12,831 research outputs found

    Towards a Base UML Profile for Architecture Description

    Get PDF
    This paper discusses a base UML profile for architecture description as supported by existing Architecture Description Languages (ADLs). The profile may be extended so as to enable architecture modeling both as expressed in conventional ADLs and according to existing runtime infrastructures (e.g., system based on middleware architectures).

    Evaluating Software Architectures: Development Stability and Evolution

    Get PDF
    We survey seminal work on software architecture evaluationmethods. We then look at an emerging class of methodsthat explicates evaluating software architectures forstability and evolution. We define architectural stabilityand formulate the problem of evaluating software architecturesfor stability and evolution. We draw the attention onthe use of Architectures Description Languages (ADLs) forsupporting the evaluation of software architectures in generaland for architectural stability in specific

    A review of information flow diagrammatic models for product-service systems

    Get PDF
    A product-service system (PSS) is a combination of products and services to create value for both customers and manufacturers. Modelling a PSS based on function orientation offers a useful way to distinguish system inputs and outputs with regards to how data are consumed and information is used, i.e. information flow. This article presents a review of diagrammatic information flow tools, which are designed to describe a system through its functions. The origin, concept and applications of these tools are investigated, followed by an analysis of information flow modelling with regards to key PSS properties. A case study of selection laser melting technology implemented as PSS will then be used to show the application of information flow modelling for PSS design. A discussion based on the usefulness of the tools in modelling the key elements of PSS and possible future research directions are also presented

    Applying autonomy to distributed satellite systems: Trends, challenges, and future prospects

    Get PDF
    While monolithic satellite missions still pose significant advantages in terms of accuracy and operations, novel distributed architectures are promising improved flexibility, responsiveness, and adaptability to structural and functional changes. Large satellite swarms, opportunistic satellite networks or heterogeneous constellations hybridizing small-spacecraft nodes with highperformance satellites are becoming feasible and advantageous alternatives requiring the adoption of new operation paradigms that enhance their autonomy. While autonomy is a notion that is gaining acceptance in monolithic satellite missions, it can also be deemed an integral characteristic in Distributed Satellite Systems (DSS). In this context, this paper focuses on the motivations for system-level autonomy in DSS and justifies its need as an enabler of system qualities. Autonomy is also presented as a necessary feature to bring new distributed Earth observation functions (which require coordination and collaboration mechanisms) and to allow for novel structural functions (e.g., opportunistic coalitions, exchange of resources, or in-orbit data services). Mission Planning and Scheduling (MPS) frameworks are then presented as a key component to implement autonomous operations in satellite missions. An exhaustive knowledge classification explores the design aspects of MPS for DSS, and conceptually groups them into: components and organizational paradigms; problem modeling and representation; optimization techniques and metaheuristics; execution and runtime characteristics and the notions of tasks, resources, and constraints. This paper concludes by proposing future strands of work devoted to study the trade-offs of autonomy in large-scale, highly dynamic and heterogeneous networks through frameworks that consider some of the limitations of small spacecraft technologies.Postprint (author's final draft

    An Analysis of Service Ontologies

    Get PDF
    Services are increasingly shaping the world’s economic activity. Service provision and consumption have been profiting from advances in ICT, but the decentralization and heterogeneity of the involved service entities still pose engineering challenges. One of these challenges is to achieve semantic interoperability among these autonomous entities. Semantic web technology aims at addressing this challenge on a large scale, and has matured over the last years. This is evident from the various efforts reported in the literature in which service knowledge is represented in terms of ontologies developed either in individual research projects or in standardization bodies. This paper aims at analyzing the most relevant service ontologies available today for their suitability to cope with the service semantic interoperability challenge. We take the vision of the Internet of Services (IoS) as our motivation to identify the requirements for service ontologies. We adopt a formal approach to ontology design and evaluation in our analysis. We start by defining informal competency questions derived from a motivating scenario, and we identify relevant concepts and properties in service ontologies that match the formal ontological representation of these questions. We analyze the service ontologies with our concepts and questions, so that each ontology is positioned and evaluated according to its utility. The gaps we identify as the result of our analysis provide an indication of open challenges and future work

    Conceptual Design and Analysis of Service Oriented Architecture (SOA) for Command and Control of Space Assets

