692 research outputs found

    Assessment and elimination of the effects of head movement on MEG resting-state measures of oscillatory brain activity

    Get PDF
    Magnetoencephalography (MEG) is increasingly being used to study brain function because of its excellent temporal resolution and its direct association with brain activity at the neuronal level. One possible cause of error in the analysis of MEG data comes from the fact that participants, even MEG-experienced ones, move their head in the MEG system. Head movement can cause source localization errors during the analysis of MEG data, which can result in the appearance of source variability that does not reflect brain activity. The MEG community places great importance in eliminating this source of possible errors as is evident, for example, by recent efforts to develop head casts that limit head movement in the MEG system. In this work we use software tools to identify, assess and eliminate from the analysis of MEG data any possible correlations between head movement in the MEG system and widely-used measures of brain activity derived from MEG resting-state recordings. The measures of brain activity we study are a) the Hilbert-transform derived amplitude envelope of the beamformer time series and b) functional networks; both measures derived by MEG resting-state recordings. Ten-minute MEG resting-state recordings were performed on healthy participants, with head position continuously recorded. The sources of the measured magnetic signals were localized via beamformer spatial filtering. Temporal independent component analysis was subsequently used to derive resting-state networks. Significant correlations were observed between the beamformer envelope time series and head movement. The correlations were substantially reduced, and in some cases eliminated, after a participant-specific temporal highpass filter was applied to those time series. Regressing the head movement metrics out of the beamformer envelope time series had an even stronger effect in reducing these correlations. Correlation trends were also observed between head movement and the activation time series of the default-mode and frontal networks. Regressing the head movement metrics out of the beamformer envelope time series completely eliminated these correlations. Additionally, applying the head movement correction resulted in changes in the network spatial maps for the visual and sensorimotor networks. Our results a) show that the results of MEG resting-state studies that use the above-mentioned analysis methods are confounded by head movement effects, b) suggest that regressing the head movement metrics out of the beamformer envelope time series is a necessary step to be added to these analyses, in order to eliminate the effect that head movement has on the amplitude envelope of beamformer time series and the network time series and c) highlight changes in the connectivity spatial maps when head movement correction is applie

    The effect of physical fatigue on oscillatory dynamics of the sensorimotor cortex

    Get PDF
    Aim: While physical fatigue is known to arise in part from supraspinal mechanisms within the brain exactly how brain activity is modulated during fatigue is not well understood. Therefore, this study examined how typical neural oscillatory responses to voluntary muscle contractions were affected by fatigue. Methods: Eleven healthy adults (age 27±4 years) completed two experimental sessions in a randomised crossover design. Both sessions first assessed baseline maximal voluntary isometric wrist-flexion force (MVFb). Participants then performed an identical series of fourteen test contractions (2 × 100%MVFb, 10 × 40%MVFb, 2 × 100%MVFb) both before and after one of two interventions: forty 12-s contractions at 55%MVFb (fatigue intervention) or 5%MVFb (control intervention). Magnetoencephalography (MEG) was used to characterise both the movement-related mu and beta decrease (MRMD and MRBD) and the post-movement beta rebound (PMBR) within the contralateral sensorimotor cortex during the 40%MVFb test contractions, while the 100%MVFb test contractions were used to monitor physical fatigue. Results: The fatigue intervention induced a substantial physical fatigue that endured throughout the post-intervention measurements (28.9-29.5% decrease in MVF, P<0.001). Fatigue had a significant effect on both PMBR (ANOVA, session × time-point interaction: P=0.018) and MRBD (P=0.021): the magnitude of PMBR increased following the fatigue but not the control interventions, whereas MRBD was decreased post-control but not post-fatigue. Mu oscillations were unchanged throughout both sessions. Conclusion: Physical fatigue resulted in an increased PMBR, and offset attenuations in MRBD associated with task habituation

    The effect of physical fatigue on oscillatory dynamics of the sensorimotor cortex

