experiment, we did not consider the time of
day or the mood of the subject, which can affect gait patterns—especially in free-living gait analysis
and/or in a pathological population [25]. Another less observable but more persistent factor may
be the subtle shifting of mounting location during walking, especially when mounted on a less flat
surface such as the bony front or muscular back of the shank. It is also interesting to note that the
unexplained variation in the accelerometer data is higher than in the gyroscope data. Since there may
be a subtle alignment difference between the same assigned mounting locations during 48 trials, and
accelerometer data are more sensitive to subtle changes in orientation than gyroscope data, this could
cause comparatively more unexplained variation in accelerometer data.

This pilot study focused on methodology development, and thus the current experiment only
concerns a single, healthy, non-elderly subject. Moreover, we did not conduct an exhaustive
investigation into multiple gait outcomes and all possible sources of variation. Further research
on subjects with pathological gait patterns may lead to different percentages of variation. For instance,
data from a patient with an asymmetric gait will likely exhibit more variation caused by moving the
sensor between legs than for someone with a symmetric gait. This paper also focuses on four extreme
mounting locations in order to assess the range of mounting effects so that further studies involving
multiple subjects can leverage this information for statistical power calculation. In reality, this variation
may be less severe.

In the future, we will extend this method to intra-/inter-subject variability in more gait features,
with consideration of individual characteristics such as gender, ethnicity, age, height, and weight.
The framework developed can also be extended to other types of sensors for gait measurement,
such as insole sensors [26] and ear-worn sensors [27]. The results of our future work will reveal
a complete picture of variations in human gait data collected by wearable sensors, and eventually
prepare wearable-sensor based gait analysis for real-world clinical assessment and diagnosis.

6. Conclusions

This paper proposed a framework for quantifying variation in gait data collected by wearable
inertial sensors using mixed effects models. Utilizing a randomized controlled trial on a healthy,
non-elderly subject with a full-factorial design of 48 factor combinations, we characterized how four
common factors and their interactions influence a gait feature derived from wearable inertial sensors.
Our analysis demonstrated that mounting location and gait speed are the two dominant factors
contributing to a large percentage of the variation in both accelerometer (80.32%) and gyroscope
(88.06%) data, while the variability from using different sensors (after calibration) and swapping the
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mounting leg (provided the gait being assessed is symmetric) is negligible. Future work will extend
the method to other sensor axes, gait features and multiple subjects to characterize intra/inter-subject
variability.
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