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Abstract 

This thesis examines the indirect impact of natural hazards on infrastructure networks. It 

addresses several key themes and issues for hazard assessment, network modelling and risk 

assessment using the case study of landslides impacting the national road network in Scotland, 

United Kingdom. The research follows four distinct stages. First, a landslide susceptibility 

model is developed using a database of landslide occurrences, spatial data sets and logistic 

regression. The model outputs indicate the terrain characteristics that are associated with 

increased landslide potential, including critical slope angles and south westerly aspects 

associated with increased rates of solar irradiance and precipitation. The results identify the 

hillslopes and road segments that are most prone to disruption by landslides and these indicate 

that 40 % (1,700 / 4,300 km) of Scotland’s motorways and arterial roads (i.e. strategic road 

network) are susceptible to landslides and this is above previous assessments. Second, a novel 

user-equilibrium traffic model is developed using UK Census origin-destination tables. The 

traffic model calculates the additional travel time and cost (i.e. indirect impacts) caused by 

network disruptions due to landslide events. The model is applied to calculate the impact of 

historic scenarios and for sets of plausible landslide events generated using the landslide 

susceptibility model. Impact assessments for historic scenarios are 29 to 83 % greater than 

previous, including £1.2 million of indirect impacts over 15 days of disruption at the A83 “Rest 

and Be Thankful” landslide October 2007. The model results indicate that the average impact 

of landslides is £64 k per day of disruption, and up to £130 k per day on the most critical road 

segments in Scotland. In addition to identifying critical road segments with both high impact 

and high susceptibility to landslides, the study indicates that the impact of landslides is 

concentrated away from urban centres to the central and north-west regions of Scotland that 

are heavily reliant on road and haulage-based industries such as seasonal tourism, agriculture 

and craft distilling. The third research element is the development of landslide initiation 

thresholds using weather radar data. The thresholds classify the rainfall conditions that are most 

commonly associated with landslide occurrence in Scotland, improving knowledge of the 

physical initiation processes and their likelihood. The thresholds are developed using a novel 

‘optimal-point’ threshold selection technique, high resolution radar and new rain variables that 

provide spatio-temporally normalised thresholds. The thresholds highlight the role of the 12-

day antecedent hydrological condition of soils as a precursory factor in controlling the rain 

conditions that trigger landslides. The new results also support the observation that landslides 

occur more frequently in the UK during the early autumn and winter seasons when sequences 

or ’clustering’ of multiple cyclonic-storm systems is common in periods lasting 5 to 15 days. 

Fourth, the three previous elements are combined to evaluate the landslide hazard of the 

strategic road segments and a prototype risk assessment model is produced - a catastrophe 

model. The catastrophe model calculates the annual average loss and aggregated exceedance 

probability of losses due to the indirect impact of landslides in Scotland. Beyond application 

to cost-benefit analyses for landslide mitigation efforts, the catastrophe model framework is 

applicable to the study of other natural hazards (e.g. flooding), combinations of hazards, and 

other infrastructure networks.  
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Figure 4.6. Results of Model C using 1000 cell hillslopes. (A) 30 ROC curves for each model 

validation dataset created in cross-validation. (B) ROC curve (grey line) for all hillslopes 

on the road network; the average AUC and error values (red shading); and the low, 

moderate and high susceptibility cut points (values) and their accuracy (Ac). (C) Odds-

ratios for the model explanatory variables and their statistical significance (α). The red line 
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Figure 4.8. Map of Scotland showing susceptible 1000-cell hillslopes on the major road 

network: susceptibility is calculated by model C. The major road network (grey lines) 
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Figure 4.9. Map of Scotland showing susceptible road segments on the major road network: 
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Figure 4.11. (A) Map of Scotland showing susceptible trunk road segments according to 

GeoSure classes D and E. (B) Illustrates a road segment with a 500m buffer (dashed black 

line), GeoSure polygons (grey area) and areas where the terrain slope angle is ≥26° (red 
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Figure 4.12. Map of Scotland showing susceptible SRN road segments identified by GeoSure 

and model C (green lines), just GeoSure (pink lines), and just model C (orange lines). 121 

Figure 5.1. A) The average travel time of trips per origin zone for the undisrupted simulation. 

B) A map showing the demand ratio of each zone. C) a map showing the locations of 35 

automatic traffic counting sites on the strategic road network. D) a bar plot showing the 

normalised root mean squared error between the observed, empirical traffic counts and 

those generated by the undisrupted simulation. ............................................................... 129 
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Figure 5.3. Extended hazard impact footprints for events 𝑁𝐼 1 – 𝑁𝐼 8 in the Hillslope event set.

 ......................................................................................................................................... 133 

Figure 5.4. A) Severity footprint showing the combined impact of 161 landslide events in the 

Hillslope event set. B) Map showing the number of landslides in each zone recorded in the 
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Figure 5.5. A map and 3×3 risk matrix combining three levels of road segment landslide 
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Figure 6.1. A and B show the spatial distribution of the rainy day normal (RDN) accumulation 

for June and December, respectively. C) A box whisker plot of the monthly RDN (black 

boxes) and rainy day normal intensity values (RDNI blue boxes). The boxplots are median 

centred and range from first to third quartiles with whiskers to minimum and maximum 

values. The x-axis labels indicate the number of landslides recorded in each month. The 

points and horizontal lines show the average annual RDN (black) and RDNI (blue) for 

comparison. ...................................................................................................................... 143 

Figure 6.2. A plot showing the results of the Bernoulli trial test of statistical significance for 

the 𝐼𝑚𝑎𝑥1 TS threshold. The x-axis is the number of landslides expected to co-occur with 

threshold exceedance by random chance, the y-axis is one minus the binomial cumulative 

density function (1–CDF). The black arrow indicates the actual number of landslides 

observed given 𝐼𝑚𝑎𝑥1, and the grey lines indicate the critical number of landslides 

observed for different confidence intervals. .................................................................... 144 

Figure 6.3. (A) Panel plot showing the OP (dashed line) and TS (solid line) thresholds for the 

combination of RD1 and NV12 and for 10 different rain records. Black dots are the days 

with landslide occurrence whilst grey dots are the days with no landslides. (B) A plot of 

the conditional probability of landslide occurrence given OP or TS threshold exceedance 

for each rain record. ......................................................................................................... 148 

Figure 6.4. A comparison of new thresholds for Scotland (red dots and lines) and thresholds 

published in other temperate climates. (A) Shows rain accumulation thresholds from 0 - 17 

days, and (B) rain intensity thresholds 0 - 48 h. Stacked symbols indicate studies reporting 

lower, middle and upper thresholds. Blue pentagons: Scotland (Winter et al. 2010). Green 

squares: Norway (Meyer et al. 2012). Cross: Southern California (Cannon et al. 2008). X: 

Southern California (Staley et al. 2013). Triangle: Southern Italy (Gariano et al. 2015). 

Star: Central Italy (Peruccacci et al. 2012). Inverted triangle: Seattle (Chleborad et al. 

2008). Dash: Global (Guzzetti et al. 2007). (C) is a box whisker plot to show the range of 

0.1 - 24 h maximum intensity thresholds for 25 different territories, including, Italy, 

Switzerland, Austria, Spain, North and South America, Indonesia, South East Asia and 

Japan (Guzzetti et al. 2007). The box is median centered and extends 1st to 3rd quartiles and 

whiskers 10 to 90%. Three thresholds are not shown at ~120 (2) and 180 (1) mm h-1. .. 150 

Figure 6.5. The OP (dashed line) and TS (solid line) thresholds for the combination of 𝑅𝐷1 and 

𝑁𝑉12. The thresholds are used to form a hypothetical traffic light warning system of 

landslide potential: uncertain / low = yellow, moderate = amber, and high = red. ......... 154 

Figure 7.1. Plots showing the probability mass and distribution functions used in the CAT 

model of landslide road transport impacts in Scotland. In A, B and D the legends are in the 

plot. The number annotations in C and E are the specific probability values. ................ 156 

Figure 7.2. The modelled losses due to travel disruption by landslides in Scotland. Plots A and 

B show the Aggregate Exceedance Probability (AEP) and return periods of losses for 

events with fixed1-day durations (dashed line and white boxes) and variable durations 

(solid line and grey boxes). .............................................................................................. 157 
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Chapter 1 Introduction 

1.1 Context and problem definition 

Modern society is reliant upon a collection of infrastructure systems and networks to support 

and maintain economic growth and social standards. Highway networks are often considered 

one of the most important infrastructure networks as they provide cost-effective and flexible 

means of transportation, offer redundancy for other infrastructures (e.g. rail replacement bus 

services or water tankers during a pipe failure) and are generally available to most populations 

worldwide (Berdica 2002). There is growing awareness and concern for the vulnerability of 

these networks to damage and disruption by natural hazards, including landslides. The losses 

due to direct damage are often significant. For example, the remediation cost following 

landslides were upwards of $4.3M on highway 50, California in 1998 (Reid & Lahusen 1998) 

and £1.1M on the A83, Scotland in 2007 (Winter et al. 2014). But landslides, and other hazards, 

also have potential to inflict benign to catastrophic social and economic effects via ‘indirect 

impacts’, where losses are accrued via travel disruption or by increasing travel time and cost 

(Berdica 2002). Notable recent examples include: communities isolated from emergency 

responders by landslide blocked roads following the 2015 Gorkha earthquake, Nepal (Chiaro 

et al. 2015); and the widespread travel delay with daily economic losses of £2.3M due to 

flooding on a section of the M1 motorway, England following summer storms in 2007 

(Chatterton et al. 2011; Dawson et al. 2016b).  

The severity and extent of indirect impacts, thus vulnerability of affected populations, may 

extended far beyond the hazards physical footprint and can vary markedly according to which 

network locations are physically disrupted (Dalziell & Nicholson 2001; Murray et al. 2008). 

To limit these impacts and increase transport networks resilience requires more pre-emptive 

intervention by improving hazard identification in addition to developing a greater level of 

understanding for the behaviour of networks under disrupted conditions (Stern 2006; Dijkstra 

& Dixon 2010; DFT 2014b; Krebs 2017). These developments would enable the systematic 

evaluation of landslide indirect impacts using conventional hazard risk assessment methods, 

namely hazard risk and catastrophe models, for example those used to assess the potential 

losses due to flooding and earthquakes (Kappes et al. 2012; Mattsson & Jenelius 2015). 

Broadly, the aim and objectives of this thesis are to investigate and resolve issues related to: 

landslide hazard assessment; calculating the indirect impacts of landslides on national scale 

road networks; and to demonstrate a coupled hazard-network risk assessment framework. This 

framework may then be used to identify the road segments that are highly susceptible to 

landslides, are critical for the efficient operation of the road network, or a combination of the 

two. 

In the UK, and other nations, weather driven hazards such as landslides and flooding pose a 

significant challenge to infrastructure operators, owners and policy makers (Eddington 2006; 

Stern 2006; DFT 2014b; Dawson et al. 2016b; Krebs 2017). Transportation networks are 

almost continuously exposed to these hazards and there is concern that their frequency and 

severity, and therefore potential for indirect impacts, may increase in the near future 

(Jaroszweski et al. 2010). However, predicting the occurrence of hazards is a complex task and 

is subject uncertainties for; the variability in network conditions due to changing travel 

demands and policy; changes in climate (Jenkins et al. 2009; Koetse & Rietveld 2009; Pachauri 
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et al. 2014) and its effect on the medium to long term feedbacks and responses of physical 

hazard processes including, slope stability (Kilsby et al. 2009; Dijkstra & Dixon 2010), 

flooding (McCarthy et al. 2016) and wind storms (Donat et al. 2011). 

In recent decades, a specific issue has been shallow translational landslides and debris flows 

that have caused many disruptions on the strategic road network in Scotland (i.e. motorways 

and arterial roads). This presents a significant challenge given that, i) the hydro-geological 

factors associated with the occurrence of landslides are spatially distributed over a large area 

(Forster & Culshaw 2004; Milne et al. 2009; Dijkstra & Dixon 2010), and ii) as the road 

network is relatively sparse with few alternative routes. In addition, the main alternative modes 

of transport, primarily rail, are in many cases exposed to the same landslide hazards as on the 

road network (Dawson et al. 2016b). Identifying the road segments that are susceptible to 

landslides and that are important for maintaining the serviceability of the road network is 

therefore a high priority for the Scottish government (Winter et al. 2005; DFT 2014b; Dijkstra 

et al. 2016b). This case study is also relevant at broader scales as similar issues are faced in 

other nations and temperate mountainous regions including in Norway (Meyer et al. 2015), the 

Alps (Voumard et al. 2013), Japan (Tsukamoto et al. 1982), North America and Canada 

(Wilford et al. 2004; Chleborad et al. 2008). 

The challenge to address the issues faced in Scotland is twofold. First, the landslides with the 

potential to disrupt the road network must be identified. For this the notion of landslide hazard 

is used, which is the probability of landslide occurrence within a given area and time period 

(Glade et al. 2005). The literature review finds that empirical assessments of landslide 

susceptibility and landslide initiation thresholds may be used to evaluate landslide hazard at 

the national scale. Landslide susceptibility is the likelihood of landslide occurrence within an 

area based on local terrain conditions (Brabb 1984). Landslide susceptibility is a measure of 

the spatial propensity to landslides and is generally based on analysis of terrain variables, such 

as slope angle and vegetation, derived from digital elevation and land cover models (Brabb 

1984; Guzzetti et al. 2006; Van Westen et al. 2008; Walsby 2008; Budimir et al. 2015). 

Landslide initiation thresholds gauge the likelihood of landslide occurrence for different hydro-

meteorological conditions, such as triggering and antecedent rainfall accumulation (Caine 

1980; Chleborad 2000; Chleborad et al. 2006; Guzzetti et al. 2008). Landslide susceptibility 

and initiation threshold assessments provide information as to where and when landslides are 

most likely to occur, and these are combined to provide an evaluation of the landslide hazard. 

A literature review conducted for this thesis, identifies several interesting research questions 

and required developments so that these can be used effectively in Scotland. These include: 

identifying suitable data and explanatory variables for use in susceptibility modelling, as these 

can vary between different landslide regions (Budimir et al. 2015); to evaluate the use of 

hillslope sections in susceptibility modelling; and lastly to evaluate the influence of rain record 

length on landslide initiation thresholds (Chleborad et al. 2006; Staley et al. 2013).  

The second challenge is finding suitable methods that can be used to approximate the indirect 

impact of landslide disruption events on the road network. For this, physical geographers and 

other hazard’s researchers must draw upon and look to the methods used in other fields, such 

as transport engineering and modelling. In the past decade there has been a growing body of 

research on transport and infrastructure vulnerability that provides conceptual frameworks and 

methodologies that can be used to identify disruption events and to measure their impact on 

networks (Berdica 2002; Murray et al. 2008; Wang et al. 2014). For roads, this includes the 
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development and evaluation of different traffic simulation models used to calculate travel 

additional travel time and cost (Berdica et al. 2003; Knoop et al. 2007; Sullivan et al. 2010; 

DFT 2014a). Initially, these models were applied to examine the weaknesses of different 

network topologies (Murray-Tuite & Mahmassani 2004; Scott et al. 2006; Wang et al. 2013), 

but more recently they have been applied to assess the impacts of various hazards, including, 

urban flooding (Knoop et al. 2008, 2012; Burgholzer et al. 2013; Pregnolato et al. 2016), wind 

storms (Nyberg & Johansson 2013), and earthquakes (Khademi et al. 2015). These models are 

yet to be applied to landslide hazards on a national scale road network. 

Individually, addressing these two challenges will provide new knowledge and improved 

understanding of the nature of landslide occurrence and of landslide impacts on roads in 

Scotland. Combined, they offer an assessment of the landslide hazard on any section of the 

road network. This provides one of the key requirements for the development of a working 

landslide-network catastrophe model. Catastrophe models (also termed hazard risk models) are 

computerised, probabilistic models designed to simulate the magnitude, intensity, and location 

of potential hazard events and to estimate hazard losses (Foote et al. 2017). A catastrophe 

model simulates hundreds to thousands of hazard events to extend the limited record of past 

events into the realm of what may plausibly occur. The catastrophe model then incorporates 

vulnerability, damage and financial functions to estimate the expected (or average) and the 

potential (or maximum) losses due to hazards occurring within a defined time period, for 

example the expected and potential losses per year or per decade. Catastrophe models are 

therefore used to aid in the understanding landslide hazard risk and improve risk management. 