    Get PDF
    AIM: While physical fatigue is known to arise in part from supraspinal mechanisms within the brain exactly how brain activity is modulated during fatigue is not well understood. Therefore, this study examined how typical neural oscillatory responses to voluntary muscle contractions were affected by fatigue. METHODS: Eleven healthy adults (age 27±4 years) completed two experimental sessions in a randomised crossover design. Both sessions first assessed baseline maximal voluntary isometric wrist-flexion force (MVFb ). Participants then performed an identical series of fourteen test contractions (2 × 100%MVFb , 10 × 40%MVFb , 2 × 100%MVFb ) both before and after one of two interventions: forty 12-s contractions at 55%MVFb (fatigue intervention) or 5%MVFb (control intervention). Magnetoencephalography (MEG) was used to characterise both the movement-related mu and beta decrease (MRMD and MRBD) and the post-movement beta rebound (PMBR) within the contralateral sensorimotor cortex during the 40%MVFb test contractions, while the 100%MVFb test contractions were used to monitor physical fatigue. RESULTS: The fatigue intervention induced a substantial physical fatigue that endured throughout the post-intervention measurements (28.9-29.5% decrease in MVF, P<0.001). Fatigue had a significant effect on both PMBR (ANOVA, session × time-point interaction: P=0.018) and MRBD (P=0.021): the magnitude of PMBR increased following the fatigue but not the control interventions, whereas MRBD was decreased post-control but not post-fatigue. Mu oscillations were unchanged throughout both sessions. CONCLUSION: Physical fatigue resulted in an increased PMBR, and offset attenuations in MRBD associated with task habituation. This article is protected by copyright. All rights reserved

    The relationship between MEG and fMRI

    Get PDF
    In recent years functional neuroimaging techniques such as fMRI, MEG, EEG and PET have provided researchers with a wealth of information on human brain function. However none of these modalities can measure directly either the neuro-electrical or neuro-chemical processes that mediate brain function. This means that metrics directly reflecting brain ‘activity’ must be inferred from other metrics (e.g. magnetic fields (MEG) or haemodynamics (fMRI)). To overcome this limitation, many studies seek to combine multiple complementary modalities and an excellent example of this is the combination of MEG (which has high temporal resolution) with fMRI (which has high spatial resolution). However, the full potential of multi-modal approaches can only be truly realised in cases where the relationship between metrics is known. In this paper, we explore the relationship between measurements made using fMRI and MEG. We describe the origins of the two signals as well as their relationship to electrophysiology. We review multiple studies that have attempted to characterise the spatial relationship between fMRI and MEG, and we also describe studies that exploit the rich information content of MEG to explore differing relationships between MEG and fMRI across neural oscillatory frequency bands. Monitoring the brain at “rest” has become of significant recent interest to the neuroimaging community and we review recent evidence comparing MEG and fMRI metrics of functional connectivity. A brief discussion of the use of magnetic resonance spectroscopy (MRS) to probe the relationship between MEG/fMRI and neurochemistry is also given. Finally, we highlight future areas of interest and offer some recommendations for the parallel use of fMRI and MEG

    A neurophysiological examination of voluntary isometric contractions: modulations in sensorimotor oscillatory dynamics with contraction force and physical fatigue, and peripheral contributions to maximal force production

    Get PDF
    Human motor control is a complex process involving both central and peripheral components of the nervous system. Type Ia afferent input contributes to both motor unit recruitment and firing frequency, however, whether maximal force production is dependent on this input is unclear. Therefore, chapter 2 examined maximal and explosive force production of the knee extensors following prolonged infrapatellar tendon vibration; designed to attenuate the efficacy of the homonymous Ia afferent-α-motoneuron pathway. Despite a marked decrease in H-reflex amplitude, indicating an attenuated efficacy of the Ia afferent-α-motoneuron pathway, both maximal and explosive force production were unaffected after vibration. This suggested that maximal and explosive isometric quadriceps force production was not dependent upon Ia afferent input to the homonymous motor unit pool. Voluntary movements are linked with various modulations in ongoing neural oscillations within the supraspinal sensorimotor system. Despite considerable interest in the oscillatory responses to movements per se, the influence of the motor parameters that define these movements is poorly understood. Subsequently, chapters 3 and 4 investigated how the motor parameters of voluntary contractions modulated the oscillatory amplitude. Chapter 3 recorded electroencephalography from the leg area of the primary sensorimotor cortex in order to investigate the oscillatory responses to isometric unilateral contractions of the knee-extensors at four torque levels (15, 30, 45 and 60% max.). An increase in movement-related gamma (30-50 Hz) activity was observed with increments in knee-extension torque, whereas oscillatory power within the delta (0.5-3 Hz), theta (3-7 Hz), alpha (7-13 Hz) and beta (13-30 Hz) bands were unaffected. Chapter 4 examined the link between the motor parameters of voluntary contraction and modulations in beta (15-30 Hz) oscillations; specifically, movement-related beta decrease (MRBD) and post-movement beta rebound (PMBR). Magnetoencephalography (MEG) was recorded during isometric ramp and constant-force wrist-flexor contractions at distinct rates of force development (10.4, 28.9 and 86.7% max./s) and force output (5, 15, 35 and 60%max.), respectively. MRBD was unaffected by RFD or force output, whereas systematic modulation of PMBR by both contraction force and RFD was identified for the first time. Specifically, increments in isometric contraction force increased PMBR amplitude, and increments in RFD increased PMBR amplitude but decreased PMBR duration. Physical fatigue arises not only from peripheral processes within the active skeletal muscles but also from supraspinal mechanisms within the brain. However, exactly how cortical activity is modulated during fatigue has received a paucity of attention. Chapter 5 investigated whether oscillatory activity within the primary sensorimotor cortex was modulated when contractions were performed in a state of physical fatigue. MEG was recorded during submaximal isometric contractions of the wrist-flexors performed both before and after a fatiguing series of isometric wrist-flexions or a time matched control intervention. Physical fatigue offset the attenuation in MRBD observed during the control trial, whereas PMBR was increased when submaximal contractions were performed in a fatigued state

