25,757 research outputs found

    A New Method for Assessing the Resiliency of Large, Complex Networks

    Get PDF
    Designing resilient and reliable networks is a principle concern of planners and private firms. Traffic congestion whether recurring or as the result of some aperiodic event is extremely costly. This paper describes an alternative process and a model for analyzing the resiliency of networks that address some of the shortcomings of more traditional approaches – e.g., the four-step modeling process used in transportation planning. It should be noted that the authors do not view this as a replacement to current approaches but rather as a complementary tool designed to augment analysis capabilities. The process that is described in this paper for analyzing the resiliency of a network involves at least three steps: 1. assessment or identification of important nodes and links according to different criteria 2. verification of critical nodes and links based on failure simulations and 3. consequence. Raster analysis, graph-theory principles and GIS are used to develop a model for carrying out each of these steps. The methods are demonstrated using two, large interdependent networks for a metropolitan area in the United States.

    Assessing the Physical Vulnerability of Backbone Networks

    Get PDF
    Communication networks are vulnerable to natural as well as man-made disasters. The geographical layout of the network influences the impact of these disasters. It is therefore, necessary to identify areas that could be most affected by a disaster and redesign those parts of the network so that the impact of a disaster has least effect on them. In this work, we assume that disasters which have a circular impact on the network. The work presents two new algorithms, namely the WHF-PG algorithm and the WHF-NPG algorithm, designed to solve the problem of finding the locations of disasters that would have the maximum disruptive effect on the communication infrastructure in terms of capacity

    Indirect impact of landslide hazards on transportation infrastructure

    Get PDF
    This thesis examines the indirect impact of natural hazards on infrastructure networks. It addresses several key themes and issues for hazard assessment, network modelling and risk assessment using the case study of landslides impacting the national road network in Scotland, United Kingdom. The research follows four distinct stages. First, a landslide susceptibility model is developed using a database of landslide occurrences, spatial data sets and logistic regression. The model outputs indicate the terrain characteristics that are associated with increased landslide potential, including critical slope angles and south westerly aspects associated with increased rates of solar irradiance and precipitation. The results identify the hillslopes and road segments that are most prone to disruption by landslides and these indicate that 40 % (1,700 / 4,300 km) of Scotland s motorways and arterial roads (i.e. strategic road network) are susceptible to landslides and this is above previous assessments. Second, a novel user-equilibrium traffic model is developed using UK Census origin-destination tables. The traffic model calculates the additional travel time and cost (i.e. indirect impacts) caused by network disruptions due to landslide events. The model is applied to calculate the impact of historic scenarios and for sets of plausible landslide events generated using the landslide susceptibility model. Impact assessments for historic scenarios are 29 to 83 % greater than previous, including ÂŁ1.2 million of indirect impacts over 15 days of disruption at the A83 Rest and Be Thankful landslide October 2007. The model results indicate that the average impact of landslides is ÂŁ64 k per day of disruption, and up to ÂŁ130 k per day on the most critical road segments in Scotland. In addition to identifying critical road segments with both high impact and high susceptibility to landslides, the study indicates that the impact of landslides is concentrated away from urban centres to the central and north-west regions of Scotland that are heavily reliant on road and haulage-based industries such as seasonal tourism, agriculture and craft distilling. The third research element is the development of landslide initiation thresholds using weather radar data. The thresholds classify the rainfall conditions that are most commonly associated with landslide occurrence in Scotland, improving knowledge of the physical initiation processes and their likelihood. The thresholds are developed using a novel optimal-point threshold selection technique, high resolution radar and new rain variables that provide spatio-temporally normalised thresholds. The thresholds highlight the role of the 12-day antecedent hydrological condition of soils as a precursory factor in controlling the rain conditions that trigger landslides. The new results also support the observation that landslides occur more frequently in the UK during the early autumn and winter seasons when sequences or clustering of multiple cyclonic-storm systems is common in periods lasting 5 to 15 days. Fourth, the three previous elements are combined to evaluate the landslide hazard of the strategic road segments and a prototype risk assessment model is produced - a catastrophe model. The catastrophe model calculates the annual average loss and aggregated exceedance probability of losses due to the indirect impact of landslides in Scotland. Beyond application to cost-benefit analyses for landslide mitigation efforts, the catastrophe model framework is applicable to the study of other natural hazards (e.g. flooding), combinations of hazards, and other infrastructure networks