Traditionally, the losses by catastrophe models are represented in terms of insured financial 

loss as most models are developed within the insurance industry. Yet the fundamental 

modelling principles are applicable to other loss metrics, such as, the number of fatalities or 

the traffic delay time due to hazards. In the context of landslides impacting traffic on road 

networks, the primary limitation to use of catastrophe models has been in the lack of 

appropriate models that may be used to approximate the travel disruption for a large number 

of potential hazard events. In this thesis, this is addressed by using a traffic simulation model 

and a prototype catastrophe model is produced.  

1.2 Aim & objectives 

1.2.1 Aim 

To develop a method to systematically quantify and evaluate the indirect impact of landslide 

hazards on transportation infrastructure networks.  

1.2.2 Objectives 

1. To understand the present state of knowledge and its limitations with respect to 

quantifying the landslide susceptibility on slopes adjacent to transportation 

networks. 

2. To develop a landslide susceptibility assessment for transportation networks. 

3. To understand the present state of knowledge and its limitations with respect to 

quantifying the user-impact of disruptions on transportation networks. 

4. To establish an appropriate traffic simulation model to quantify the indirect impact 

of landslide disruptions on a highway network. 
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5. To understand the present state of knowledge and its limitations with respect to 

the definition of landslide initiation thresholds. 

6. To develop a set of landslide initiation thresholds utilising weather radar data. 

7. To demonstrate a coupled hazard-network catastrophe model to quantify the 

annual average loss caused by road travel disruption due to landslides in Scotland. 

 

1.3 Contribution to knowledge 

Successful completion of the aim and objectives has contributed new knowledge on the indirect 

impact of landslides on transportation networks, a relatively new area of research. The indirect 

impact assessments are produced using a novel catastrophe modelling framework that provides 

a proof of the methodological concept for the study of network disruptions due to other hazards, 

combinations of hazards and on other transportation networks. Beyond cost benefit analysis, 

the framework may be used to identify the worst-case hazard scenarios, evaluate impacts to 

specific network users (e.g. specific industries or vulnerable groups), and to evaluate different 

hazard management strategies. It is therefore envisioned that the research outputs and 

framework yields value to policy makers, network users, infrastructure operators and owners, 

particularly within the case study area. The development of this framework was made possible 

and is based on three novel elements of original research conducted in this thesis: 

The first is a new national landslide susceptibility model for the Scottish road network. The 

model uses logistic regression analysis to evaluate the geomorphological and geotechnical 

properties of hillslopes that are associated with decreased and increased landslide 

susceptibility. The model results indicate the spatial distribution of the most susceptible 

hillslopes in Scotland, and this is used to evaluate the landslide susceptibility of each road 

segment in the strategic road network. 

Second, a network simulation model is developed that can be used to approximate the 

additional travel time and economic losses caused by network disruptions. The simulation is 

used to evaluate the indirect impact of disruption on the road segments identified as having a 

level of landslide susceptibility in Scotland. In addition to assessing the national economic loss, 

the model reveals the spatial distribution of impacts, or footprint, on road users according to 

the zones where they live, such as the additional travel time and cost per zone. These footprints 

show that the indirect impact of landslides is felt far beyond the hazards physical location. 

Third, is a set of new landslide rain initiation thresholds. The research examines the effects of 

using different rain records on two techniques that are used to define landslide thresholds. The 

results indicate that threat score thresholds are more sensitive to changes in the rainfall record 

than optimal point thresholds: optimal point thresholds may therefore be of use to landslide 

warning systems. The thresholds are also derived using new spatio-temporally normalised rain 

variables and these help to account for seasonal and regional rainfall variation.  

Initially, each of the research elements are used independently: to determine the terrain 

characteristics that are associated with increased landslide susceptibility, to identify the road 

segments that are highly susceptible to landslides, to calculate the indirect impact of network 

disruption, to identify the road segments that are critical to maintaining network serviceability, 

and to examine the rainfall conditions that are associated with landslide occurrence. Each 
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assessment is conducted at spatial resolutions relevant to the national government and 

organizations responsible for hazard risk management in Scotland and the wider UK.  

The three elements are then combined to demonstrate a catastrophe risk model (hazard risk 

model). The catastrophe model includes a stochastic landslide event set of potential landslide 

hazards on the road network. The impact of each event is evaluated to give an exceedance 

probability distribution for the annual average loss due to landslides in Scotland. This 

framework, and its component elements, are applicable to the study of other hazard 

phenomena, such as severe gales or flooding, and it provides the groundwork for future 

investigations of landslide that consider: climate and land use change, changing travel 

demands, or other highway users and transport modes including public transport, emergency 

services and industrial freight.  

1.4 Dissemination of research reported in this thesis 

Two of the key elements of this research have been published in international peer reviewed 

journals. These are for: the development of the network model and evaluation of indirect 

impacts, and the development of the landslide initiation thresholds.  

Postance, B., Hillier, J., Dijkstra, T. and Dixon, N. (2017b) Extending natural hazard impacts: 

an assessment of landslide disruptions on a national road transportation network. 

Environmental Research Letters. [Online] 12 (1), 14010. Available at: doi:10.1088/1748-

9326/aa5555  

Postance, B., Hillier, J., Dijkstra, T.A. and Dixon, N. (2017a) Comparing threshold definition 

techniques for rainfall induced landslides: a national assessment using radar rainfall. Earth 

Surface Exchanges In ‘Earth Surface Processes and Landforms’. [Online] Available at: 

doi:10.1002/esp.4202 

The research has also been the topic of several international conference papers and poster 

presentations including: two paper and three poster presentations at the European Geoscience 

Union annual meeting in 2015, 2016 and 2017; two paper poster presentations at the Royal 

Geographical Society annual conference; and one poster presentation at the Research Data 

Alliance 7th plenary meeting in Tokyo, Japan. In addition, the author has presented and 

discussed the practical applications of this research with stakeholders at two industry 

workshops hosted at the British Geological Survey and the Scottish local roads association. 

Postance, B., Hillier, J., Dixon, N. and Dijkstra, T. (2015) Quantification of Road Network 

Vulnerability and Traffic Impacts to Regional Landslide Hazards. In: EGU General 

Assembly Conference Abstracts 2015 

Postance, B., Hillier, J., Dijkstra, T. and Dixon, N. (2016a) Characterising regional landslide 

initiation thresholds in Scotland, UK using NIMROD c-band precipitation radar and the 

BGS National Landslide Database. In: EGU General Assembly 2016. 

Postance, B., Hillier, J., Dijkstra, T. and Dixon, N. (2016b) Indirect economic impact of 

landslide hazards by disruption to national road transportation networks; Scotland, United 

Kingdom. In: EGU General Assembly 2016. 
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Postance, B., Hillier, J., Dijkstra, T. and Dixon, N. (2017c) Rainfall thresholds and 

susceptibility mapping for shallow landslides and debris flows in Scotland. In: EGU General 

Assembly Conference Abstracts 2017  

 

1.5 Thesis structure 

The following chapters explain the context, approach and findings of this research. 

Chapter 2 provides a literature review, relating studies of landslide susceptibility, landslide 

initiation thresholds, indirect impact assessments, and landslide hazard and risk assessment. 

Chapter 3 describes and explains the data sources and methodology used in this research.  

Chapter 4 presents the results and discussion of the landslide susceptibility model developed 

for this research.  

Chapter 5 presents the results and discussion of the traffic model and indirect impact 

assessments developed for this research. 

Chapter 6 presents the results and discussion of the landslide initiation thresholds.  

Chapter 7 presents the results and discussion of a prototype catastrophe model.  

Chapter 8 provides a synthesis of the key discussions, conclusions and recommendations for 

further work. 

 

  



 

7 

 

Chapter 2 Literature Review 

 

2.1 Landslides, Climate and Infrastructure: the UK perspective 

2.1.1 Introduction 

Section 2.1 presents a review and discussion of literature regarding landslide hazards in the 

United Kingdom. First, it provides a brief explanation of common landslide mechanisms. This 

is followed by detailed discussion for the spatio-temporal distribution and hydrogeological 

characteristics of past and present landslide activity in the UK. Third, a summary is provided 

of the key drivers and characteristics of UK climate and weather, the prospects of projected 

climate change in the 21st century, and the possible implications of climatic changes on 

landslides and slope stability. Fourth, it discusses the impact of landslides on critical 

infrastructure networks including evidence of direct and indirect impact of landslides and the 

challenges associated in quantifying them.  

2.1.2 Landslides in the UK 

‘Landslides’ is the collective term used to describe the movement of a material mass from a 

high to a low altitude on an inclined plane (shear surface) by gravitational force (Cruden 1991). 

As illustrated in Figure 2.1, landslides are classified by distinctions between movement and 

material types that include falls, topples, slides, spreads and flows of rock, earth or debris 

(Varnes 1978; Cruden & Varnes 1996). The stability of a slope, thus occurrence of a landslide 

(excluding falls), is determined by the ratio of resistive and driving forces, more formally, the 

equilibrium between the slope material shear strength and shear stress respectively (Terzaghi 

1950; Cruden 1991). Shear strength is predominantly determined by the angle of slope (i.e. self 

weight), the internal friction coefficient and the cohesion of particles due to soil porewater 

pressure that influence the effective stress. The shear stress is the load from the above vertical 

mass per unit area. A landslide cannot occur whilst its shear strength and resistant forces due 

to material strength with the underlying strata is in equal proportion and opposing direction to 

the shearing stress driving force. 

 Landslides are “the natural process of the landscape tending towards equilibrium" Innes (1983 

pg 470). Although landslides are fundamentally driven by gravity, there are many 

environmental, geological and anthropogenic factors that contribute to slope stability and 

initiate failure by increasing shear stress, decreasing shear strength or (most likely) a 

combination of the two. For instance, globally the majority of recorded landslides are 

associated to periods of prolonged and intense rainfall which causes changes to porewater 

pressure (Caine 1980; Iverson 2000) or by ground acceleration and liquefaction during 

earthquakes (Keefer 1984; Dadson et al. 2004; Meunier et al. 2008). These, and other common 

contributory factors are summarized in Table 2.1, which is based on comprehensive discussion 

(Varnes 1978; Van Asch et al. 1999; Leroueil 2001), and with reference to relevant 

supplementary material. 
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Figure 2.1. British Geological Survey landslide classifications after Cruden and Varnes, 

(1996) (BGS 2017). 

Table 2.1. Common factors associated to variations in slope shear-strength and shear-stress. 

 Factors contributing to increased shear stress 

Erosion & 

Morphology 

Removal of lateral and underlying support steepens the slope profile and 

alters hydrological pathways. This can be caused by road construction or 

fluvial, coastal and aeolian processes (Sidle & Ochiai 2013). 

Surcharging 

Increasing the slope material mass by deposition or sedimentation due to 

rock fall, erosion, other landslides, vegetation growth, glacial and fluvial 

deposition. 

Seismicity 

Ground acceleration reduces the cohesion and friction of soils and may 

cause liquefaction in saturated soils (Meunier et al. 2008). Increased 

permeability of soils due to perturbation and cracking. 

Volcanic 

Rock falls, tephra and other debris may interact with water or ice to form 

lahars. Volcanoes may also cause similar effects to those of seismic and 

surcharging factors. 

 Factors contributing to decreased shear strength 

Water Supply 
Variation of soil pore-water pressure due to precipitation, surface runoff 

and ground water infiltration. 

Weathering 

Soil ratcheting and perturbation by freeze-thaw or shrink-swell cycles 

acts to reduce soil cohesion and friction whilst increasing surface 

permeability and water infiltration (Kilsby et al. 2009).  

Vegetation & 

Land Use 

Vegetation and land cover influences soil permeability and water 

infiltration. Root systems provide mechanical strength to slope materials 

and thus vegetation change or removal can reduce soil strength 

(Greenwood et al. 2004). 
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Globally, landslides are the main cause of fatalities and damage associated with storms and 

earthquakes in upland environments (Petley 2012; Swiss Re 2016). For example: 43 fatalities 

and damage on the SR530 highway by the Oso landslide Washington, US (Iverson et al. 2015); 

it has been estimated that from 2000 to 2016 landslides in Nepal have caused on average 80 

fatalities per year to several thousand during catastrophic earthquake events (Petley et al. 2007; 

Grandin et al. 2015). Fortunately, the UK rarely suffers from large scale and catastrophic 

landslides, however, those that do occur often cause significant damage and disruption to 

infrastructure (Walsby 2007; Gibson et al. 2013). The most comprehensive record of UK 

landslide activity, with >17,000 records, is The National Landslide Database (NLDB) 

maintained by the British Geological Survey (e.g. Foster et al. 2008). National scale analyses 

of this database, supplemented with information for terrain morphology and geology, reveals 

the spatial distribution of the most common failure mechanisms in landslide domains (Figure 

2.2A) and models of the terrain susceptibility (Figure 2.2B - C) (Foster et al. 2008; Dijkstra et 

al. 2014b). These indicate that approximately 10 % of the UK land area is classed of moderate 

or high landslide potential (Jackson 2004; Dixon et al. 2006).  

The NLDB contains several records of large, complex and rotational landslides such as. at 

Trotternish, Isle of Skye (Ballantyne et al. 2014); Mam Tor, Derbyshire (Waltham & Dixon 

2000); Crackenthorpe, Cumbria (Smedley et al. 2009); Leys Bend, Wales (Early & Jordant 

1985) and in Southwest England and Wales (Pennington et al. 2014). These are often of ancient 

to early Holocene in origin and are reactivating failures driven by discontinuities within the 

underlying geology. Their spatial distribution is relatively limited as shown (blue shading) in 

Figure 2.2A (Forster & Culshaw 2004; Jenkins et al. 2011). The UK also features A large 

number of coastal landslides that generally occur due to the undercutting of slopes by coastal 

erosion processes and other phenomena, such as, storm surges and rising sea levels (Dawson 

et al. 2016b). There are varying rates of coastal erosion by location. These range in the order 

of 0.05 m yr-1 for hard crystalline rocks in the North and West, to 3 m yr-1 and significantly 

greater episodic erosion events in weak sedimentary materials in East Anglia and South 

England, such as chalks, glacigenic sands, gravels and tills (Lee et al. 2004a). 

The majority (~ 53 %) of terrestrial UK landslides, and those that have the greatest impact on 

society, occur due to soil related processes (Dixon et al. 2006; Dijkstra & Dixon 2010; Mansour 

et al. 2011). The most active landslide mechanisms are: shallow translational landslides, 

including to debris flow in wetter upland regions (Figure 2.2B); and movements in natural or 

engineered slopes that contain clay soils liable to shrinkage and swelling (Figure 2.2C). The 

spatio-temporal distribution of these two hazards is non-uniform. They are primarily driven by 

the interactions between the UK’s temperate maritime climate and seasonal weather conditions, 

the complex patchwork of bedrock and superficial lithologies, human factors, and topographic 

relief (Gibson et al. 2013; Dijkstra et al. 2016a). For instance, many of the ageing infrastructure 

embankments and cuttings were constructed using susceptible London Clay, Lias Clay and 

Gault Clay formations (Dijkstra & Dixon 2010; Harrison et al. 2012; Pritchard et al. 2014). 

Though soil movements due to shrink-swell are not landslides, they are briefly discussed as 

shrink-swell can aid in the development and initiation of landslides. In addition, shrink-swell 

is responsible for a substantial amount of the ground related damage to buildings and 

infrastructure with an estimated cost £300 - 400M per year (Forster et al. 2006; Dijkstra & 

Dixon 2010). The shrink-swell volumetric changes of clay soils is driven by the seasonal soil 

moisture cycle and this gradually aids the development of shearing surfaces for other rotational 
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and translational failures (Leroueil 2001; Culshaw & Harrison 2010) and undermines 

engineered structures.  

 

Platelets of susceptible clay minerals form in a layered-lattice structure with high surface area 

and bonded by water, such as smectite and vermiculite minerals that are common within the 

London, Lias and Gault clay formations of the Southeast UK (Entwisle et al. 2012). The 

interstitial space between the lattice layers expands with the influx of water (swelling), and 

contracts in drier conditions (shrinkage). To quantify this water content the soil moisture deficit 

(SMD) is the amount of water a unit of soil can uptake before reaching its ‘field capacity’ 

Figure 2.2. (A) Landslides domain map showing 8 groupings for broad spatial patterns in 

failure mechanisms and the influence of morphology and lithology after Dijkstra et al. (2014). 