    Perfiles de actividad magnética cerebral de jóvenes con consumo intensivo de alcohol

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Psicología, leída el 24-01-2017El patrón de consumo de alcohol binge drinking se caracteriza por la ingesta intermitente de grandes cantidades del alcohol en un corto espacio de tiempo alternándose con periodos de abstinencia. En España, este tipo de consumo de alcohol se asocia al conocido efecto botellón en el que los jóvenes se reúnen en espacios públicos, principalmente los fines de semana, teniendo el alcohol como protagonista. La adolescencia, edad en la que se inicia este tipo de consumo, es considerada un periodo crítico de desarrollo en el que el cerebro experimenta grandes cambios madurativos, fundamentalmente en los lóbulos frontales. Dada su inmadurez, el cerebro adolescente muestra mayor vulnerabilidad ante el efecto neurotóxico del alcohol que el cerebro adulto. Debido a la alta prevalencia que este tipo de consumo presenta entre los jóvenes, la comunidad científica ha mostrado interés en las últimas décadas por estudiar las posibles consecuencias que puede tener en la estructura y funcionamiento del cerebro de jóvenes que beben de este modo. Sin embargo, hasta el momento no existían estudios que evaluasen el efecto del binge drinking en la actividad magnética cerebral. La Magnetoencefalografía es una técnica no invasiva que mide las corrientes magnéticas generadas por las pequeñas corrientes neurales que producen las neuronas. La presente tesis ha utilizado esta técnica a lo largo de los tres experimentos en los que se estudió: 1) la actividad magnética cerebral en el espacio de los sensores asociada del estado de reposo de jóvenes universitarios de 18-19 años con el patrón binge drinking y un grupo control, 2) la actividad magnética cerebral en espacio de las fuentes del estado de reposo y la conectividad estructural de los mismos jóvenes dos años más tarde, con 20-21 años; y 3) la actividad magnética cerebral en espacio de las fuentes asociada a una tarea Go/NoGo de los mismos jóvenes durante la primera fase del estudio, cuando tenían 18-19 años...The alcohol consumption binge drinking pattern is characterized by intermittent intake of large amounts of alcohol in a short space of time, alternated with periods of abstinence. In Spain, this type of alcohol consumption is associated with the well-known “efecto botellón” where young people gather in public spaces, especially on weekends, having the alcohol as the protagonist. Adolescence, the age in which this type of consumption begins, is considered a critical period of neural development in which the brain undergoes maturational changes, mainly in the frontal lobes. Given its immaturity, adolescent brain is more vulnerable to the neurotoxic effects of alcohol than the adult brain. Because of its high prevalence among young adolescents, since last decades the scientific community has shown increasing interest to study the possible consequences that binge drinking may have on the structure and functioning of the brain. However, so far there are no studies assessing the effect of binge drinking with Magnetoencephalography. Magnetoencephalography is a noninvasive technique that measures the magnetic currents generated by neural currents produced by pyramidal neurons. The present dissertation has used this technique over the three experiments, studying: 1) brain magnetic activity in the sensor space associated to resting state of university students of aged 18-19 years old with alcohol binge drinking pattern and also a control group, 2) brain magnetic activity in the source space also associated to resting state and structural connectivity of the same young students two years later, with 20-21 years old; and finally, 3) the brain magnetic activity in source space associated with a Go/NoGo task in the first phase of the study, when the participants were 18-19...Fac. de PsicologíaTRUEunpu

