74,441 research outputs found

    Logistics of Mathematical Modeling-Focused Projects

    Full text link
    This article addresses the logistics of implementing projects in an undergraduate mathematics class and is intended both for new instructors and for instructors who have had negative experiences implementing projects in the past. Project implementation is given for both lower and upper division mathematics courses with an emphasis on mathematical modeling and data collection. Projects provide tangible connections to course content which can motivate students to learn at a deeper level. Logistical pitfalls and insights are highlighted as well as descriptions of several key implementation resources. Effective assessment tools, which allowed me to smoothly adjust to student feedback, are demonstrated for a sample class. As I smoothed the transition into each project and guided students through the use of the technology, their negative feedback on projects decreased and more students noted how the projects had enhanced their understanding of the course topics. Best practices learned over the years are given along with project summaries and sample topics. These projects were implemented at a small liberal arts university, but advice is given to extend them to larger classes for broader use.Comment: 27 pages, no figures, 1 tabl

    Research and Education in Computational Science and Engineering

    Get PDF
    Over the past two decades the field of computational science and engineering (CSE) has penetrated both basic and applied research in academia, industry, and laboratories to advance discovery, optimize systems, support decision-makers, and educate the scientific and engineering workforce. Informed by centuries of theory and experiment, CSE performs computational experiments to answer questions that neither theory nor experiment alone is equipped to answer. CSE provides scientists and engineers of all persuasions with algorithmic inventions and software systems that transcend disciplines and scales. Carried on a wave of digital technology, CSE brings the power of parallelism to bear on troves of data. Mathematics-based advanced computing has become a prevalent means of discovery and innovation in essentially all areas of science, engineering, technology, and society; and the CSE community is at the core of this transformation. However, a combination of disruptive developments---including the architectural complexity of extreme-scale computing, the data revolution that engulfs the planet, and the specialization required to follow the applications to new frontiers---is redefining the scope and reach of the CSE endeavor. This report describes the rapid expansion of CSE and the challenges to sustaining its bold advances. The report also presents strategies and directions for CSE research and education for the next decade.Comment: Major revision, to appear in SIAM Revie

    Environmental Quality Laboratory Research Report, 1985-1987

    Get PDF
    The Environmental Quality Laboratory at Caltech is a center for research on large-scale systems problems of natural resources and environmental quality. The principal areas of investigation at EQL are: 1. Air quality management. 2. Water resources and water quality management. 3. Control of hazardous substances in the environment. 4. Energy policy, including regulation, conservation and energy-environment tradeoffs. 5. Resources policy (other than energy); residuals management. EQL research includes technical assessments, computer modeling, studies of environmental control options, policy analyses, and research on important components of the large-scale systems. Field work is also undertaken at EQL, some in collaboration with other organizations, to provide critical data needed for evaluation of systems concepts and models. EQL's objectives are as follows: 1. To do systematic studies of environmental and resources problems. The results of these studies, including the clarification of policy alternatives, are communicated to decision-makers in government and industry, to the research community, and to the public. As an organization, EQL refrains from advocating particular policies, but seeks to point out the implications of the various policy alternatives. 2. To contribute to the education and training of people in these areas through involvement of predoctoral students, postdoctoral fellows, and visiting faculty members in EQL activities. This educational effort is just as important as the results of the studies themselves, and should make lasting contributions to the nation's ability to solve its environmental and resources problems. The work at EQL goes beyond the usual academic research in that it tries to organize and develop the knowledge necessary to clarify society's alternatives by integrating relevant disciplines. EQL works on solving problems of specific localities when there is a strong element of public interest or educational value, or the concepts and results are applicable to other places. The research of EQL during this period was done under the supervision of faculty members in Environmental Engineering Science, Chemical Engineering, and Social Science. This research report covers the period from October 1985 through September 1987. The publications listed under the individual project descriptions are the new ones for the reporting period

    Security in online learning assessment towards an effective trustworthiness approach to support e-learning teams

    Get PDF
    (c) 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.This paper proposes a trustworthiness model for the design of secure learning assessment in on-line collaborative learning groups. Although computer supported collaborative learning has been widely adopted in many educational institutions over the last decade, there exist still drawbacks which limit their potential in collaborative learning activities. Among these limitations, we investigate information security requirements in on-line assessment, (e-assessment), which can be developed in collaborative learning contexts. Despite information security enhancements have been developed in recent years, to the best of our knowledge, integrated and holistic security models have not been completely carried out yet. Even when security advanced methodologies and technologies are deployed in Learning Management Systems, too many types of vulnerabilities still remain opened and unsolved. Therefore, new models such as trustworthiness approaches can overcome these lacks and support e-assessment requirements for e-Learning. To this end, a trustworthiness model is designed in order to conduct the guidelines of a holistic security model for on-line collaborative learning through effective trustworthiness approaches. In addition, since users' trustworthiness analysis involves large amounts of ill-structured data, a parallel processing paradigm is proposed to build relevant information modeling trustworthiness levels for e-Learning.Peer ReviewedPostprint (author's final draft