(B-C) 3-tier landslide and shrink-swell susceptibility maps (Jackson 2004; Walsby 2008). 

(A) Landslide domains 

• Large, deep seated rotational landslides. 

• Valley-side rotational and planar landslides. 

• Shallow rotational and planar landslides. 

• Landslides due to cambering. 

• Planar slides, debris flow and rock slope 

failures in superficial deposits. 

• Rotational landslides degrading to flows due 

to incompetent bedrock. 

• Shallow rotational landslides with flow 

elements. 

• Bedrock controlled landslides.  

(B) Landslide susceptibility 

• Low 

• Moderate 

• High 

(C) Shrink-Swell susceptibility 

• Low 

• Moderate 

• High 

(A)     (B)     (C) 
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(SMD = 0 mm) as the soil can no longer expand and any additional water becomes runoff 

(Ridley et al. 2004). Low SMD indicates a water surplus and this acts to reduce soil strength 

and increases the slope shearing stress by, for example, increasing the porewater pressure and 

mass of the slope material. Indeed, many recorded UK landslides are associated to low SMD 

conditions following antecedent and extreme precipitation sequences in winter months and 

storm events (Early & Jordant 1985; Waltham & Dixon 2000; G.O. Jenkins 2006; Pennington 

et al. 2014; Muchan et al. 2015; Petley 2015). 

Slopes formed of clay materials may also be weakened by high SMD during warm and dry 

climatic conditions. High SMD leads to increased surface soil desiccation and drying of the 

soils downwards. In turn, this can lead to deeper drying of soils as roots are able to penetrate 

to greater depths (Glendinning et al. 2008). In the UK, the influence of SMD, and thus 

movements due to shrink-swell, is generally found within 0.5 - 1.5 m below the ground level 

(bgl). This corresponds well with the depths of 81 % of recorded failures on 570 km of surveyed 

motorway slopes (Perry 1989; Clarke & Smethurst 2010). The effects of positive SMD may 

also extend to greater depths of 2 - 4 m bgl during extremely warm periods and droughts 

(Glendinning et al. 2008; Clarke & Smethurst 2010; Davies et al. 2014; Gunn et al. 2015). In 

the summers of 2005, 2006 and 2007, extremely dry conditions led to the development of 

hardened, high-permeability surface soils that are believed to have contributed to several 

landslides in railway cuttings and embankments in low SMD conditions in the following winter 

months (RAIB 2008). 

Illustrated by the dark green areas in Figure 2.2A, periods of prolonged and intense 

precipitation also trigger translational landslides and debris flows in areas with high 

topographic relief, such as Snowdonia, The Lake District and the Scottish Highlands (Addison 

1987; Ballantyne 2002; Smedley et al. 2009; Petley 2015). These failures are typically initiated 

as planar movements in shallow permeable materials overlain on steep sided hillslopes and on 

gully walls, ranging between 28o and 42o (Innes 1983; Iverson et al. 1997; Wilford et al. 2004). 

The slope hydrology contributes to the rapid saturation of the slope materials, reduced effective 

stress and initial mobilisation that then develop into flows of dense, fine and coarse grained 

materials (60 – 80% by mass silt, sands, gravels, rocks and boulders) or ‘slurries’ (Varnes 1978; 

Iverson 2000; Milne et al. 2009). The potential velocity and volume of transported material 

spans several orders of magnitude from 10’s mm yr-1 to 10’s m sec-1 of individual boulders to 

hundreds of cubic meters of material (Jakob 2005; Hungr et al. 2014). High energy events cause 

significant erosion within the channels and substrates within which they flow that further 

increases the sediment charge, deposition and damage potential. Examples in the UK include: 

£53k worth of damage caused by two debris flows which deposited 820 tonnes of material on 

the A5 road in North Wales (Addison 1987); several large ~500 tonne debris flow depositions 

initiated during storm Desmond in Cumbria 2015 (Parry et al. 2015; Petley 2015); and at least 

30 debris flow each depositing 100 - 1000 tonnes of material on the Scottish highway network 

and with £100 k’s in engineered remediation costs in 2004, 2007, 2009, 2012 and 2015 (Milne 

et al. 2009; Pennington & Harrison 2013; Winter et al. 2014; Transport Scotland 2016a). 

The initiation of translational slides and debris flows (hereafter ‘landslides’) is dependent on 

sufficient water infiltration into slope materials, that leads to a critical increase of porewater 

pressure and reduction of effective stress, so that shear strength is reduced and a landslide 

occurs (Crozier 1997; Iverson et al. 1997; Iverson 2000; Stoffel et al. 2014). The superficial 

deposits that form the slopes susceptible to landslides in the UK are listed in Table 2.2. The 
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materials include a wide range of rapidly-draining, loosely compacted, coarse-grained, 

unconsolidated materials formed and modified under various processes.  

 

 

The deposits and slope materials listed in Table 2.2 are usually found in relatively shallow 

horizons of 0.5 to 3 m depth, but are also known to occur at up to 15 m depth within topographic 

depressions (Ballantyne 1986; Milne et al. 2009). The materials form a thin mantle of weakly 

structured and high permeability soils overlying hard and low-permeability substrata, such as, 

bedrock and layers of more cohesive and finer-grained material. These substrata provide 

potential shearing surfaces where slope failures can propagate. Subsequently, there are many 

recorded instances of landslides in uplifted and mountainous terrain where these types of 

conditions are prevalent and where periods of prolonged and intense rainfall are common. UK 

examples include: two landslides initiated following 118 mm of rain in 5 hours in North Wales 

(Addison 1987); three landslides initiated in Cumbria following 341 mm of rain in 24 hrs 

during Storm Desmond (Parry et al. 2015; Petley 2015); 30 landslides following 81 mm of rain 

in 24 hrs (peak intensities of 20 mm h-1) at Glen Ogle in the Scottish highlands (Milne et al. 

2009); and 8 landslides that occurred on days with 30 - 90 mm of rain in 2007, 2008, 2011 and 

2013 on the A83 road in Argyle and Bute, also in Scotland (Winter et al. 2010; Winter 2014). 

There are similar records of landslide occurrence in other comparable mountainous regions 

including, in South Korea and Japan (Kim et al. 1991; Saito et al. 2010), New Zealand (Brooks 

et al. 2004; Welsh & Davies 2011), North America and Canada (Wilford et al. 2004; Chleborad 

et al. 2008; Staley et al. 2013) and Europe (De Vita et al. 1998; Meyer et al. 2012; Segoni et 

al. 2014b).  

Material Description 
Typical 

size 

Regolith 

Weathering of the bedrock forms a covering layer of 

unconsolidated clay, silt, sand and rock fragments (gravels, 

cobbles, boulders). 

0.01 mm - 

>5 m 

Glacial 

Unconsolidated soil mass including; clays, silt, sand, gravels, 

cobbles and boulders, formed during glacial (angular to rounded 

moraines, erratic’s and till), proglacial (rounded and sorted 

lacustrine and fluvial), para- and post-glacial periods. 

0.01 mm - 

> 5 m 

Scree 

Scree or Talus cones form on the slopes below cliffs and other 

exposed rock faces when angular rock fragments are dislodged 

by weathering (e.g. freeze-thaw). 

1 mm - 

1 m 

Colluvium 

Unconsolidated heterogeneous sediments of silt and rock 

fragments deposited by surface water run-off. Colluvium 

sedimentation acts to recharge gullies, accumulating on the 

channel floor and walls. 

0.05 mm -

10 mm 

Fluvial 

Unconsolidated detrital sediments deposited by streams and 

rivers. Upland fluvial systems predominantly generate silt, fine 

sands and gravels. 

0.01 mm - 

3mm 

 
Table 2.2. Description of superficial deposits, and their formation, that are susceptible to debris 

flows in the UK; based on descriptions in (Ballantyne 1986; McMillan & Powell 1999) 
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Even in such well-drained soils as discussed above, the antecedent soil moisture conditions can 

act to raise or reduce the short-term water supply required to reach critical effective stress so 

that a landslide occurs (Stoffel et al. 2014). The antecedent soil water conditions are determined 

by longer term (i.e. > 24 hours) to seasonal precipitation regimes. The characteristics of this 

relationship depend on the rate of interaction between the weather and climatic conditions of a 

region and the hydrology, geomorphology and geotechnical properties of the slope materials. 

For example, in Scotland, Winter et al. (2010) notes that the occurrence of 16 large debris flows 

were characterised by significant rates of rain accumulation in the 12-day antecedent period 

prior to failure. Conversely, landslides that occur in finer grained materials and in the 

Mediterranean climate of Emilia-Romagna, Italy are associated with a shorter, 3-day 

antecedent rain accumulation period (Berti et al. 2012). Globally, the rainfall antecedence 

periods associated with landslide occurrence are in the range of 2 to 35 days (Guzzetti et al. 

2008). It is therefore important to regionally constrain assessments of the short and long-term 

rainfall patterns that lead to landslides to within areas where there is with a high degree of 

homogeneity in the factors that control the water content of slope materials, such as, weather 

and climate, terrain, and soil lithology.  

It may also be important to consider other water sources on slopes. In high elevations and 

latitudes, snowmelt and drainage from water bearing peat soils has the potential to influence 

the slope material antecedent water conditions (Milne et al. 2009; Meyer et al. 2012). 

Catchment hydrology is another important factor. Translational landslides and debris flow form 

almost exclusively within existing hydrological units, including as slides and flows initiated on 

hillslopes and within existing fluvial channels or gullies (Iverson et al. 1997; Ballantyne 2002; 

Hungr et al. 2014): these forms are transitional as hillslope flows often propagate into gullies 

and those initiated in gullies often encroach on open ground and hillslopes (Ballantyne 1986; 

Iverson et al. 1997; Wilford et al. 2004). The geomorphology of these hydrological units, 

including their geometry, elevation and aspect, influence soil moisture content by channelling 

surface water flows and determining the slope exposure to incoming precipitation and solar 

radiation (Wilford et al. 2004; Van Westen et al. 2006; Dijkstra & Dixon 2010). Slope 

geomorphology also influences the rate of erosional processes, such as, aspect related 

weathering by inbound rain and freeze-thaw. Increased rates of erosion acts to supply or 

‘recharge’ failure conduits with failure susceptible materials (Bovis & Jakob 1999; Jakob et al. 

2005). In Scotland, radiocarbon and lichenometric dating of buried landslide deposits suggest 

that slope recharge intervals are in the order of 2 - 10 years to several decades over the past 

7,000 years (Ballantyne 2002). Erosion can also disrupt or dam existing drainage pathways 

leading to an increase in the water content of slope materials (Bovis & Dagg 1992; Lane et al. 

2007).  

2.1.3 Weather and Climate 

Despite its relatively high latitude (40–60oN), the UK has a temperate maritime climate 

characterised by warm summers and mild winters, Cfc-Cfb in Köppen climate classifications 

(Met Office 2017). UK climate is moderated by the heat capacity of the Atlantic Ocean, 

specifically the Gulf Stream or North Atlantic Oscillation (NAO) of warm surface waters (7-

22o C) and moisture laden tropical air mass flowing North Westerly between the Azores High 

and Icelandic Low. As illustrated in Figure 2.3C, the effect to long term annual average rainfall 

patterns (1961-1990) is for a decreasing west to east precipitation gradient but this is also 

influenced by orographic affects in upland areas (Wilby et al. 1997). The annual average 
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temperature is also influenced by terrain elevation, but follows a decreasing south to north 

gradient due to reducing solar insolation at higher latitudes (Figure 2.3B). Short term weather 

patterns are highly variable. In addition to NAO, the UK is also situated at the polar front or 

path of the polar jet stream where low-pressure, cyclonic and frontal systems are common due 

to exchanges between several air masses, including the polar, returning polar, arctic and 

tropical maritime air masses and the polar and tropical continental. For example, Figure 2.3C 

shows the December 2015 precipitation anomaly for parts of England, Scotland and Wales 

were 125 – 300 % of the long term average (1981 - 2010) and this occurred following repeated 

cyclonic systems, such as the December storms Desmond 5th, Eva 24th and Frank 29th 

(McCarthy et al. 2016). There is also some evidence to suggest a trend of increased winter 

cyclone intensity 1871 – 2012, but this may be attributed improved data quality (Matthews et 

al. 2016). Oscillations in the polar jet stream can block cyclonic systems, leading to periods of 

calm, high-pressure, anticyclonic conditions typically lasting last 2-5 days. Prolonged blocking 

periods of up to several weeks are associated to summer droughts and severe winter cold spells, 

such as in the 2010 European heat wave (Francis & Vavrus 2012). 

The 2009 UK climate projections (UKCP09) represent the current state-of-the art assessment 

of future climate change in the UK for the 21st century (Jones et al. 2009; Murphy et al. 2010). 

The projections are probabilistic assessments given by the cumulative distribution function and 

reported at 0.1, 0.5 and 0.9 probability levels (𝑝) of climatic changes relative to the 1961-1990 

baseline period. UKCP09 projections are reported for 30-yr overlapping periods ranging 2010-

2039 to 2070-2099 and for low, medium and high emissions scenarios. The emissions scenarios 

are equivalent to the former Intergovernmental Panel on Climate Change (IPCC) B1, A1B and 

A1F1 emissions scenarios (Nakicenovic & Swart 2000). 

Figure 2.3. Climate and weather summaries for the UK: (A) annual average rainfall (mm) 

1961-1990, (B) annual average daily temperature (oC) 1961-1990, and (C) December 2015 

rainfall amount in % of the 1981-2010 averaging period. Figures are available (Met Office 

2017). 

(A)       (B)         (C) 



 

15 

 

The following discussion is of the UKCP09 projections for the 2050 period (2040-2069) under 

the medium emissions scenario. Mean annual precipitation shows relatively little change ±2 % 

(𝑝 = 0.5) or spatial variation across the UK (ranging -10 % to +10 % for the 𝑝0.5 and 𝑝0.9 

levels, respectively). Seasonal changes are marked. In winter, mean precipitation change is +12 

to +17 % across the western parts of the UK (+2 to +38 %) and +11 to +14 % in the east (+1 

to +36 %). In summer, mean precipitation change is -17 to -20 % (-42 to +7 %) in the south of 

England, midlands and -11 to -15 % (-30 to +2 %) in Scotland. The seasonal mean temperature 

change is +1.6 to +2.2oC in winter (0.7 to 3.4oC) and +2.0 to +2.8oC in summer (+0.9 to 

+4.6oC). The spatial distribution of winter and summer temperature change is greatest in the 

south and reflects the decreasing south-north latitudinal temperature gradient (Figure 2.3B). 

UKCP09 also projects changes to the magnitude of extreme rainfall events, using the 99th 

centile of precipitation on the wettest day, and an indicator of prolonged heavy rainfall events 

by the number of days with rain > 25 mm. In winter, the magnitude of extreme rain is ±5 to 

+10 % across the UK (-10 to +30 %) and days with heavy rain are set to increase by a factor of 

2 to 3.5. In summer, the number of days with heavy rain is set to increase by a factor of 1 to 2. 

The central estimate for extreme rain magnitude change is -5 to -10 % across the south of 

England. However, the 0.1 and 0.9 probability levels exhibit far greater spatial variability in 

extreme rain magnitude change with -30 % in the south of England and +30 % in upland parts 

of Wales and West Scotland.  

The UK’s projected climatic changes in seasonal and extreme weather conditions are likely to 

cause significant, but varying impacts on slope stability (Dijkstra & Dixon 2010). The 

combination of warmer, drier summers with wetter winters could intensify fluctuations in the 

seasonal soil moisture cycle, increasing shrink-swell movements in susceptible soils and the 

likelihood of progressive failures in natural and engineered slopes (Clarke & Smethurst 2010). 

