4 research outputs found

    Persistent organic pollutants in a multimedia environment, and associated human health risks: case studies in the region of Campania, Italy, and south-central China

    Get PDF
    Persistent organic pollutants (POPs) are notoriously toxic chemicals that pose significant threats to human health and ecosystem security. As a result of their volatility and persistence, POPs can be subject to long-range atmospheric transport (LRAT) and, as a result, may be redistributed globally. The harm of POPs to the eco-system is regarded as a global environmental problem, threatening people and animals, which has caused heavy losses economically, ecologically and socially. The environmental problems caused by POPs have finally lead the international community to address the global presence of POPs and reduce their emissions to the environment. Many treaties and laws have been enacted to eliminate or restrict the production and use of some POPs, of which the Stockholm Convention of 2004 on POPs is one of the most famous. Soils are important POPs reservoirs due to their tremendous retention capabilities for these compounds. The huge quantities of POPs accumulated in soils have been an important reemission sources to the atmosphere even after the phasing out of these compounds decades ago. Atmospheric processes are largely responsible for the transport and deposition of polycyclic aromatic hydrocarbons (PAHs), and these compounds may adhere to both atmospheric aerosols and dustfall. Organochlorine pesticides (OCPs) can be easily adsorbed on to suspended particulate matter (SPM) as sediments. SPM can then precipitate in sediments and eventually lower the OCP concentrations in water. Under favorable conditions, sediments can be resuspended, release previously adsorbed OCPs back into the water phase, and initiate another cycle of environmental contamination. So far, the Stockholm Convention has not been ratified by Italy, however, several other regulatory schemes, such as a European Directive in 2000, the UNECE POPs Protocol, and the Rotterdam Convention, are actively followed. The region of Campania falls within the subtropical zone and enjoys a Mediterranean climate. High temperatures in tropical/subtropical regions can facilitate the volatilization and escape of POPs from soils, sediments, and water. The lack of sufficient data on POPs residues, limits the understanding of their health effects, environmental dynamics, and the ultimate fate of these chemicals. China is one of the largest agricultural industries in the world, and was once the largest global producer and consumer of OCPs, especially in the arable southeast region. This Ph.D. thesis presents the results of a series of investigations using a systematic sampling method and geostatistics to illustrate spatial and temporal variations in the concentrations of POPs in different environments, and associated human health risks in Campania, Italy, and south-central China

    北九州市における大気中エアロゾルの特徴--発生,二次生成,削減機構とリスクアセスメント

    Get PDF
    The sampling campaign of atmospheric aerosols was carried out in Kitakyushu, Japan. Secondary inorganic aerosols (SIA) had the largest contribution (45%) for total particle mass concentration. Moreover, the reduction of TSO42- concentration showed the relatively large decreasing amount of inorganic aerosol mass concentration (IAM) and the significant increase of aerosol pH, with corresponding fitting equations of yIAM = -12.89x + 10.47x2, and ypH = 0.97x + 0.54x2, respectively (yIAM, ypH, and x presents the IAM variation [μg·m-3], inorganic aerosol pH variation [dimensionless], and concentration reduction ratio (CRR)/100 [dimensionless]). In addition, the exposure of particle-bound heavy metals could exert significant influences on the ecological environment and children’s health; control of ship emissions should be given priority. Overall, our results clearly demonstrate the characteristics of atmospheric particles, providing policy makers with basic and effective ideas for mitigating particle pollution from two perspectives of air quality and human health.北九州市立大

    Atmospheric Composition Observations

    Get PDF
    The composition of the atmosphere is a critical factor in understanding the nature and magnitude of processes associated with the planet’s energy balance, clouds and precipitation, biogeochemical cycling of nutrients, and public health and welfare. A detailed understanding of trace gases, aerosol particles, and hydrometeors is challenging due to the combination of their physicochemical complexity, variable lifetimes, and spatial inhomogeneity. Recent advances in instrumentation have resulted in improved measurements and an increased understanding of atmospheric composition. Laboratory and field in-situ measurement studies have benefited from such improvements, including improved spatial and temporal resolution, the ability to sample in challenging conditions (e.g., on airborne platforms, in clouds, at widely ranging pressure and temperature conditions), and the ability to measure a wider range of chemical species, and, in the case of aerosol particles, to detect smaller sizes. Remote sensing capabilities have increased in recent years, thus offering new views of atmospheric composition across broad spatiotemporal ranges. Manuscripts related to all aspects of atmospheric observations are included in this Special Issue, including advances in observational techniques and scientific insights into atmospheric composition

    Estimating PM2.5 in the Beijing-Tianjin-Hebei Region Using MODIS AOD Products from 2014 to 2015

    Get PDF
    Fine particulate matter with a diameter less than 2.5 μm (PM2.5) has harmful impacts on regional climate, economic development and public health. The high PM2.5 concentrations in China’s urban areas are mainly caused by combustion of coal and gasoline, industrial pollution and unknown/uncertain sources. The Beijing-Tianjin-Hebei (BTH) region with a land area of 218,000 km2, which contains 13 cities, is the biggest urbanized region in northern China. The huge population (110 million, 8% of the China’s population), local heavy industries and vehicle emissions have resulted in severe air pollution. To monitor ground-level PM2.5 concentration, the Chinese government spent significant expense in building more than 1500 in-situ stations (79 stations in the BTH region). However, most of these stations are situated in urban areas. Besides, each station can only represent a limited area around that station, which leaves the vast rural land out of monitoring. In this situation, geographic information system and remote sensing can be used as complementary tools. Traditional models have used 10 km MODIS Aerosol Optical Depth (AOD) product and proved the statistical relationship between AOD and PM2.5. In 2014, the 3 km MODIS AOD product was released which made PM2.5 estimation with a higher resolution became possible. This study presents an estimation on PM2.5 distribution in the BTH region from September 2014 to August 2015 by combining the MODIS satellite data, ground measurements of PM2.5, and meteorological documents. Firstly, the 3 km and 10 km MODIS AOD products were validated with AErosol RObotic NETwork (AERONET AOD. Then the MLR and GWR models were employed respectively to estimate PM2.5 concentrations using ground measurements and two MODIS AOD products, meteorological datasets and land use information. Seasonal and regional analyses were also followed to make a comparative study on strengths and weaknesses between the 3 km and 10 km AOD products. Finally, the number of non-accidental deaths attributed to the long-term exposure of PM2.5 in the BTH region was estimated spatially. The results demonstrated that the 10 km AOD product provided results with a higher accuracy and greater coverage, although the 3 km AOD product could provide more information about the spatial variations of PM2.5 estimation. Additionally, compared with the global regression, the geographically weighed regression model was able to improve the estimation results. Finally, it was estimated that more than 30,000 people died in the BTH region during the study period attributed to the excessive PM2.5 concentrations
    corecore