    Measurement with Persons: A European Network

    Get PDF
    The European ‘Measuring the Impossible’ Network MINET promotes new research activities in measurement dependent on human perception and/or interpretation. This includes the perceived attributes of products and services, such as quality or desirability, and societal parameters such as security and well-being. Work has aimed at consensus about four ‘generic’ metrological issues: (1) Measurement Concepts & Terminology; (2) Measurement Techniques: (3) Measurement Uncertainty; and (4) Decision-making & Impact Assessment, and how these can be applied specificallyto the ‘Measurement of Persons’ in terms of ‘Man as a Measurement Instrument’ and ‘Measuring Man.’ Some of the main achievements of MINET include a research repository with glossary; training course; book; series of workshops;think tanks and study visits, which have brought together a unique constellation of researchers from physics, metrology,physiology, psychophysics, psychology and sociology. Metrology (quality-assured measurement) in this area is relativelyunderdeveloped, despite great potential for innovation, and extends beyond traditional physiological metrology in thatit also deals with measurement with all human senses as well as mental and behavioral processes. This is particularlyrelevant in applications where humans are an important component of critical systems, where for instance health andsafety are at stake

    SciTech News Volume 71, No. 2 (2017)

    Get PDF
    Columns and Reports From the Editor 3 Division News Science-Technology Division 5 Chemistry Division 8 Engineering Division 9 Aerospace Section of the Engineering Division 12 Architecture, Building Engineering, Construction and Design Section of the Engineering Division 14 Reviews Sci-Tech Book News Reviews 16 Advertisements IEEE

    Quantifying Changes in Creativity: Findings from an Engineering Course on the Design of Complex and Origami Structures

    Get PDF
    Engineering educators have increasingly sought strategies for integrating the arts into their curricula. The primary objective of this integration varies, but one common objective is to improve students’ creative thinking skills. In this paper, we sought to quantify changes in student creativity that resulted from participation in a mechanical engineering course targeted at integrating engineering, technology, and the arts. The course was team taught by instructors from mechanical engineering and art. The art instructor introduced origami principles and techniques as a means for students to optimize engineering structures. Through a course project, engineering student teams interacted with art students to perform structural analysis on an origami-based art installation, which was the capstone project of the art instructor’s undergraduate origami course. Three engineering student teams extended this course project to collaborate with the art students in the final design and physical installation. To evaluate changes in student creativity, we used two instruments: a revised version of the Reisman Diagnostic Creativity Assessment (RDCA) and the Innovative Behavior Scales. Initially, the survey contained 12 constructs, but three were removed due to poor internal consistency reliability: Extrinsic Motivation; Intrinsic Motivation; and Tolerance of Ambiguity. The nine remaining constructs used for comparison herein included: • Originality: Confidence in developing original, innovative ideas • Ideation: Confidence in generating many ideas • Risk Taking: Adventurous; Brave • Openness of Process: Engaging various potentialities and resisting closure • Iterative Processing: Willingness to iterate on one’s solution • Questioning: Tendency to ask lots of questions • Experimenting/exploring: Tendency to physically or mentally take things apart • Idea networking: Tendency to engage with diverse others in communicative acts • Observing: Tendency to observe the surrounding world By conducting a series of paired t-tests to ascertain if pre and post-course responses were significantly different on the above constructs, we found five significant changes. In order of significance, these included Idea Networking; Questioning; Observing; Originality; and Ideation. To help explain these findings, and to identify how this course may be improved in subsequent offerings, the discussion includes the triangulation of these findings in light of teaching observations, responses from a mid-semester student focus group session, and informal faculty reflections. We close with questions that we and others ought to address as we strive to integrate engineering, technology, and the arts. We hope that these findings and discussion will guide other scholars and instructors as they explore the impact of art on engineering design learning, and as they seek to evaluate student creativity resulting from courses with similar aims

    Ethical Issues in Engineering Models: Personal Reflections

    Get PDF
    I start this contribution with an overview of my personal involvement—as an Operations Research consultant—in several engineering case-studies that may raise ethical questions; these case studies employ simulation models. Next, I present an overview of the recent literature on ethical issues in modeling, focusing on the validation of the model’s assumptions; the decisive role of these assumptions leads to the quest for robust models. Actually, models are meant to solve practical problems; these problems may have ethical implications for the various stakeholders; namely, modelers, clients, and the public at large. Finally, I briefly discuss whistle blowing.ethics;code of conduct;stakeholders;validity;risk analysis;simulation;operations research
    corecore