Moreover, highly desiccated soils have higher permeabilities and may be more susceptible to 

rapid water infiltration and mobilisation during increased frequency and high magnitude 

precipitation events (Hughes et al. 2009; Kilsby et al. 2009; Kendon et al. 2014). Conversely, 

higher temperatures could increase evapotranspiration and high SMD conditions resulting in 

drier, more stable slopes due to decreased (Rouainia et al. 2009). The projected increase in 

prolonged and high magnitude precipitation events could likely generate more frequent low 

SMD conditions and increased rates of overland flow in unconsolidated upland soils, that are 

linked to landslide initiation (Ballantyne 2002; Milne et al. 2009). In addition, more extreme 

and frequent periods of heavy rainfall could exacerbate erosion rates increasing the 

sedimentation yield, inundation and recharge of upland fluvial systems and on hillslopes (Lane 

et al. 2007; Whitehead et al. 2009). This has the potential to increase the frequency of landslide 

failures by, for example, blocking drainage pathways and reducing the failure material recharge 

intervals of susceptible slopes (Bovis & Jakob 1999; Jakob et al. 2005).  

In order to effectively manage and reduce slope instability and landslide risk requires a sound 

knowledge of landslide processes in their current environmental setting and under the potential 

effects of climate change (Dijkstra & Dixon 2010). However, there is limited understanding 

and modelling capability to evaluate long term hydrogeological processes and their influence 

on slope stability (Beven 2002). The current state-of-the-art includes: improving stakeholder 

communication and multi-disciplinary research networks, such as CLIFFS (Dixon et al. 2006) 

and BIONICS (Kilsby et al. 2009); developing full scale physical and numerical models of 

slope stability (Malet et al. 2005; Kilsby et al. 2009; Rouainia et al. 2009; Davies et al. 2014) 
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and, for shallow translational slides and debris flow, empirical investigations of past events to 

identify the most common failure conditions and to develop probabilistic hazard assessments 

(Guzzetti et al. 2005; Chleborad et al. 2006; Berti et al. 2012; Budimir et al. 2015; Rossi et al. 

2017). However, assessments for the long term stability of slopes in the context of climate 

change are still of limited use as there remains a great level of aleatory uncertainty for future 

weather and climatic conditions (Jenkins et al. 2009; Murphy et al. 2010) and therefore for the 

actual physical response slope mechanisms (Dijkstra & Dixon 2010). In order to alleviate some 

of this uncertainty, it is suggested that landslide occurrence should be evaluated in a broader 

range of contexts, such as evaluating impacts to business, tourism and indirect impacts to 

transport, to more effectively communicate the spatio-temporal distribution and forecast 

severity of these hazards (Dijkstra et al. 2014a). Such assessments would also address a further 

limitation to effective landslide risk management which is associated to the need to further 

characterize vulnerability and exposure by improved understanding for the ways in which these 

hazards interact and cause impacts on transport infrastructure (Glade et al. 2005). 

2.1.4 The Road Transport Network 

Each year in the UK (England, Scotland and Wales) an estimated 440 billion road vehicle miles 

are driven and by volume road transportation accounts for 65% of all freight and 90% of 

commuter and passenger journeys (DFT 2013a). The strategic road network (SRN, motorways 

and significant arterial roads ‘A-roads’) forms just 2% (6,000km) of the nation’s roads, yet 

includes the nation’s busiest road sections and is used in two thirds of all freight and one third 

of all passenger journeys made by road (DFT 2013b, 2015a). The SRN is managed by the 

respective agencies of central government (i.e. Highways England, Transport Scotland and the 

Welsh Assembly). The remainder of road journeys are made on 394,000 km (98%) of local 

road network (LRN, connecting rural and urban roads) managed at the regional level by county 

council authorities (DFT 2013b). 

At an estimated value of £99 billion, the road network is the UK’s most valuable public asset 

(Cook 2011). Maintaining serviceability of this network is of critical importance to UK 

economic growth and for the provision of essential services to maintain social-welfare 

standards. 'The Transport Study’ by Eddington (2006), estimated the annual economic cost of 

road maintenance, delay and congestion is approximately £8-12 billion, and projected to reach 

£22-25 billion by 2021. Only a small proportion of this figure is apportioned to annual road 

maintenance activities (planned upgrades and repair budgets), which averaged £1.1 billion per 

annum in the period 2012-2015 (DFT 2012), but that vary year-on-year and between regions 

due to the damaging weather phenomena (Butcher 2016). These weather phenomena also 

contribute to an increasing cost of travel delay and congestion by deteriorating road travel 

conditions, including, by surface ice and rain (Jaroszweski et al. 2010; Hooper et al. 2014), or 

by causing delays at weather related road traffic incidents and responsive repair works (Bourne 

et al. 2008; Notley et al. 2008). Though the cost of individual incidents vary, the combined 

influence during recent winter weather seasons is apparent by the low spikes in the 2010-2015 

SRN journey reliability estimates in Figure 2.4; here, the reliability measure is the monthly 

percentage of ‘on time’ journeys based on a month-by-month comparison of road segment 

travel times and at similar times of day (DFT 2015a).  
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At the level of the SRN (i.e. motorways and arterial roads), the consensus is that the issue of 

travel delay and congestion is not related to insufficient network connectivity (i.e. roads are 

available to and from most places). Rather, it is the case that given the current level of transport 

demand the SRN lacks the resilience and spare capacity to offset negative effects during 

periods of disturbance by regularly occurring or rare hazard phenomena (Eddington 2006; 

Glaister & Graham 2006; Banks et al. 2007; Levinson 2010; Cook 2011). It is foreseeable that 

these issues will be exacerbated in the future. The UK Department for Transport (DFT) 

National Transport Model (NTM) range of road transport demand forecasts indicate a 19 to 55 

% increase in the nationwide road transport demand for the period 2010 to 2040. This forecast 

translates to increases of 19 to 60 % on the SRN and 10 to 50 % on local road network (DFT 

2015b). Within this timescale, UK climate projections (median estimate for the 2050 period; 

see section 2.1.3) indicate that there is also likely to be an increase in the intensity and 

frequency of adverse weather, including, 10 – 20 % wetter winters, and a 2 - 3 factor increase 

in high magnitude precipitation events (Murphy et al. 2009, Kendon et al. 2014). 

Consequently, the impacts and economic losses due to road network disruptions are likely to 

be increased in the future and the economic argument for pro-active intervention is well defined 

(Stern 2006).  

It is therefore essential that governments and network operators assign sufficient resources to 

address these future challenges. National guidelines for the management of highways state that 

the network segments and locations that support and maintain serviceability of the network, 

termed ‘critical links’, should be identified (DFT 2014b). The critical segments are defined as 

"the road segments or assets that are essential for supporting the social and business needs of 

both the local and national economy. They will have a high consequence of failure, but not 

necessarily a high likelihood of failure" (HMEP 2012). To improve the resilience of the road 

network to landslides (and other hazards), a pertinent question is therefore, at which locations 

in the network are landslide events least or most likely to occur? and what is the potential 

impact to traffic of these events? Similar themes were identified as a key priority in the recent 

 

Figure 2.4. The percentage of journey’s on time on the UK SRN March 2010 to March 2015, 

after (DFT 2015a). 
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2017 UK Climate Change Risk Assessment and this included issues faced by other hazards and 

on infrastructures such as flooding and rail networks (Krebs 2017). 

 

2.1.5 Landslide Impacts on Transport Infrastructure 

Landslide hazards pose a significant threat to the UK’s transport infrastructure (Forster & 

Culshaw 2004; Dijkstra & Dixon 2010; Krebs 2017). Approximately 7 % of the strategic 

networks (i.e. mainline rail, motorways and arterial roads) are located within areas considered 

to be of moderate to high landslide and shrink-swell susceptibility (Dijkstra & Dixon 2010). 

These networks traverse natural environments with factors associated to increased slope 

instability, such as on steep slopes and in valleys, and their foundations are typically found at 

depths of 1 - 2m bgl, depths associated to most recorded ground movements. In addition, these 

networks are often co-located with the conduits of other critical infrastructures, including water 

(0.5 - 1 m bgl), power (adjacent pylons or cables at 0.4 – 1 m bgl) and gas (0.3 - 0.9 m bgl) 

(HSE 2014). This physical coupling can generate compounded impacts and complex cascading 

failures which propagate between the interconnected systems (Little 2002; Dueñas-Osorio & 

Vemuru 2009).  

The impact of landslides on transport networks can be categorised to two groups, ‘direct’ 

physical impacts and ‘indirect’ impacts that deteriorate travel conditions. But these impacts can 

also incur secondary impacts and broader socio-economic consequences such as disruptions to 

emergency responders and other public services, reducing levels of tourism, reducing business 

investment and employment. 

First, landslides cause direct physical damage to engineered structures that require engineered 

remediation at a cost to transport network owners and operators. On average, some 50 landslide 

failures occur on UK railways each year (Loveridge et al. 2010). Network Rail (NR) is 

responsible for maintaining the entire 16,000 km rail network and spends in excess of £80M/pa 

on geohazards related activities (RAIB 2008). This figure includes ongoing damage and 

maintenance costs at problematic sites, such as, £800 k to £5M per year in engineered solutions 

to stabilise the South West line at Dawlish (Dawson et al. 2016a), and mitigating the effects of 

ageing railway slopes that are becoming increasingly susceptible to failure, inducing £5M at 

the Harbury landslide (Rail Engineer 2015). Ageing railway slopes are a significant issue as 

many embankments and cuttings were crudely constructed during the early 19th and 20th 

centuries using local earth or industrial by-product materials, including clay rich soils and high 

permeability ash (Skempton 1996; O’Brien 2007). For roads, the Department For Transport 

(DFT) budgets £700M per year maintaining the strategic road network (10,500 km) and a 

further £3.3 billion per year is distributed between 154 local authorities to maintain the rest of 

road the network (134,000 km of secondary to unclassified urban and rural roads) (PAC 2014; 

Butcher 2016). As the roads are managed by several different authorities the national cost 

attributed to landslide damage is unknown. The cost of individual incidents are demonstrated 

by the following examples: in 2013-14 severe winter weather led to 12 landslides damaging 

several SRN and local roads in Gloucestershire and the direct damages of £15M, equivalent to 

the county’s entire annual road maintenance budget (GCC & Amey Ltd 2014); in 2004 £1.1M 

in direct damage was caused by a large debris flow on the A83 road in Scotland (Winter et al. 

2014); and in the period 2010 to 2014 an additional £1 billion was distributed by the UK 

government to pay for the repair of damage to local roads caused by numerous cases of 
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subsidence and landslide damage to roads but also widespread flooding following several 

severe storms (PAC 2014).  

Second are the ‘indirect’ impacts. These include charges collected from network operators 

failing to maintain network serviceability. For instance, the UK’s rail network operator, NR, 

and rolling stock franchisees are subject to a statutory system of financial penalties, up to 10 

% of their annual turnover, for the delay and cancellation of services (RailwaysAct 1993). This 

is levied to provide rail users with compensation (e.g. replacement bus services and ticket 

refunds), and each minute of delay costs rail operators an average of £70 (NAO 2008; ORR 

2015). Analyses combining these values with rail delay data indicate that the cost of indirect 

disruption on the Dawlish-Teignmouth section of the Southwest main line are in the order of 

£270 k per annum for the period 1997-2009 (Dawson et al. 2016a). Applying this same 

technique, £70 k of indirect disruption is attributable to a single storm event in June 2012 that 

according to Jaroszweski et al (2015) caused 10,000 minutes of rail disruption. Such pricing 

schemes are not currently applied on UK road networks though this may change in coming 

decades as Transport-as-a-Service systems become more prevalent, such as shared vehicles 

autonomous transport services (Burns 2013).  

Indirect impacts also include those related to functioning of the network from the aspect of 

different road user groups. For instance, emergency responders require access to all network 

locations and within mandatory response times, in particular to vulnerable populations such as 

the elderly (Chang & Nojima 2001; Nyberg & Johansson 2013). Travel disruption also 

generates impacts via macroeconomic factors, for example, varying the rates of business 

investment and tourism to affected areas, but these are not considered in this thesis. Two thirds 

of UK road traffic is for commuting, business and social purposes (Cook 2011). For each of 

these user groups, travel time is intrinsically linked to several microeconomic factors. To 

illustrate the economic importance of efficient travel time, Eddington (2006) notes that just a 

5 % reduction to UK business trip travel times would alone generate annual savings in the order 

of £2.5 billion, equivalent to 0.25 % of UK GDP. The economic factors closely related to travel 

time are collectively termed the user generalised-cost and account for the travel expenses 

associated to: the cost of owing, running and maintaining a vehicle; and values of time spent 

working, non-working and socialising (MacLeod et al. 2005; DFT 2014a; Winter et al. 2014). 

As a result, indirect impacts can generate significant financial losses and population exposure 

is distributed far beyond the hazard’s physical location. The severity and spatial extent of travel 

time delays, and economic losses as a function of generalised-cost, vary according to which 

network links are physically disrupted and by the level of user demand (Murray et al. 2008). 

Table 2.3 lists the indirect impact of several landslide hazard events that have been calculated 

by combining traffic counts and detour lengths with values of user generalised-cost.  
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The examples in Table 2.3 clearly indicate that both the indirect impact of landslides on 

transportation networks contribute a significant proportion to total landslide risk (Glade et al. 

2005). Despite this, relatively little research has been conducted on assessing the indirect 

impacts of landslides on national scale road networks. This is primarily since quantifying the 

additional travel at such scales time is a complex task. Whilst there is reasonably detailed 

empirical data for rail delays (e.g. Dawson, D. et al. 2016), this is not the case for road transport 

where traffic flows are the result of complex interactions between the topology of networks 

and the spatio-temporally varying levels of travel demand (Ortuzar & Willumsen 2011). State-

of-the-art methods are adapted from industry techniques for road transport investment appraisal 

(DFT 2014a) and these couple models of network traffic flow with values of user generalised-

cost of time: a critical review of these techniques is presented in Chapter 2.3. Limiting factors 

to the wider adoption of these models include their high computational requirements and the 

numerous ways in which landslide disruptions are manifest on large scale transport networks. 

In this thesis, research and analyses are conducted that seek to overcome these limitations. 

Disruption Event 
Direct 

Impact 

Indirect Impact 

(total and currency) 
Reference 

Per lane closure on UK 

motorways 
n/a 

£10-15 k hr-1 

(GBP) 
(Lords Hansard 

2007) 

Per lane closure on M25 

(London Ring Road) 
n/a 

£62 k hr-1 

(GBP) 
(Cook 2011) 

M1 motorway closed for 40 

hours due to a severe storm in 

June 2007 (Junction 31 to 34). 

n/a 
£58 k hr-1 

(£2,300 k GBP) 

(Chatterton et al. 

2011; Dawson et al. 

2016b) 

A83 Rest and Be Thankful in 

Scotland was closed for 15 days 

due to landslides in October, 

2007.  

£1,100k 
£49-80 k day-1 

(£735-1,200 k GBP) 

(Winter et al. 2014; 

Postance et al. 

2017b) 

A371 closed at Ansford rail 

bridge for 24 weeks of 

subsidence repairs in September 

2012. 

n/a 

£1-4M loss for local 

haulage companies 

(GBP). 

(Lords Hansard 

2013) 

US route 50 in California closed 

for 4 weeks due to 267k m3 

landslide deposition in January 

1997. 

$4,500 k 
$1,000 k day-1 

(USD) 
(Reid & Lahusen 

1998) 

US Interstate Highway 10 closed 

after the Los Angeles North 

ridge earthquake, 1994 

n/a 
$1,000 k day-1 

(USD) 
(Yee et al. 1996) 

State Highway 1 (Desert Road), 

New Zealand.  
n/a 

$8 k hr-1 

(NZD) 
(Dalziell & 

Nicholson 2001) 

 

Table 2.3. Direct and indirect impacts of road network disruptions reported in the UK, US and 

New Zealand.  
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2.2 Landslide hazard and risk analysis 

2.2.1 Introduction 

Section 2.2 presents a critical literature review regarding landslide hazard and risk assessment. 

The section is focussed on the different methods of landslide hazard assessment including the 

use of process based models and empirical methods for: landslide susceptibility, landslide 

initiation thresholds, empirical landslide hazard assessment and its application on infrastructure 

networks.  Lastly, the components of a typical hazard risk assessment are introduced and 

discussed in relation to landslides. 

2.2.2 Physically-based-models 

Physically-Based-Models (PBM) are geotechnical and process-based models which analyse 

slope stability based on the Factor-Of-Safety (FoS) within morphologically meaningful units. 