    Quantifizierung der Zuverlässigkeit und Komponentenbedeutung von Infrastrukturen unter Berücksichtigung von Naturkatastropheneinwirkung

    Get PDF
    The central topic is the quantification of the reliability of infrastructure networks subject to extreme wind loads. Random fields describe the wind distributions and calibrated fragility curves yield the failure probabilities of the components as a function of the wind speed. The network damage is simulated taking into account possible cascading component failures. Defined "Importance Measures" prioritize the components based on their impact on system reliability - the basis for system reliability improvement measures.Zentrales Thema ist die Quantifizierung der Zuverlässigkeit von Infrastrukturnetzen unter Einwirkung extremer Windlasten. Raumzeitliche Zufallsfelder beschreiben die Windverteilungen und spezifisch kalibrierte Fragilitätskurven ergeben die Versagenswahrscheinlichkeiten der Komponenten. Der Netzwerkschaden wird unter Berücksichtigung von kaskadierenden Komponentenausfällen simuliert. Eigens definierte „Importance Measures“ priorisieren die Komponenten nach der Stärke ihres Einflusses auf die Systemzuverlässigkeit - die Basis für Verbesserungen der Systemzuverlässigkeit

    GIS-based method to assess seismic vulnerability of interconnected infrastructure: A case of EU gas and electricity networks

    Get PDF
    Our study concerns the interconnected European Electricity and Gas transmission grid where we address two important issues of these interdependent critical infrastructures. First we assessed the response under seismic hazard for each independent network; then we analysed the increased vulnerability due to coupling between these two heterogeneous networks. We developed a probability reliability model that encompasses the spatial distribution of the network structures using a Geographic Information System (GIS). We applied the seismic risk assessment of individual network facilities and presented the results in the form of the system fragility curves of the (independent and dependant) networks in terms of various performance measures - connectivity loss, power loss, and impact on the population. We characterized the coupling behaviour between the two networks as a physical dependency: here the electricity grid, in part, depends on the gas network due to the generation capacity of gas-fired power plants. The dependence of one network on the other is modelled with an interoperability matrix, which is defined in terms of the strength of coupling; additionally we consider how the mechanical-structural fragility of the pipelines of the gas-source supply stream contributes to this dependence. In addition to network-wide assessment, damage was also evaluated at a local level by examining the performance status of each and every electricity distribution substation in the electricity grid. Finally, the comprehensive geographical distributions of performance loss at the European level can be visualized on a GIS tool; showing, as expected, that the highest direct damage in southeast Europe.JRC.DG.G.5-European laboratory for structural assessmen

    Functionally Fractal Urban Networks: Geospatial Co-location and Homogeneity of Infrastructure

    Full text link
    Just as natural river networks are known to be globally self-similar, recent research has shown that human-built urban networks, such as road networks, are also functionally self-similar, and have fractal topology with power-law node-degree distributions (p(k) = a k). Here we show, for the first time, that other urban infrastructure networks (sanitary and storm-water sewers), which sustain flows of critical services for urban citizens, also show scale-free functional topologies. For roads and drainage networks, we compared functional topological metrics, derived from high-resolution data (70,000 nodes) for a large US city providing services to about 900,000 citizens over an area of about 1,000 km2. For the whole city and for different sized subnets, we also examined these networks in terms of geospatial co-location (roads and sewers). Our analyses reveal functional topological homogeneity among all the subnets within the city, in spite of differences in several urban attributes. The functional topologies of all subnets of both infrastructure types resemble power-law distributions, with tails becoming increasingly power-law as the subnet area increases. Our findings hold implications for assessing the vulnerability of these critical infrastructure networks to cascading shocks based on spatial interdependency, and for improved design and maintenance of urban infrastructure networks
    • …
    corecore