    The effect of physical fatigue on oscillatory dynamics of the sensorimotor cortex

    Get PDF
    Aim: While physical fatigue is known to arise in part from supraspinal mechanisms within the brain exactly how brain activity is modulated during fatigue is not well understood. Therefore, this study examined how typical neural oscillatory responses to voluntary muscle contractions were affected by fatigue. Methods: Eleven healthy adults (age 27±4 years) completed two experimental sessions in a randomised crossover design. Both sessions first assessed baseline maximal voluntary isometric wrist-flexion force (MVFb). Participants then performed an identical series of fourteen test contractions (2 × 100%MVFb, 10 × 40%MVFb, 2 × 100%MVFb) both before and after one of two interventions: forty 12-s contractions at 55%MVFb (fatigue intervention) or 5%MVFb (control intervention). Magnetoencephalography (MEG) was used to characterise both the movement-related mu and beta decrease (MRMD and MRBD) and the post-movement beta rebound (PMBR) within the contralateral sensorimotor cortex during the 40%MVFb test contractions, while the 100%MVFb test contractions were used to monitor physical fatigue. Results: The fatigue intervention induced a substantial physical fatigue that endured throughout the post-intervention measurements (28.9-29.5% decrease in MVF, P<0.001). Fatigue had a significant effect on both PMBR (ANOVA, session × time-point interaction: P=0.018) and MRBD (P=0.021): the magnitude of PMBR increased following the fatigue but not the control interventions, whereas MRBD was decreased post-control but not post-fatigue. Mu oscillations were unchanged throughout both sessions. Conclusion: Physical fatigue resulted in an increased PMBR, and offset attenuations in MRBD associated with task habituation

    Resting-state magnetoencephalographic oscillatory connectivity to identify patients with chronic migraine using machine learning

    Get PDF
    To identify and validate the neural signatures of resting-state oscillatory connectivity for chronic migraine (CM), we used machine learning techniques to classify patients with CM from healthy controls (HC) and patients with other pain disorders. The cross-sectional study obtained resting-state magnetoencephalographic data from 240 participants (70 HC, 100 CM, 35 episodic migraine [EM], and 35 fibromyalgia [FM]). Source-based oscillatory connectivity of relevant cortical regions was calculated to determine intrinsic connectivity at 1–40&nbsp;Hz. A classification model that employed a support vector machine was developed using the magnetoencephalographic data to assess the reliability and generalizability of CM identification. In the findings, the discriminative features that differentiate CM from HC were principally observed from the functional interactions between salience, sensorimotor, and part of the default mode networks. The classification model with these features exhibited excellent performance in distinguishing patients with CM from HC (accuracy ≥ 86.8%, area under the curve (AUC) ≥ 0.9) and from those with EM (accuracy: 94.5%, AUC: 0.96). The model also achieved high performance (accuracy: 89.1%, AUC: 0.91) in classifying CM from other pain disorders (FM in this study). These resting-state magnetoencephalographic electrophysiological features yield oscillatory connectivity to identify patients with CM from those with a different type of migraine and pain disorder, with adequate reliability and generalizability

    IFCN-endorsed practical guidelines for clinical magnetoencephalography (MEG)

    Get PDF
    Magnetoencephalography (MEG) records weak magnetic fields outside the human head and thereby provides millisecond-accurate information about neuronal currents supporting human brain function. MEG and electroencephalography (EEG) are closely related complementary methods and should be interpreted together whenever possible. This manuscript covers the basic physical and physiological principles of MEG and discusses the main aspects of state-of-the-art MEG data analysis. We provide guidelines for best practices of patient preparation, stimulus presentation, MEG data collection and analysis, as well as for MEG interpretation in routine clinical examinations. In 2017, about 200 whole-scalp MEG devices were in operation worldwide, many of them located in clinical environments. Yet, the established clinical indications for MEG examinations remain few, mainly restricted to the diagnostics of epilepsy and to preoperative functional evaluation of neurosurgical patients. We are confident that the extensive ongoing basic MEG research indicates potential for the evaluation of neurological and psychiatric syndromes, developmental disorders, and the integrity of cortical brain networks after stroke. Basic and clinical research is, thus, paving way for new clinical applications to be identified by an increasing number of practitioners of MEG. (C) 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V.Peer reviewe
    corecore