The FoS is the ratio of a slope materials shear strength (e.g. internal cohesion, friction or other 

factors pertaining to shear resistance) to shear stress (e.g. modified by changing porewater 

pressures), with failure occurring at FoS ≤ 1.0 and increasing stability FoS > 1.0 (Duncan 

1996). PBM are used to simulate FoS under various input conditions, such as different rainfall 

intensities or temperatures, by combining slope stability models with hydrological models of 

unsaturated and groundwater flow to iteratively calculate the porewater conditions throughout 

the slope.  

PBM are constructed using detailed information for: the slopes geometry; shearing surface; 

material internal friction coefficient, material cohesion, the porewater pressure conditions; 

modifications to porewater by surface or ground water flow; vegetation; incoming precipitation 

and solar radiation amongst others. Models are calibrated using measurements of past 

movements in relation to variations in the input parameters. Probabilistic assessments of future 

slope stability are based upon the likelihood and return period of changes to these the input 

parameters. Approaches range from relatively simplistic 1-Dimensional infinite slope models 

of resistive and driving forces shown in Figure 2.5A (e.g. Brooks et al. 2004), to complex, 

temporally dynamic and spatially discretised 2D and 3D models in Figure 2.5B and Figure 

2.5C (e.g. Hungr 1987, Anderson and Howes 1988).  

One of the main advantages of PBM is that these models explicitly consider the hydro-

geological parameters, physical processes and their interactions that control the stability of 

slopes. Although PBM are site-specific and deterministic by design, in general the processes 

can apply to larger areas which exhibit a degree of homogeneity for slope morphological, 

lithological and meteorological conditions (Dijkstra & Dixon 2010). For example, Brooks et 

al (2004) apply this rationale using a 2D PBM to determine precipitation initiation thresholds 

for shallow translational landslides in New Zealand: the PDM modelled the stability of high 

permeability colluvium and regolith assemblages 1 - 3 m in depth and on 34o slopes. The PBM 

identified rain intensity thresholds in the order of 5 to 15 mm hr-1 over 24 hour periods with 

greater intensities required in deeper soils. 
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Another advantage is that PBM facilitate simulations to explore the specific slope conditions 

that led to historic failures or to explore the range of ultimate limit states (Davies et al. 2014). 

For example, a 2D PBM was used to examine the effect of climate change scenarios in 

southeast England by applying 20-year weather sequences (i.e. UKCP09 projections) to 

diagnostic London-Lias clay embankment model (Kovacevic et al. 2001; Davies et al. 2008; 

Rouainia et al. 2009). Each of these studies showed that the seasonal porewater pressure 

variation increased under climate change (60 to 100 kPa) and this led to the softening and 

displacement of the slope toe. These models also indicated that applied scenario of climate 

change did not lead increased rates of progressive slope failure, although there is now some 

evidence to the contrary in ongoing and unpublished research by the same authors.   

The advantages of PBM are also directly linked to several of their limitations. Primarily, the 

use of PBM is limited due to their detailed data requirements. Sufficient data are generally only 

availably following resource intensive subsurface exploration and rigorous laboratory testing 

on a site-by-site basis, for example, to determine the location of shear surfaces and the physio-

chemical properties of the slope materials (Van Asch et al. 1999; Glade et al. 2005). Many of 

the parameters are hard to determine, initial porewater pressure distributions are largely 

unknown and historical observation data is typically of insufficient quality to permit reliable 

model calibration due to unknown changes, such as, vegetation cover and weather conditions 

(Frattini et al. 2009). Even so, within the PBM these parameters are represented as area-

averaged values whereas in reality there may be a high degree of spatial heterogeneity (Malet 

et al. 2005). 

PBM are also limited by the level of understanding and modelling capability for physical slope 

processes and boundary conditions (Beven 2002) and developing representative sequences 

model inputs, such as sequences of future weather (e.g. Jones et al. 2009). These limitations 

Figure 2.5. Different physically-based-models for slope stability assessment including arrows 

to indicate the direction in which resistive (R) and driving (D) forces are modelled in addition 

to α for slope angle, soil saturation (blue dots) and vegetation (green lines). (A) is a 

representation of a 1D infinite slope model with uniform parameters for the entire slope, whilst 

(B) and (C) temporally and spatially discretized 2 and 3D models with different parameter 

values in each model unit (blue boxes).  
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and the selection of input parameters can lead to contrasting evaluations for the stability of a 

slope. For example, Nyambayo et al (2004) also evaluated the stability clay embankments in 

southeast England, however using three conditions of soil permeability and water infiltration, 

including low (1 × 10−9𝑚/𝑠), medium (1 × 10−8𝑚/𝑠), and high (1 × 10−7 𝑚/𝑠), to 

account for different surface desiccation scenarios under climate change. The high permeability 

condition ultimately led to the development of progressive failure mechanisms in contrast to 

the initial results of comparable studies (Kovacevic et al. 2001; Davies et al. 2008; Rouainia 

et al. 2009). In other similar studies using PBM, including vegetation cover was found to 

mediate the slope weakening effect of these climatic change scenarios (O’Brien 2007; 

Tsiampousi et al. 2016). 

2.2.3 Empirical Models  

To address and reduce landslide hazard risk, requires improved understanding of how 

landslides are distributed in space and in time. Establishing accurate distributions within areas 

covering tens to hundreds of square kilometres is non-trivial. As such, empirical assessments 

rarely involve the direct assessment of stress conditions as used in PBM.  Instead they are based 

on analyses of the spatio-temporal distribution landslide occurrences and of explanatory 

variables that are of theoretical significance. These analyses are heuristic, statistical or 

probabilistic assessments conducted at different spatial scales (e.g. catchment, regional and 

global) to identify the conditions associated with past landslide events (Aleotti & Chowdhury 

1999; Glade et al. 2005; Van Westen et al. 2006). Empirical landslide assessments are therefore 

based on the principle of uniformitarianism and the assumption that future landslides are likely 

to occur under similar conditions as those that occurred in the past (Varnes 1984). Provided 

that ongoing and accurate landslide records are kept, these empirical assessments provide 

meaningful insights on the landslide potential in the past, present and the near future 

(Chleborad et al. 2008). 

Empirical landslide assessments may incorporate the spatial, temporal or combined spatio-

temporal likelihood of landslides. To evaluate where a landslide might occur, the spatial 

component is addressed using terrain landslide susceptibility models. These models examine 

the geomorphological, geotechnical and environmental explanatory variables associated with 

landslides, such as, critical slope angles, slope aspect, vegetation and land use (Brabb 1984; 

Ayalew & Yamagishi 2005; Budimir et al. 2015). These models are generally constructed using 

geographic information systems and digital elevation models (Carrara et al. 1995; Dai & Lee 

2001; Carrara & Pike 2008; Shahabi & Hashim 2015). To evaluate when a landslide might 

occur, the timing component of landslides is addressed using either: the recurrence interval 

between historic landslide events, such as using the Poisson or Binomial probability 

distributions (Crovelli 2000; Guzzetti et al. 2005); or through landslide initiation thresholds. 

These thresholds quantify the of hydro-meteorological conditions that, when exceeded, are 

likely to result in landslide initiation (Caine 1980; Chleborad et al. 2006; Guzzetti et al. 2008; 

Meyer et al. 2012; Segoni et al. 2014b). 

 

2.2.4 Landslide Susceptibility 

Landslides tend to occur in certain types of locations (Hungr et al. 2014). Landslide 

susceptibility models (e.g. in Figure 2.2B-C) calculate the spatial propensity or proneness of 

landslides to occur in a certain location (Brabb 1984; Aleotti & Chowdhury 1999; Ayalew & 
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Yamagishi 2005; Guzzetti et al. 2006). Alone, without the timing element, they do not show 

the number or annual probability of landslide occurrence as is done in landslide hazard models 

(Fell et al. 2008).  

Landslide susceptibility assumes that the spatial distribution of landslides is not random but is 

determined by the distribution of one or more explanatory variables (Van Westen et al. 2003; 

Glade et al. 2005). The models are constructed by ranking each unit area based on a best fitting 

function that describes the relationship between the values of the explanatory variables and the 

presence or absence of landslides (Brabb 1984; Aleotti & Chowdhury 1999; Guzzetti et al. 

1999; Dai & Lee 2001; Fell et al. 2008; Budimir et al. 2015). A large number of landslide 

susceptibility studies have been conducted in different landslide prone regions around the 

world and for different types of landslides. Subsequently, the literature includes a variety of 

methods, unit scales, and explanatory variables that are more or less applicable in different 

situations. The selection of appropriate analysis techniques depends on: the type of landslide 

phenomena to be studied; the scale of the investigation; the availability and suitability of 

analysis tools; and the type, quality, resolution and availability of data (Carrara et al. 1995; 

Guzzetti et al. 1999). These aspects are discussed in the following sections.  

Explanatory variables of landslide susceptibility: 

In general, the explanatory variables which are related to slope instability and landslide 

mechanisms are known. These are taken from the understanding of physical processes, 

geomorphological descriptions and site investigations (Varnes 1978; Phipps 2003; Milne et al. 

2009; Hungr et al. 2014). Table 2.4 provides a comprehensive list of the most common 

variables that is based on those compiled in Guzzetti et al. (1999) and Süzen and Kaya (2011). 

These variables can broadly be categorised into four groups: environmental, geotechnical, 

geological and geomorphological. In several cases there are relationships between the variables 

of different groups, for instance, weathering characteristics may be implicit for different types 

of lithology. Some variables are used to provide by-product insights on the characteristics of 

landslides. For example, elevation is used to approximate the gravitational potential energy and 

run-out distance of landslides (e.g. Vandre 1985, Bathurst et al. 1997, Chen and Lee 2003), and 

the proximity of slopes to rivers and roads is often used to indicate the potential for lateral 

erosion and undercutting of a slope (e.g. Shahabi and Hashim 2015). 
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Group Variable Description and examples 

Environmental 

Land use & 

vegetation cover 

Classification of forested or arable areas and dominant 

vegetation types or indices, such as NDVI (Marjanović et al. 

2011).  

Precipitation 

Long-term average or synoptic meteorological conditions 

(e.g. annual average rain or days with snow cover). Not to 

be confused with initiation thresholds.  

Temperature 
Soil temperature influence on soil moisture content, ice 

formation and thawing.  

Catchment 

position 

Upland vs. lowland environmental processes and distance to 

watershed, fluvial channels or other hydrological features.  

Human activity 

Any human activity which alters one or many other factors 

for example, road construction which alters the profile and 

drainage of a slope (Larsen & Parks 1997), or trampling 

which increases soil surface permeability and erosion.  

Geotechnical 

Slope material 

properties 

Physio-chemical characteristics including porosity, 

permeability, grain size and sorting. Strongly linked to 

lithology factors.  

Superficial 

deposit thickness 

Material depth to bedrock or otherwise impermeable strata 

forming a potential shear surface.  

Weathering 

potential 

Weathering characteristics of the slope materials (e.g. low, 

moderate and high).  

Geological 

Bedrock 

lithology 

Rock lexicon and weathering characteristics.  

Bedrock-strata 

interaction 

Proximity to faults and fracture zones or bedrock sequences 

overlaying weakened substrata (e.g. (Jenkins et al. 2011)). 

Seismicity 

Hazard maps for annual average seismicity or ground 

acceleration during tremors and earthquakes (Meunier et al. 

2008).  

Geomorphological 

Elevation 

Terrain and slope elevation and range is related to the 

gravitational potential energy and runout distance (Vandre 

1985; Bathurst et al. 1997; Lorente et al. 2003).  

Aspect 
Slope orientation to incoming solar radiation, wind and 

precipitation.  

Angle 
Critical angles of repose for common hillslope materials are 

in the range of 25 to 45o (Iverson et al. 1997).  

Curvature 

Convexity or concavity of the slope profile. Curvature 

influences the direction and velocity of surface and ground 

water flow (Yilmaz 2010). 

Terrain 

roughness / 

ruggedness 

Roughness is an indicator of steep and elevated terrain liable 

to increased erosion and gravitational potential energy. E.g. 

the Melton Ratio (Melton 1957):  

MR =  𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑛𝑔𝑒 ξ𝐴𝑟𝑒𝑎Τ  

Hydrology 

Fluvial features (e.g. gullies or channels) in which sediment 

is entrained, and ground water flow from the above draining 

area.  

 
Table 2.4. Explanatory variables used in landslide susceptibility models. Table adapted from 

Guzzetti et al. (1999) and Süzen and Kaya (2011). 
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Different combinations of explanatory variables will be important for studies conducted in 

different landslide regions. Landslides that are initiated during periods of prolonged and intense 

rainfall are generally distributed with respect to critical slope angles on hillslopes or in gullies 

featuring increased rates of ground water flow and erosion (Montgomery 1999; Iverson 2000; 

Milne et al. 2009). Conversely, landslides initiated during earthquakes are situated in areas 

attributed to the topographic amplification of seismic waves, such as on faults and ridge crests 

(Keefer 1984; Dadson et al. 2004; Meunier et al. 2008; Korup 2010). In spite of this, many 

susceptibility studies do not differentiate between landslide types (Van Westen et al. 2006). 

Budimir et al (2015) review the statistically significant factors (𝑝 < 0.05) reported at 91 study 

sites from 75 peer review studies over the period 2001 to 2013: 55 of the studies were for 

certain landslide types. The results show that: 

• For all the sites examined the significant factors were: slope (95 % of study sites); 

aspect (64 %); elevation (50 %); vegetation, land cover or drainage (35-45 %); and 

only curvature, lithology, soil type, precipitation, and proximity to faults or roads (10-

25 %).  

• Landslides initiated by rain (23 sites) and earthquakes (9 sites) shared factors for: slope 

(95 %), aspect and elevation (50 %), and bedrock geology (30 %). Landslides initiated 

by rain also included vegetation (70 %), soil type (40 %), curvature (25 %) and 

distance to fault (13 %). For landslides initiated just by earthquakes (9 sites), these 

were 11, 0, 0 and 44 % respectively. 

• For shallow slides and flows (33 sites) the significant factors were slope (83 %), aspect 

(40 %), elevation (40 %), land use and soil type (30 %), curvature (20%) and 

vegetation (10%).  

• For complex landslides (20 sites) the factors were slope (85 %) and aspect (75 %). 

Complex landslides included a broader range of factors in the 30-50 % range, 

including, elevation, vegetation lithology, land cover, curvature, precipitation, 

distance to faults and roads. The wider range of factors reflects the presence of 

multiple different landslide mechanisms at complex landslide sites (Hungr et al. 2014).  

 

A similar set of reviews that examined the variables used in 145 articles (1986 - 2007) also 

found that the majority of studies use slope angle, superficial lithology and elevation (100%), 

and 60 % of these used land use, drainage and aspect (Ercanoglu et al. 2004; Süzen & Kaya 

2011). Whilst these reviews provide useful insights and may be used to guide the selection of 

explanatory variables used,  the selection of variables should be based on independent and 

location specific analyses in order to account for the local landslide characteristics (Guzzetti et 

al. 1999; Carrara & Pike 2008).  

Model units: 

Susceptibility assessments are conducted using different modelling units, where each unit is a 

portion of the land surface that is internally homogeneous in terms of its explanatory variable 

values (Hansen 1984). The three most commonly used unit areas are: grid cells (e.g. the cells 

in raster images): unique-condition-units, polygons based on spatial joins of different input 

data, and geomorphic or hydrological units that are areas characterised by distinct suites of 

features and processes, such as river catchments, basins and gullies (Carrara et al. 1995; Soeters 

& van Westen 1996; Guzzetti et al. 1999; Montgomery 1999).  
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In grid based analyses, a grid is made up of uniformly sized cells (i.e. pixel resolution) and 

each grid and grid-cell represents a different explanatory variable and its value in a certain 

location. The grids of different variables are stacked on top of one another and the cell values 

where landslides are present are compared to the values of the cells that are without landslides. 

For example, Pareschi et al (2000) used a 10 m2 DEM grid to evaluate the characteristics of 37 

debris flow that occurred following 100 - 180 mm rainfall in 24 hours in Sarno, Southern Italy. 

Given the number and proximity of the landslides, the authors employed relatively detailed 

feature mapping based on aerial imagery and site investigations to identify the properties at the 

debris flow initiation zones (0.5 – 2.0 m depth volcanic rich colluvium on > 25o slope angle).  