    Get PDF
    The mission-unique model that has dominated the DoD satellite Command and Control community is costly and inefficient. It requires repeatedly “reinventing” established common C2 components for each program, unnecessarily inflating budgets and delivery schedules. The effective utilization of standards is scarce, and proprietary, non-open solutions are commonplace. IT professionals have trumpeted Service Oriented Architectures (SOAs) as the solution to large enterprise situations where multiple, functionally redundant but non-compatible information systems create large recurring development, test, maintenance, and tech refresh costs. This thesis describes the current state of Service Oriented Architectures as related to satellite operations and presents a functional analysis used to classify a set of generic C2 services. By assessing the candidate services’ suitability through a SWOT (Strengths, Weaknesses, Opportunities, and Threats) analysis, several C2 functionalities are shown to be more ready than others to be presented as services in the short term. Lastly, key enablers are identified, pinpointing the necessary steps for a full and complete transition from the paradigm of costly mission-unique implementations to the common, interoperable, and reusable space C2 SOA called for by DoD senior leaders

    ARMD Workshop on Materials and Methods for Rapid Manufacturing for Commercial and Urban Aviation

    Get PDF
    This report documents the goals, organization and outcomes of the NASA Aeronautics Research Mission Directorates (ARMD) Materials and Methods for Rapid Manufacturing for Commercial and Urban Aviation Workshop. The workshop began with a series of plenary presentations by leaders in the field of structures and materials, followed by concurrent symposia focused on forecasting the future of various technologies related to rapid manufacturing of metallic materials and polymeric matrix composites, referred to herein as composites. Shortly after the workshop, questionnaires were sent to key workshop participants from the aerospace industry with requests to rank the importance of a series of potential investment areas identified during the workshop. Outcomes from the workshop and subsequent questionnaires are being used as guidance for NASA investments in this important technology area

    Space communications responsive to events across missions (SCREAM): an investigation of network solutions for transient science space systems

    Get PDF
    2022 Spring.Includes bibliographical references.The National Academies have prioritized the pursuit of new scientific discoveries using diverse and temporally coordinated measurements from multiple ground and space-based observatories. Networked communications can enable such measurements by connecting individual observatories and allowing them to operate as a cohesive and purposefully designed system. Timely data flows across terrestrial and space communications networks are required to observe transient scientific events and processes. Currently, communications to space-based observatories experience large latencies due to manual service reservation and scheduling procedures, intermittent signal coverage, and network capacity constraints. If space communications network latencies could be reduced, new discoveries about dynamic scientific processes could be realized. However, science mission and network planners lack a systematic framework for defining, quantifying and evaluating timely space data flow implementation options for transient scientific observation scenarios involving multiple ground and space-based observatories. This dissertation presents a model-based systems engineering approach to investigate and develop network solutions to meet the needs of transient science space systems. First, a systematic investigation of the current transient science operations of the National Aeronautics and Space Administration's (NASA) Tracking and Data Relay Satellite (TDRS) space data network and the Neil Gehrels Swift Observatory resulted in a formal architectural model for transient science space systems. Two methods individual missions may use to achieve timely network services were defined, quantitatively modeled, and experimentally compared. Next, the architectural model was extended to describe two alternative ways to achieve timely and autonomous space data flows to multiple space-based observatories within the context of a purposefully designed transient science observation scenario. A quantitative multipoint space data flow modeling method based in queueing theory was defined. General system suitability metrics for timeliness, throughput, and capacity were specified to support the evaluation of alternative network data flow implementations. A hypothetical design study was performed to demonstrate the multipoint data flow modeling method and to evaluate alternative data flow implementations using TDRS. The merits of a proposed future TDRS broadcast service to implement multipoint data flows were quantified and compared to expected outcomes using the as-built TDRS network. Then, the architectural model was extended to incorporate commercial network service providers. Quantitative models for Globalstar and Iridium short messaging data services were developed based on publicly available sources. Financial cost was added to the set of system suitability metrics. The hypothetical design study was extended to compare the relative suitability of the as-built TDRS network with the commercial Globalstar and Iridium networks. Finally, results from this research are being applied by NASA missions and network planners. In 2020, Swift implemented the first automated command pipeline, increasing its expected gravitational wave follow-up detection rate by greater than 400%. Current NASA technology initiatives informed by this research will enable future space-based observatories to become interoperable sensing devices connected by a diverse ecosystem of network service providers
    • …
    corecore