303 research outputs found

    Effective strategies to manage dredge related threats to tropical seagrass systems based on seagrass ecological requirements

    Get PDF
    Major dredging projects have the potential to impact on tropical seagrass communities through direct removal and burial and indirectly through turbid dredge plumes reducing the amount of light available to seagrasses. This is a major concern in Australia and elsewhere in the Indo Pacific region where substantial expansion of tropical ports associated with the resources boom is occurring. In the majority of cases managing the impacts from turbid plumes has focussed on a turbidity threshold that has not been related to the true light requirements of the various seagrass species potentially impacted. Here we report on the value of an approach based on determining the minimum light requirements of species, their resilience to impacts and ability to recover and designing a dredge mitigation approach that is focussed on maintaining critical windows of light to support seagrass growth and longer term survival. Results show the value of experimentally determining locally relevant ecological requirements and the importance of understanding the relationships between light requirements, tidal exposure, shifts in spectral quality of light, seasonality and capacity for species to recover from light stress in determining ecologically relevant triggers. This information combined with a robust toolkit for assessing sub-lethal light stress provides an effective dredge mitigation strategy to protect seagrasses

    Impacts and effects of ocean warming on intertidal rocky habitats.

    Get PDF
    • Intertidal rocky habitats comprise over 50% of the shorelines of the world, supporting a diversity of marine life and providing extensive ecosystem services worth in the region of US$ 5-10 trillion per year. • They are valuable indicators of the impacts of climate change on the wider marine environment and ecosystems. • Changes in species distributions, abundance and phenology have already been observed around the world in response to recent rapid climate change. • Species-level responses will have considerable ramifications for the structure of communities and trophic interactions, leading to eventual changes in ecosystem functioning (e.g. less primary producing canopy-forming algae in the North-east Atlantic). • Whilst progress is made on the mitigation1 required to achieve goals of a lower-carbon world, much can be done to enhance resilience to climate change. Managing the multitude of other interactive impacts on the marine environment, over which society has greater potential control (e.g. overfishing, invasive non-native species, coastal development, and pollution), will enable adaptation1 in the short and medium term of the next 5-50 years

    Science-based restoration monitoring of coastal habitats, Volume Two: Tools for monitoring coastal habitats

    Get PDF
    Healthy coastal habitats are not only important ecologically; they also support healthy coastal communities and improve the quality of people’s lives. Despite their many benefits and values, coastal habitats have been systematically modified, degraded, and destroyed throughout the United States and its protectorates beginning with European colonization in the 1600’s (Dahl 1990). As a result, many coastal habitats around the United States are in desperate need of restoration. The monitoring of restoration projects, the focus of this document, is necessary to ensure that restoration efforts are successful, to further the science, and to increase the efficiency of future restoration efforts

    Coastal and Inland Aquatic Data Products for the Hyperspectral Infrared Imager (HyspIRI)

    Get PDF
    The HyspIRI Aquatic Studies Group (HASG) has developed a conceptual list of data products for the HyspIRI mission to support aquatic remote sensing of coastal and inland waters. These data products were based on mission capabilities, characteristics, and expected performance. The topic of coastal and inland water remote sensing is very broad. Thus, this report focuses on aquatic data products to keep the scope of this document manageable. The HyspIRI mission requirements already include the global production of surface reflectance and temperature. Atmospheric correction and surface temperature algorithms, which are critical to aquatic remote sensing, are covered in other mission documents. Hence, these algorithms and their products were not evaluated in this report. In addition, terrestrial products (e.g., land use land cover, dune vegetation, and beach replenishment) were not considered. It is recognized that coastal studies are inherently interdisciplinary across aquatic and terrestrial disciplines. However, products supporting the latter are expected to already be evaluated by other components of the mission. The coastal and inland water data products that were identified by the HASG, covered six major environmental and ecological areas for scientific research and applications: wetlands, shoreline processes, the water surface, the water column, bathymetry and benthic cover types. Accordingly, each candidate product was evaluated for feasibility based on the HyspIRI mission characteristics and whether it was unique and relevant to the HyspIRI science objectives

    A meta-analysis of the carbon ecosystem service in human-managed coastal environments

    Get PDF
    Coastal wetlands sequester and bury substantial amounts of atmospheric carbon dioxide (CO2) via photosynthesis. These blue carbon (BC) ecosystems play an essential role in climate change mitigation. Despite the key role that BC ecosystems play, they are increasingly threatened by land use changes (LUC). This may impact their carbon storage and sequestration ecosystem services. We used meta-analysis in ecology to study carbon storage and sequestration within natural and transformed salt marshes and mangroves, across a global scale. Articles published since 2000 on the Web of Science Core Collection, that contained experimental data on carbon storage and sequestration for natural and modified ecosystems, were selected. Case studies were integrated into a database, and standardised. Research on mangroves concentrated on Asia and Oceania, whilst salt marshes concentrated on North America, eastern Asia and Oceania. We found that LUC in BC coastal ecosystems decreased carbon storage and carbon sequestration rates at a global scale. Carbon storage in mangrove sediments significantly decreased from 520.49 ± 388.99 Mg C ha-1 (mean ± SD) in natural systems to 186.81 ± 234.02 Mg C ha-1 in modified settings. Carbon storage in salt marsh sediments also decreased from 97.80 ± 107.69 Mg C ha-1 in natural ecosystems, to 31.42 ± 33.47 Mg C ha-1 in human-managed environments. Biomass carbon storage (aboveground and belowground biomass) averaged 103.07 ± 198.86 Mg C ha-1 in natural mangroves, whereas carbon storage in modified mangroves yielded an average of 29.01 ± 47.40 Mg C ha-1. Within natural salt marshes, biomass carbon stocks had an average value of 3.66 ± 5.24 Mg C ha-1. Carbon sequestration rates, significantly decreased in modified in mangroves, but not in salt marshes, due to inter-site variability. We found that sampling depth may affect the measurement of organic carbon stocks. Conversion of natural coastal ecosystems may decrease their carbon storage capacity

    Hydrology and biota interactions as driving forces for ecosystem functioning

    Get PDF
    This chapter examines the interactions between biologic and hydrologic processes in estuarine and nearshore coastal ecosystems, and their relevance to ecosystem functioning. The role of specific hydrologic variables and processes upon key functional groups of organisms (phytoplankton, heterotrophic bacteria, holozooplankton, merozooplankton, benthos, and nekton) is addressed considering both bottom-up and top-down effects. The impact of biologic processes on relevant hydrologic features, including dissolved gases, inorganic nutrients, organic matter, chemical and biological contaminants, turbidity, and water flow, is then evaluated. Biologic-and hydrologic-driven changes are integrated, specifying how they reverberate into ecosystem functioning over different spatial and temporal scales

    Oceanus.

    Get PDF
    v. 36, no. 2 (1993
    • …
    corecore