Such detailed feature mapping is rarely available in other regions due to the longer recurrence 

interval between landslides and as much of the geomorphic evidence is removed by erosion, 

vegetation or other landslides (Ballantyne 1986; van Westen et al. 2006; Frattini et al. 2010). 

Most susceptibility assessments are based on landslide initiation zones recorded as point 

coordinates (Malamud et al. 2004; Glade et al. 2005; Guzzetti et al. 2008; Blahut et al. 2010). 

As the spatial accuracy of these coordinates is often in the order of 1 to 500 m several studies 

compare grids with different spatial resolutions, ranging from 5 to 200 m2, to identify the most 

suitable resolution for landslide susceptibility modelling. These comparisons indicate that the 

most suitable resolutions are those equivalent to the average size of the landslide features being 

examined, ranging from 15 - 30 m2 in South Korea and Hong Kong (Dai & Lee 2001; Lee et 

al. 2004b) to 50 - 100 m2 in Guangdong, China and Tuscany, Italy (Tian et al. 2008; Catani et 

al. 2013). Therefore, higher resolution grid data does not necessarily improve the performance 

of models, however, high resolutions are required to capture accurate variable statistics, such 

as maximum slope angles, and these may then be resampled to broader resolutions. Guzzetti et 

al. (1999) advises that several grid resolutions should be evaluated to account for the regional 

characteristics of landslides and the quality of the landslide records. 

Compared to grids, there are relatively fewer studies that use unique-condition-units (UCU) 

Guzzetti et al. (2005) examine 3,900 translational slides and debris flows in the Apennines 

Mountains, Italy by creating sub-basin slope units based on drainage divide lines (e.g. 

individual valley sides), and these were then split into 2,243 UCU based on a spatial overlay 

of 21 different susceptibility factors. Using a similar approach, Catani et al. (2005) examined 

20,000 rotational and 7,000 shallow translational slides in Tuscany, Italy using UCU based on 

the overlay of lithology, land cover, slope, curvature and data for the above slope draining area. 

In each case, the adopted models were reported to accurately classify 75 to 85 % of the UCU 

when partitioned into training and test data sets. However, they do not report the accuracy for 

the minority class, the accuracy the model is able to predict just the UCU that contain 

landslides. 

Hydrological units offer an appropriate unit for modelling landslide susceptibility since a clear 

physical relationship exists between certain landslide mechanisms and the morphological and 

hydrological properties of upland fluvial systems (Guzzetti et al. 1999; Montgomery 1999; 

Wilford et al. 2004; Welsh & Davies 2011). For instance, Korup (2004) notes that the 

occurrence of shallow-translational slides and debris flow in New Zealand are most often the 

result of a physical coupling to the fluvial systems and processes that operate on the same 

hillslopes and gullies. There observational evidence for these linkages in Scotland where many 

of the recorded landslides have been initiated on hillslopes or in gullies where multiple drainage 
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channels converge – increasing the saturation of the slope materials (Ballantyne 2002; Milne 

et al. 2009).  

Studies in other fields (outside of landslide susceptibility) have examined the characteristics of 

different hillslopes and gullies to determine which units are more likely to produce flooding, 

debris flooding and landslides. Many of these studies use the Melton Ratio terrain roughness 

index (MR, in Table 2.4). In British Columbia, debris flow were found to occur on the hillslopes 

and gullies with MR > 0.64, with lower MR values found for the units that produce flooding 

(MR = 0.3 - 0.6) and alluvial fan (MR < 0.3) deposits (Jackson et al. 1987; Wilford et al. 2004). 

In New Zealand, a slightly lower criteria MR > 0.5 was found for the units associated with 

debris flow (Welsh & Davies 2011). Despite this, and as far as these authors are aware, MR 

and hillslope or gully hydrological units are yet to be applied in a landslide susceptibility 

model. Studies which use hydrological units are limited to the catchment scale (e.g. upland 

basins and valleys) in the Catalan Pyrenees (Chevalier et al. 2013; Berenguer et al. 2015). 

These studies achieved reasonable classification accuracy (69 %)  for the detection of units 

both with and without landslides. Chevalier et al. (2013) note that the use of catchment scale 

units limits the use of certain explanatory variables, such as slope aspect, given that each 

catchment unit contains contain two or more slopes faces with different values. The use of 

higher resolution hydrological units, at the scale of hillslopes and gullies, may therefore prove 

beneficial to modelling the terrain landslide susceptibility to debris flow. 

Analysis Technique: 

Many analysis techniques have been applied to empirical landslide susceptibility assessments 

including: qualitative landslide distribution mapping and landslide inventories; heuristic 

knowledge based models; and quantitative statistical or probabilistic bi-variate and multi-

variate models.  

Landslide mapping and inventories (e.g. the NLDB) are of great importance as all studies rely 

on accurate and representative spatio-temporal landslide information for the development and 

validation of susceptibility models (Aleotti & Chowdhury 1999; Guzzetti et al. 1999; Glade et 

al. 2005). Landslide inventories are compiled from various sources including news articles, 

social media, infrastructure organizations or insurance claims (Pennington et al. 2015), and are 

complimented in particularly active regions by field surveys and remote sensing (Pareschi et 

al. 2000). Worldwide, these inventories have typical data and data quality for: landslide source 

locations as coordinate pairs at spatial accuracies ranging from 1m to entire catchments; the 

date and time of failure (5 % <12 h, 26 % 24 h and 70 % >24 h), and the type of movement 

and failure material based on common classification systems (Malamud et al. 2004; Guzzetti 

et al. 2008; Hungr et al. 2014). In addition, inventories are generally biased towards larger 

events or those with impact to society, and it is likely that many small magnitude landsides or 

those with little impact are unrecorded (Milne et al. 2009).  

Heuristic landslide susceptibility models are developed using landslide inventories in 

combination with a priori knowledge, expert judgment and local experiences to assign weights 

for the relative importance of various explanatory variables within each terrain unit (Soeters & 

van Westen 1996; Cardinali et al. 2002). In the UK, the 1:50,000 scale landslide susceptibility 

model ‘GeoSure’ is based on a 5 tier (A = low-susceptibility to E = high-susceptibility) ranking 

of UCU according to 15,000 NLDB data points and expert weightings for slope angle (derived 
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from 25m2 NEXTmap DEM), geology and bedrock (1:10,000 to 1:50,000 geological maps) 

discontinuities, and with regional modifications based on factors related to superficial deposits 

such as past landslide deposits, unconsolidated glacial tills and clay soils (Foster et al. 2008); 

GeoSure is available nationwide and is the de facto product used by the UK insurance industry. 

Qualitative weightings are heavily dependent on the cognitive bias, experiences and knowledge 

held by the persons which develop such models. However, this does not render such 

assessments as invalid or inaccurate as the developers typically include experienced researchers 

and regional experts, rather that it is difficult to determine the objectivity and reproducibility 

of heuristic methods (Glade et al. 2005).  

Bi-variate analyses overcome issues of subjectivity by apportioning each terrain unit into 

mutually exclusive conditions (units with landslides or units without or yet to have landslides 

‘non-landslide’) and comparing these to the distribution of each explanatory variable mapped 

to categories, such as, categorical lithology types or slope angle categories of 0 - 10o, 20 - 30o 

etc. The tallies of each condition and unique factor-class are compiled in a contingency-table 

and cross tabulated to quantitatively derive weightings and conditional probabilities for each 

factor-class relationship to the presence or absence of landslides. Most methods are based on 

some variation of the Bayesian probability model including: Weights of Evidence (WoE), 

Weighted Overlay, Frequency Ratio or Information Value methods (Thiery et al. 2007; 

Pardeshi et al. 2013). WoE is by far the most common approach. In WoE, the conditional 

Bayesian probability of landslide or non-landslide occurrence is calculated for each factor-class 

and are transformed using the natural logarithm of their odds, which gives the odds-ratio 

between the landslide occurrence and non-occurrence probabilities (Bonham-Carter & Cox 

1995). The odds-ratio is used to calculate weights which define the strength of the spatial 

association (positive weights) or separation (negative weights) of landslide occurrence to each 

factor-class. Thus, a probabilistic assessment of susceptibility is reached by summing the 

weights and retransforming the odds-ratios for each factor-class. WoE and the terrain factors 

slope, curvature and flow accumulation have been used to model landslide susceptibility in 

mountainous regions of Europe (Thiery et al. 2007; Blahut et al. 2010; Sterlacchini et al. 2011; 

Meyer et al. 2014), Malaysia (Pradhan et al. 2010) and with additional anthropogenic land-use 

and road proximity factors in Canada (Quinn et al. 2010), the Italian Alps (Piacentini et al. 

2012) and the Indian Himalaya (Martha et al. 2013). The reported accuracy of these WoE 

models is in the order of 65 - 85% and the use of more complex models with more explanatory 

variables often fail to improve accuracy levels beyond this range (Blahut et al. 2010; 

Sterlacchini et al. 2011; Meyer et al. 2014). However, a pre-requisite of bi-variate models, 

including WoE, is conditional independence of explanatory variables and therefore including 

large numbers of factors is more likely to violate this condition (Thiery et al. 2007). The use 

of UCU can alleviate the requirement for conditional independence (Piacentini et al. 2012), 

however this would be at the expense of quantifying individual weights and the relative 

importance of individual factors and factor-classes on landslide occurrence. 

Bi-variate techniques are not suited for susceptibility assessment in regions where landslides 

occur as the result of multiple explanatory variables and interactions between them (Thiery et 

al. 2007; Pardeshi et al. 2013). Multi-variate analyses are applied in order to consider the 

relative contribution of multiple factors and to quantify the strength and effect of interactions 

between different factors and factor-classes. Figure 2.6 illustrates the four most commonly used 

multi-variate methods in landslide susceptibility, including, Artificial Neural Networks (ANN), 
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Support Vector Machine (SVM), Random Forest decision trees (RF) and Logistic Regression 

(LR). These are statistical and assisted learning algorithms which are repeatedly trained and 

validated, using separate sets of labelled units (i.e. landslide and non-landslide), in order to 

improve their predictive accuracy. 

ANN are a 3-tier system of decision neurons, or nodes, for input (factors and their values), 

hidden-layer (data transformations) and output (probabilistic classification of landslide and 

non-landslide units) connected by weighted links. Depending on the model and assigned 

problem, at each iteration the hidden layer recodes the input factor data (e.g. mean 

normalization, standardization, log transformation, resampling classes or Boolean), adjusts the 

link weights and the classification error is re-evaluated until no further reductions are reported 

(Bonham-Carter & Cox 1995; Lees 1996; Aleotti & Chowdhury 1999). ANN have achieved 

reasonable classification success rates using geomorphological and geological factors in a 

number of regions including: 85% for UCU in the Arno River Basin, Italy (Catani et al. 2005), 

72-81% across 5 different sites in Penang, Malaysia (Pradhan & Lee 2009) and 84% in 

Koyulhisar, Turkey (Yilmaz 2010).  

 

Figure 2.6. Conceptual diagrams of: (A) Artificial Neural Networks (ANN); (B) Support 

Vector Machines showing 2D separation (bold black lines) of landslides (black dots) and non-

landslide (grey dots) and 3D separation (light grey lines); (C) two Random Forest (RF) decision 

trees with four tier logic decision gates; and (D) Logistic Regression showing the sigmoid log 

odds function (black solid line and bold points) as opposed to the multiple regression line 

(dashed grey line and light points). 
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LR is a useful tool to find the best fitting model to describe the relationship between a 

dichotomous or binary dependent variable (the presence or absence of landslides) and a set of 

independent explanatory variables which may be categorical (e.g. rock type and land use) or 

continuous (e.g. slope angle and curvature) (Menard 1997). Unlike multiple-linear regression, 

the model output is determined by the binomial distribution and logit that a terrain unit belong 

to the dichotomous landslide or non-landslide state. Logits are the natural logarithm of the odds 

ratio and, as in WoE, the odds ratio is the ratio between the probability that something does 

occur to the probability that is does not occur with values ranging from floor 0 to <1 (reduction 

in the probability or odds), 1 (the probability or odds are identical) and >1 to infinity (increase 

in the probability or odds). The logit is used so that the model outputs are symmetrical around 

zero and vary from negative to positive infinity within 0 and 1. It is stressed that probability, 

odds, and logits are three ways of expressing the same thing and one can easily be converted 

into the other. LR is given by Equation (2.1:  

where 𝑌 is the dependent variable, 𝛽 is the model constant, 𝑥𝑖 and 𝛽𝑖 are the 𝑖-th causative 

factor values and regression coefficients, respectively. The logit is transformed to a probability 

(𝑝) using Equation 2.2. The LR model coefficients (𝛽𝑖) are weights for the best-fit combination 

of explanatory variables which give the greatest log odds that a terrain unit is susceptible to 

landslides. A valuable output of LR is that taking the exponential of each model coefficient 

gives the odds ratio and probability that a factor-class (e.g. certain rock type) has on the 

probability of being in the landslide or non-landslide susceptible state. The significant predictor 

variables (Wald test p ≤0.05) found for applications of LR to landslide susceptibility are: slope 

angle and elevation in Hong Kong (Dai & Lee 2001); slope angle and lithology in Kansas, US 

(Ohlmacher & Davis 2003); and slope angle, aspect, lithology and proximity to roads in 

Kakuda-Yahiko, Japan (Ayalew & Yamagishi 2005). In addition, slope angle and the adjacent 

draining area were the most important factors for the susceptibility of 1184 slopes and 

engineered cuttings on the Irish rail network and with 92 % LR classification accuracy 

(Martinovic et al. 2016). 

SVM and RF are more recently developed and so called ‘machine learning’ methods (Hand 

1997). As illustrated in Figure 2.6B, in 2-dimensions the SVM seeks to determine the 

maximum separating hyper-plane (solid black line) between landslide (black dots) and non-

landslide (grey dots) support vectors (i.e. the scatter plot formed of slope angle (x-axis) and 

curvature (y-axis) for each terrain unit). The distance of separation (dotted lines and arrows) 

and systematic removal of the nearby ‘support vectors’ (star point) is evaluated in order to 

determine the strength and sensitivity of the separation. This same principle is then applied to 

distinguish three or multi-dimensional data separation (i.e. using more explanatory variables), 

but using kernel functions to determine complex hyper-plane (the z-axis and dashed black lines 

in Figure 2.6B) (Yao et al. 2008). In RF (Figure 2.6C), a decision tree ‘ensemble’ is formed of 

multiple individual decision branches, and each branch uses random sub-selection of factors or 

layers (i.e. each selected factor is a layer in each branch f1, f2, f3…etc.) and a random portion 

data for training and testing the classification probability of each branch. A branch is a multi-

tiered series of logic decision gates, or rule-set, based on the factor values and classes (e.g. 

𝑙𝑜𝑔𝑖𝑡(𝑌) =  𝛽 + 𝛽1𝑥1 + 𝛽2𝑥2 … + 𝛽𝑖𝑥𝑖 

𝑝 =  
1

1 + exp 𝑙𝑜𝑔𝑖𝑡(𝑌)
 

(2.2) 

(2.1) 
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slope ≥ 20o = landslide, slope < 20o = non-landslide). The successful tree series (chained black 

dots) and their classification probabilities are retained whilst the unsuccessful series (grey dots) 

are discarded. The process is repeated and the successful branches are accumulated until there 

are no further reductions in the net classification error of the tree ensemble (Brenning 2005). 

SVM and RF are more recently developed methods and as such there is relatively limited 

application and evaluation of their suitability for landslide susceptibility mapping (Brenning 

2005). Most comparisons are made to with respect to LR regression models which are by far 

by far the most common approach. For instance, Budimir et al. (2015) reviewed the explanatory 

variables used in 75 LR studies from a literature search containing some 1200 unique results 

for the terms “landslide” and “logistic” in Science Direct. Brenning (2005) notes that step-wise 

LR and SVM provide the lowest classification error whereas RF tend to over fit the training 

data when comparing different proportions of training and validation data from 2000 shallow-

translational slides and debris flow in the Ecuadorian Andes. Similarly, Catani et al (2013) 

apply RF in the Arno basin, Italy and find that the training process and therefore model 

accuracy is strongly influenced by the factor distributions in the training data. Marjanović et al 

(2011) compare three susceptibility models for landslides in Fruska Gora, Serbia using 5, 10 

and 15% validation data sets. The authors report that a similar range of classification success 

rates were found for each model, SVM (0.85-90%), LR (0.85-0.87%) and RF (0.82-0.85%). 

Similar results were found for ANN (0.85%), SVM (0.84%) and LR (0.83%) models of 

landslides in Sivas, Turkey (Yilmaz 2010) and for RF (0.77%) and LR (0.75%) models in 

Shaanxi Province, China (Chen et al. 2017). Though each of the multi-variate models seem to 

exhibit similar levels of performance, logistic regression is the most widely adopted method 

and performs consistently well between studies in different landslide prone regions. 

 

2.2.5 Landslide Rain Initiation Thresholds  

Globally, periods of prolonged and excess rainfall are the most frequent triggering mechanism 

of landslides (Ballantyne 1986; Crozier 1997; Aleotti 2004; Glade et al. 2005; van Westen et 

al. 2006). Landscapes containing slopes that are susceptible to generating landslides are often 

regarded as being in equilibrium with the long term environmental conditions, such as rainfall 

and land use, to which these have been exposed (Guidicini & Iwasa 1977; Cannon & Ellen 

1985; Aleotti 2004; Giannecchini et al. 2016). It therefore follows that in landscapes where 

rainfall is the dominant factor (i.e. other contributing factors such as land use remain relatively 

constant), it is reasonable to analyse rainfall patterns in order to quantify thresholds which 

when exceeded trigger a hydro-geological response sufficient to disrupt the equilibrium and 

result in the triggering of a landslide (Caine 1980; Van Asch et al. 1999; Waltham & Dixon 

2000; Pennington et al. 2014). 

Empirical initiation thresholds are defined through statistical and probabilistic analysis of the 

past rainfall conditions that have resulted in landslides. The thresholds are categorized based 

on the method of analysis, the rainfall data used, the type of landslide mechanism, and the 

regions in which the thresholds apply (Caine 1980; Wilson & Jayko 1997; Guzzetti 1998; 

Guzzetti et al. 2008). Initiation thresholds, no matter how complex, are a simplification of the 

relationship between rainfall and landslide occurrence (Aleotti 2004). Establishing relevant 

initiation thresholds is a complex task given that there are many influential factors, for instance, 

the lag-time between rainfall infiltration and significant increases in porewater pressure on 
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deep failure surfaces that require prolonged or multiple rainfall periods to raise the antecedent 

slope material water content (Iverson 1997; Van Asch et al. 1999; Dijkstra & Dixon 2010). As 

a result, thresholds are rarely applied to large and complex rotational landslides unless 

complimented by detailed geomorphological and geotechnical knowledge of a specific site 

(Waltham & Dixon 2000; Dixon & Brook 2007).  

The majority of landslide initiation thresholds are developed for shallow translational 

landslides and debris flow that occur in mountainous environments where there is a relatively 

high degree of homogeneity between the failure mechanisms and conditions at multiple failure 

locations (Innes 1983; Guzzetti et al. 2008). Moreover, there is often reliable evidence for the 

regular activation or re-activation of landslides in certain locations or of simultaneous failures 

occurring episodic weather events (Onodera et al. 1974; Guzzetti 1998; Pareschi et al. 2000; 

Ballantyne 2002; Jakob & Weatherly 2003; Guzzetti et al. 2007; Cannon et al. 2008; Chleborad 

et al. 2008; Winter et al. 2010; Staley et al. 2013; Søren et al. 2014). The following review and 

discussion of landslide threshold studies is therefore constrained to these types of landslide. 

The first, and most common landslide threshold approach is the characterization of the intensity 

and duration of landslide rain events (LRE) by Caine (1980). As illustrated in Figure 2.7, Caine 

determined a lower-limit initiation threshold by examining and manually drawing a curve-line 

below the intensity-duration (ID) points of 73 24h LRE (days with landslides) which initiated 

shallow landslides (< 3m soil depth) in different climatic, geologic and topographic 

environments around the world.  

 

Figure 2.7. A reconstruction of the Intensity-Duration threshold (thick solid line) for 73 24h 

landslide rain events (black crosses) reported in Caine (1980). The ID threshold (thin solid 

line) developed by Innes (1983) showing the effect of spatial variation between landslide 

regions. Three ID thresholds from the frequentist’s method (Brunetti et al. 2010) are shown 

for 75% (best fit), 50% and 10% percentiles; legend in figure.  
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The ID-threshold is formalized by the power law Equation (2.3: 

where 𝐼 is the mean rainfall intensity (mm hr-1), 𝐷 is the rain event duration (hours), 𝛼 is the 

intercept and 𝛽 is the shape parameter (scaling coefficients).  

Initial developments to the methodology include: the determination of lower (as in Caine, 

1980), intermediate (capturing ~50 % of landslide events) and upper limit (conditions that do 

not cause landslides) ID-thresholds (Onodera et al. 1974); the inclusion of longer antecedent 

rainfall information for landslide thresholds in the San Francisco Bay region, California 

(Cannon & Ellen 1985); ID-thresholds to best separate LRE which caused landslides from the 

non-landslide rain events (NRE) (Wieczorek & Sarmiento 1982); and threshold comparisons 

which led to the realization that they vary significantly between regions (plotting above or 

below one another, see Figure 2.7) and thus require calibration to the specific area of 

application (Innes 1983; Wieczorek 1987).  

Guzzetti et al. (2007) compare the approaches of 27 ID-threshold studies in a variety of 

landslide prone regions around the world (e.g. the European Alps, Italy, South East Asia, Japan, 

China, Brazil, South and North America) and note that most define lower and upper limit ID-

thresholds in order to form an envelope around the LRE within which landslides are most likely 

to occur. The range of reported average intensities for the 24 hour rainfall period (the day of 

landslide occurrence) is from 3.5 to 70 mm hr-1 (Guzzetti et al. 2007). The primary difference 

between these studies is in the rainfall variables used. As shown in Table 2.5, these include 

other standard variables (e.g. mean or maximum accumulation), antecedent and normalised 

rain variables.  

Antecedent rain periods are those which condition the slope prior to failure. The principle pre-

condition effect is for a rise in the slope materials moisture content, thus reducing the required 

infiltration, accumulation or intensity of rain to initiate failure (Iverson 2000). For example, 

Chleborad (2000) develop rain accumulation landslide threshold in Seattle, US combining the 

accumulated rain at 3 (𝐴3 mm) and from >3 to 18 (𝐴15 mm) days antecedence (𝐴3 = 88.9 −

0.67𝐴15); in the Columbian dry season, ID-thresholds are three times greater than in the wet 

season (Terlien 1998), and significant antecedent rain accumulation periods were identified 

and ranged from two to 12 days for landslides initiated Scotland (Nettleton et al. 2005; Winter 

et al. 2010). Worldwide analysis of 2,200 landslides and ID-thresholds report that antecedent 

periods are in the range of two days to five weeks (Guzzetti et al. 2008), and suggest that rain 

events of duration <48 h should be considered ‘triggering’ rain events given the temporal 

accuracy of most landslide inventory data is ~24 h as landslides often reported on the day of 

failure.  

Normalised rain variables are used in order to cope with the differences in rain intensity and 

accumulation between different climatic regions or within regions where there is likely to be 

differences due to orographic effects (Jakob & Weatherly 2003; Sidle & Ochiai 2013). 

Normalised thresholds represent the ratio between the landslide initiation value and the long 

term rainfall conditions in a location, for example the mean annual precipitation (MAP) 

(Cannon & Ellen 1985; Aleotti & Chowdhury 1999). The rainy day normal (RDN) is the 

average precipitation on days with rain (Wilson & Jayko 1997) and is a better indicator of 

𝐼 = 𝛼𝐷−𝛽  (2.3) 
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typical rain conditions, and thus for the extremes associated with landslides, as it reduces the 

effect of no-rain days (Guzzetti et al. 2007, 2008; Brunetti et al. 2010; Meyer et al. 2012). 

 

The arbitrary selection of ID-threshold restricts ease of comparison and repeatability of 

methods between study areas or research and hazard management communities. In addition, 

deterministic ID-thresholds are of little value for early warning or landslide hazard and risk 

analysis as they do not indicate the recurrence intervals of significant LRE or the landslide 

likelihood when ID-thresholds are exceeded (Brooks et al. 2004). In the past decade 

developments have therefore been focused on objective threshold selection techniques and 

probabilistic assessments.  

Guzzetti et al (2007) propose a ‘Bayesian inference’ model, which estimates a number of ID-

thresholds that loosely support the LRE point data cloud. The model is based on a binomial 

distribution for the combined chances of, (i) a storm with peak intensity I and duration D, (ii) 

consequential landslide failure, and (iii) that the landslide is observed and reported. ID-

thresholds are then selected which capture different percentiles of the LRE points, and the 

approach was used to determine a global ID-threshold using 2,200 landslides (Guzzetti et al. 

2008). Another percentile based approach is the ‘Frequentists’ method (Brunetti et al. 2010). 

First, the intensity and duration values of LRE points are log transformed and a line of best fit 

is approximated using the least square method. Then, parallel lines with the same slope are 

calculated in order to define thresholds which capture different percentiles of the LRE points 

Variable Description Units Cited in: 

𝑛 
Antecedence period. The preceding time period that 

each variable is calculated. 

hours or 

days 
 

𝐷𝑛 

Rain duration. The duration of rain within the 

antecedence period; often defined by the period of time 

where rain intensity >0.01 mm/h. 

hours or 

days 

(Onodera et al. 

1974; Caine 1980) 

𝐼𝑛 
Rainfall intensity. The mean or maximum rate of 

precipitation falling within the antecedence period. 
mm/h 

(Onodera et al. 

1974; Caine 1980) 

𝑉𝑛 
Rain accumulation. The sum of precipitation falling 

within the antecedence period. 
mm (Chleborad 2000) 

𝑁𝑉𝑛 

Normalised rain accumulation. The normalised sum of 

precipitation falling within the antecedence period; also 

denoted by 𝐸𝑛𝑜𝑟𝑚𝑛
. 

ratio (Aleotti 2004) 

𝐷𝑅𝑛 

Days with rain. The number of days with rain 

accumulation above a certain threshold (>0.01 mm) 

within the antecedence period. 

integer 
(Wilson & Jayko 

1997) 

Normalisation variables 

𝑅𝐷𝑁 
Rain day normal. The average daily precipitation 

accumulation on days with rain (A >0.01 mm).  
mm 

(Wilson & Jayko 

1997) 

𝑀𝐴𝑃 

Mean annual precipitation. The annual average 

precipitation accumulation for a given location obtained 

from the historical range of observations. 

mm (Aleotti 2004) 

 

Table 2.5. Rain variables used to determine landslide initiation thresholds. 
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or landslides (5%, 10%, 15% …100%). Figure 2.7 shows an approximation of the 10, 25 and 

75% (75% is also the best fit line) frequentist ID-thresholds using the data from Caine (1980). 

Peruccacci et al (2012) assessed the sensitivity of ‘frequentist’ ID-threshold coefficients 

(intercept and slope) by bootstrap sampling different proportions of 753 LRE, finding ≥75 LRE 

resulted in stable coefficient means and standard deviations in Umbria, Italy. Assuming that 

the catalogue of rainfall events is sufficiently complete for the study area, each of these methods 

state that the probability of landslide initiation due to periods of exceeding rainfall is less than 

the corresponding threshold exceedance probability (i.e. the cumulative distribution function). 

However, this assumption and reporting is somewhat misleading given that NRE are not 

explicitly considered and as rainfall is not the only factor which causes landslides and so a 

degree of uncertainty is inevitable. For example, Meyer et al (2012) propose annual landslide 

trigger frequencies for Norway based on the recurrence intervals of the 90% (lower limit) 50% 

(middle) and 10% (upper) limit ‘frequentist’ ID-thresholds, but these are defined using only 

the LRE. Gariano et al (2015) developed ID-thresholds using the frequentist method for 223 

LRE and 1250 NRE in the period 2002-2011 in Sicily, Italy. They then cross-validated each 

threshold and found that only the 7.5% percentile ID-threshold had the highest (76%) 

classification success rate, whilst the 50% percentile ID-threshold performed poorer (46%).  

The problem of defining a suitable threshold value is analogous to the problem of estimating 

the probability of landslide occurrence and choosing an acceptable probability value. 

Furthermore, thresholds which are associated to a time discrete probability of landslide 

occurrence are applicable to hazard risk assessment (Chung et al. 1999; Glade et al. 2005). In 

one approach, ID-thresholds are again drawn by the line of best fit through the LRE of different 

probability levels (5%, 10%...90%), but using the probability of landslide occurrence 

calculated by a logistic regression model of LRE and NRE dependent variable and their ID, 

AD or normalised equivalent values as independent variables (Chang et al. 2008; Frattini et al. 

2009; Giannecchini et al. 2016). In Seattle, Chleborad et al (2006) choose thresholds which 

maximize the conditional probability of landslide occurrence given different combinations of 

3 and 15 day antecedent rain accumulation, equivalent to those for 𝐴3 and 𝐴15 reported in 

Chleborad (2000). The probabilities are calculated and reported on a day-by-day basis using a 

daily time series (not using rain events) and range 2-10% between regional domains based on 

the distribution of the available rain-gauge network. Conditional probabilities of a similar range 

1-20%, were also found using LRE and NRE based analysis in Emilia-Romagna, Italy (Berti 

et al. 2012).  

Landslides thresholds which are derived using conditional probability are in essence an attempt 

to solve a binary classification problem, where the rainfall conditions that coincide with the 

occurrence of landslides (LRE = 1) are separated from the rain conditions that do not coincide 

with landslides (NRE = 0); with increased probability at increased separation. Receiver 

Operating Characteristic (ROC) is a suite of diagnostic tests to assess the performance of 

classification models, for instance: the classification success rate or accuracy is the proportion 

of LRE and NRE that are correctly classified (true positives and true negatives) to those that 

are incorrect (false positives and false negatives); and the True and False Positive Rate (TPR 

and FPR) are the proportions of LRE and NRE correctly classified by each thresholds value, 

respectively. Staley et al (2013) apply the ROC measure ‘threat-score’ in an exhaustive 

approach (all possible ID values) to select the ID-threshold which minimizes any false results 

and is equivalent to the greatest conditional probability. However in medicine, meteorology 
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and many other fields, the use of the most accurate threshold often results in low detection rates 

(e.g. of cancers or rare weather phenomena) and instead a low number of missed alarms (false 

negatives) is desired when the threshold is to be used in an operational system where missed 

alarms could result in fatalities or severe loss, such as, a landslide early warning system. 

Therefore, other ROC measures are used to select thresholds for instance, the ‘optimal point’ 

which finds the greatest ratio of the TPR (landslide detection) over FPR (false alarms) 

(Schisterman et al. 2005; Fawcett 2006; Perkins & Schisterman 2006b). However, these are 

yet to be applied to determine landslide thresholds. 

In summary, there are many different research studies and approaches which aim to determine 

objective and clear criteria to define landslides thresholds. Approaches which objectively select 

thresholds and report the probability of landslide occurrence are most applicable to landslide 

hazard and risk analysis. However, a major issue that is yet to be resolved is that threshold 

values, probabilities and their statistical significance are influenced by subjectivity in the 

criteria used to define each ‘rain event’ and effect on the proportion of LRE to NRE. There is 

little rationale or consistency between the adopted rain event criteria or for the number of events 

which are analysed. For studies which utilities rain gauge observations approaches include: 16 

LRE (no NRE) ranging from 1hr to 150 days preceding failure in Scotland (Winter et al. 2010); 

Meyer et al (2012) analyse 700 LRE (no NRE) which are the four-week period preceding each 

landslide Norway; Jakob & Weatherly (2003) use equal numbers (25) of LRE and NRE defined 

as the four-week period prior to landslides and as a random selection of four-week periods with 

similar accumulation 1980-2001, respectively; Søren et al (2014) analyse rain values from 14 

days before to 14 days after each landslide occurrence; Staley et al (2013) examine 43 LRE 

and 259 NRE which are defined between >8 h dry periods in a 16 month rain record (November 

2008-June 2009 and October 2009- June 2010); Giannecchini et al (2016) examine 71 LRE 

and 120 NRE defined using two intensity criteria, >20 mm/h in 2-3 h or 0.1-2mm/h in 100-120 

h, for the period 1950-2005; Berti et al (2012) define LRE and NRE by runs of days with 

positive rain accumulation (>0 mm) in the period 1939-2000; and others use criteria developed 

in Italy for minimum dry periods of > 48 h in the dry-season to > 96 h in the wet-season 

(Brunetti et al. 2010; Peruccacci et al. 2012; Gariano et al. 2015; Melillo et al. 2015; Piciullo 

et al. 2016). Similarly, for studies which use radar based rain observations event criteria range 

from > 1 h dry periods in the Central Pyrenees (Abancó et al. 2016) to > 24 h in Japan (Saito 

et al. 2010) and in the Italian Alps (Marra et al. 2014).  

A criterion (e.g., 24 h) may not adequately separate two distinct convective rain storms events, 

whereas a shorter period (e.g., 2 h) may unnecessarily split longer duration storms into separate 

events. In addition, for slopes which consist of mixed to fine grained materials the longer-term 

antecedent conditions (e.g., > 100 h) may be significant, whereas high permeability and coarse 

grained materials (e.g. volcanic deposits) have shorter response times (Aleotti & Chowdhury 

1999; Pareschi et al. 2000). As far as these authors are aware no study has compared and 

evaluated the influence of different event criteria on thresholds or conditional probabilities 

within and across different landslide prone environments. It is reasonable to assume that the 

least subjective, and therefore most accurate, approach involves using all of the available rain 

record data in a day-by-day time series analysis, retaining all rain record information, such as 

in Chleborad et al (2006) and Chleborad et al (2008). For application to hazard risk assessment 

or operational warning systems, when new landslides occur in a study area the data set changes 

and so the thresholds and probabilities should be recalculated (Glade et al. 2005).  
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One last caveat is related to source of the rain record information. In rain-gauge based 

assessments, a single rain record (and set of events) is associated to all of the landslides that 

occur within a single region or within spatial domains that are based on the distribution of 

available gauges (Chleborad 2000; Chleborad et al. 2006; Guzzetti et al. 2007; Brunetti et al. 

2010). These regions and domains are subject to the assumption of uniform rain or rain is 

interpolated between gauges which are often of low density and low elevation (Guzzetti et al. 

2007). Conversely, for assessments using remotely sensed rain data (i.e. satellite or radar) a 

unique site-specific-rain (SSR) series (or set of events) is created at each landslide location; 

with the exception of landslides occurring in close proximity to one another. As a result, 

threshold values selected using objective methods and using SSR data are likely to increase 

and the probabilities of landslide occurrence will reduce as the proportion LRE decreases with 

respect to NRE. Comparisons of thresholds derived using gauge and radar data note that 

significantly lower thresholds are obtained when using gauges (Marra et al. 2014; Abancó et 

al. 2016). However, probabilities are not reported and each study uses different criteria and 

quantities of LRE to NRE. These differences may also be attributed to the different data 

sampling point gauge observations and spatially averaged radar data (Austin 1987), although 

in many areas there is good agreement between gauge and radar observations (Cole & Moore 

2008; Villarini et al. 2008; Harrison et al. 2009). Remotely sensed, spatially continuous 

observations are beneficial to the study of landslide initiation as rainfall patterns vary in both 

space and time and are strongly affected by topography, particularly in mountainous terrain 

(Sidle & Ochiai 2013). Remote sensing data also provide self-consistency between the 

measurements used to develop thresholds and those with desirable features for operational use, 

such as short and long range forecasts (Borga et al. 2014). In order to apply SSR data in a day-

by-day analysis using all available rain data, such as in Chleborad et al (2006), thresholds and 

conditional probabilities of landslide occurrence must therefore be selected and expressed 

using normalised rain variables to allow the inter-comparison and analysis of the rain records 

from each landslide location. However, a thorough search of literature did not yield any such 

studies and this is therefore a gap in knowledge.  

 

2.2.6 Empirical Landslide Assessments on Infrastructure Networks 

Landslide susceptibility and initiation thresholds have been used to evaluate the landslide 

potential on infrastructure networks. In England, Freeborough et al (2016) assess the 

susceptibility of segments in the national rail network using a 500 m spatial buffer to evaluate 

the areas of adjacent susceptible ground as defined in the national landslide susceptibility 

model GeoSure (Foster et al. 2008). In South West England, network rail also operates a series 

of landslide warning thresholds to assess and monitor the condition of clay rich slope assets. 

These are for: wet conditions (in 24 h, >175 % average daily rainfall and SMD < 60 mm), dry 

to desiccated conditions (SMD 200 to > 250 mm). In Scotland, Winter et al (2010) examine 

the ID-thresholds of 16 landslides using Caines' (1980) method, reporting that the important 

rainfall durations and antecedence periods are likely in the range of 2 h to 12 days prior to 

landslide occurrence.  

Many landslide susceptibility assessments report that proximity to roads within the range of 50 

– 500 m is often one of the most significant explanatory variables to landslide susceptibility 

(Ayalew & Yamagishi 2005; Shahabi & Hashim 2015). However, this is likely attributed to  

the fact that most recorded landslides and inventories tend to have some bias toward events 
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with socio-economic impact – thus landslide are more likely to be recorded when they impact 

infrastructure  (Malamud et al. 2004; Guzzetti et al. 2006; Stanley & Kirschbaum 2017). In 

order to alleviate this bias, it is recommended that independent landslide assessments are 

conducted for the slopes adjacent to infrastructure networks. For example, Martinovic et al 

(2016) use a logistic regression model to assess the susceptibility of engineered slope assets on 

the Irish Rail network: each slope unit was pre-defined by the rail network operator and natural 

slopes were not included.  

 

2.2.7 Landslide hazard and risk 

In recent decades landslide hazard and risk assessment has become a major field of interest and 

scientific of research due to an increasing awareness for the socio-economic impacts of 

landslides due to increasing pressures from human development, urbanisation and climatic 

change (Aleotti & Chowdhury 1999; Glade et al. 2005; Van Westen et al. 2006). Varnes (1984) 

defines landslide risk as “the expected number of lives lost, persons injured, damage to 

property and disruption of economic activity due to a particular damaging phenomena for a 

given area and reference period”. In probabilistic hazard risk models (Grossi & Kunreuther 

2005; Kappes et al. 2012; Lee & Jones 2014), risk is quantified using Equation (2.4:  

where 𝑃 is a probability function expressing the spatio-temporal likelihood of a hazard within 

a specific period of time (e.g. per century, year or second) and 𝐼 is the hazard intensity, which 

includes information for the duration and magnitude of a hazard (e.g. landslide volume and 

velocity). 𝐸 is the exposure and spatio-temporal distribution of the elements at risk (i.e. hazard 

receptors, the net present value and location of a section of road, vehicles and people) in relation 

to the location of a hazard. Lastly, 𝑉 is the vulnerability characteristics or resilience of each 

element at risk (e.g. reinforced and well drained vs. aged and weathered slopes).  

The relative simplicity of the risk formula gives way to complexity when considering real 

world situations where lots of different aspects must be taken into account. Moreover, there are 

stark contrasts between the methods and techniques used at different scales of assessment. 

Hazard and risk assessments can broadly be categorised to those which are: site specific, 

deterministic and rely on physical-process based models; and those that are regional, 

empirically based and probabilistic models. For example, a site specific risk assessment 

generally requires comprehensive geophysical and geotechnical information for the susceptible 

slope hazard (e.g. of the slopes materials and their arrangement, shear surfaces, seasonal 

porewater pressures, vegetation, the rates precipitation and solar radiation), the section of road 

at risk (e.g. construction materials, design standard) in addition to detailed information for the 

hazard consequences (e.g. road asset value, repair cost, temporal user demands and cost of 

disruption). In contrast, for a regional scale assessments, covering areas of tens to hundreds of 

square kilometres, the analysis is generally based on the mapping and heuristic, statistical or 

probabilistic models of the factors associated to landslide occurrence (e.g. slope, elevation, 

vegetation cover and weather conditions), identifying the elements at risk and their basic 

properties (e.g. road geometry, classification and typical construction standard) and 

𝑅𝑖𝑠𝑘 =  ∑(𝑃𝐼𝐸𝑉) (2.4) 
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probabilistic functions for hazard intensity (e.g. landslide volume, velocity and deposition 

shape) and damage (e.g. relationship of landslide volume-velocity to road damage cost).  

As there are clear distinctions, and for ease of discussion, it is useful to further simplify the risk 

formula (𝑅𝑖𝑠𝑘 = 𝐻 × 𝐶) by combining the elements which are solely related to the physical 

properties of the hazard (H = Probability × Intensity) and those which determine the hazard 

consequences (C = Exposure × Vulnerability). For landslide risk assessment 

(𝐿𝑎𝑛𝑑𝑙𝑖𝑠𝑑𝑒 𝑅𝑖𝑠𝑘 = 𝐻 × 𝐶), the landslide hazard (𝐻) is the probability of landslide occurrence 

within a discrete period of time (𝑃𝑡) and space (𝑃𝑠). The methods used to define the temporal 

(𝑃𝑡) and spatial (𝑃𝑠) probabilities are discussed below. The landslide hazard (𝐻) may also 

include an approximation of landslide intensity (𝑃𝑖), such as the landslide magnitude, speed 

and duration of disruption. Pragmatically, and particularly for large scale studies on 

infrastructure networks, it is often necessary to simplify hazard intensity, for example, by 

assuming that if a landslide occurs it causes a complete or partial closure of a road segment and 

for a discrete period (e.g. 24 hours).  

As a first approximation, Crovelli (2000) considered the temporal probability of landslides as 

independent random events in Poisson (i.e. continuous-time) and Binomial (i.e. discrete-time) 

probability models. Each of the probabilities are derived by examining the recurrence interval 

between successive failures in historical landslide inventory. The approach assumes that 

landslides occur at a certain rate within a given area. For example, according to the landslide 

inventory obtained for the period 2004 to 2016 in Scotland, landslides occur at a rate of 6 

landslides per year. Other than this information, the temporal distribution of landslide 

occurrence is assumed to be a completely random process (e.g. they occur independently of 

seasonal climate or rainfall conditions). 

As an alternative approach to define 𝑃𝑡, one could use Bayes theorem and the conditional 

probability of landslide occurrence given the exceedance of a landslide initiation threshold.  

For landslides that are known to be initiated by periods of rain, the use of thresholds and their 

probabilities is desirable as rainfall provides a spatio-temporally distributed triggering 

mechanism (Glade et al. 2005; Pennington et al. 2014). In addition, this quantifies the 

uncertainty of landslide occurrence associated with each threshold (Berti et al. 2012). The 

probability of landslide occurrence (𝑝𝑇) is obtained by Equation (2.5, combining the 

probability of threshold occurrence (𝑝𝑇𝐻) with the conditional probability of landslide 

occurrence given threshold exceedance 𝑝(𝐿𝑆|𝑇𝐻): 

To assess landslide hazard these temporal probabilities require input for the spatial components 

of landslides. These capture the critical homogeneities in the landscape that contribute to 

increased landslide susceptibility. In the case of landslide initiation thresholds, this indicates 

the locations where rainfall can act as a landslide trigger (Iverson 2000). Landslide 

susceptibility is the spatial probability (𝑝𝑆) of landslide occurrence for a given unit of terrain 

(Brabb 1984). As discussed in section 2.2.4, landslide susceptibility attempts to answer ‘where’ 

landslides are expected to occur. Susceptibility may be approximated using a variety of 

different statistical and analytical techniques including, heuristic, bivariate (e.g. WoE) and 

multi-variate (e.g. ANN, LR and RF) models (Aleotti & Chowdhury 1999; Carrara et al. 2000; 

Pardeshi et al. 2013; Budimir et al. 2015; Segoni et al. 2015a).  

𝑝𝑇 =  𝑝𝑇𝐻 × 𝑝(𝐿𝑆|𝑇𝐻) (2.5) 
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Based on Guzzetti et al. (2005), the landslide hazard (𝐻) of a terrain unit (𝑖) may be expressed 

as: 

where 𝑝𝑇
𝑖
 is the temporal probability of landslide occurrence and 𝑝𝑆

𝑖
 is the landslide 

susceptibility on a terrain unit (𝑖). The landslide hazard Equation (2.6) is the combined spatio-

temporal probability of landslide occurrence. It is based on the simplifying assumptions that: 

(i) the probability of landslide occurrence and the spatial probability of landslide susceptibility 

are independent of one another; (ii) that future landslides will occur under the same rainfall 

conditions and in similar locations to those that produced landslides in the past; and (iii) that 

the average rate of landslide occurrence (per year or per decade) will remain constant with 

respect to rate observed in the historical landslide inventory. The main advantage of Equation 

(2.6) is that the resulting landslide hazard is based solely on and self-consistent with the 

empirical evidence gathered within a region. Although the availability and quality of landslide 

inventories is often poor, the simplicity of the model enables the landslide hazard to be 

regularly recalculated and updated as more data is obtained.  

The main limitations of Equation (2.6) are related to the possibility that the landslide triggering 

and susceptibility conditions may change within the time period considered in the hazard 

assessment. For landslide susceptibility, it is reasonable to assume that many of the significant 

explanatory variables, including, slope lithology, proximity to faults, slope angle, aspect, 

curvature and elevation, will remain relatively constant over periods of several years to 

multiple decades. For example, In Italy, Guzzetti et al (2005) note that the expected validity of 

landslide hazard assessments based on these geological and geomorphological variables is in 

the order of 50 years. Other variables that are known to influence landslide occurrence are 

subject to more frequent and seasonal change, for example, the availability of failure materials 

(or erosion), land use and vegetation cover. Similarly, as weather and climate changes, so do 

the rainfall conditions that are most likely to lead the initiation of landslides (Dixon et al. 2008; 

Dijkstra & Dixon 2010). It is therefore vital that model creators pay careful consideration to 

the selection and the uncertainties of each explanatory variable used to develop landslide 

hazard assessments. For instance, whilst using just a few of the most constant susceptibility 

variables is desirable (e.g. slope angle and lithology), this may overlook the more subtle and 

seasonal changes that occur in other factors, such as vegetation cover, and that condition the 

slope ready for failure (Pardeshi et al. 2013; Meyer et al. 2014). In any case, obtaining high 

resolution data and at regular intervals is not possible using current technology. An exception 

to this is remotely sensed precipitation data, such as from satellite or weather radar sensors 

(e.g. Hong et al. 2006). Hazard assessments that utilise thresholds based on such data are 

therefore a relatively new and important area of research.  

A literature search returned no examples the landslide hazard model outlined in Equation (2.6) 

and using the conditional probability of landslide occurrence given threshold exceedance. 

However, this is likely due to the fact that it is only in recent years that the conditional 

probability of landslide thresholds have been reported (Chleborad et al. 2008; Berti et al. 2012). 

Analogous approaches, using other methods to determine the temporal probability, include: 

combining categorical (i.e. low, medium and high) initiation thresholds and susceptibility in a 

qualitative 3×3 matrix (Berenguer et al. 2015); and multiplying the recurrence interval of 

𝐻𝑖 =  𝑝𝑇
𝑖

×  𝑝𝑆
𝑖
 (2.6) 
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‘frequentist’ ID-thresholds (i.e. low-90 %, medium-50 %, high-10 %) to landslide 

susceptibility (Meyer et al. 2015). 

The approach taken by Meyer et al (2015) is most relevant to this thesis as the hazard is 

calculated for individual road segments in Norway. This is achieved by using the intersection 

of the road network segments to river catchment units. The susceptibility and temporal 

probabilities are calculated using a grid. For each road segment, the landslide hazard is 

calculated as the landslide susceptibility multiplied by the threshold mean annual recurrence 

interval within each catchment. Where a network segment intersects multiple catchments, the 

landslide hazard is the sum of the susceptibilities multiplied by the maximum annual recurrence 

interval for the intersecting catchments. The critical limitation of this study is that the temporal 

probability value is the recurrence interval for the lower limit rain ID-threshold (i.e. the annual 

frequency of rainfall conditions above which 90% of past landslides have occurred). This value 

does not consider the days where landslides did not occur under the threshold conditions and 

as a result the recurrence interval is likely to be greater than that of the historical landslide 

inventory, thus the landslide hazard may be overestimated.  

2.2.8 Catastrophe models 

A catastrophe model is a computerised model designed to simulate the magnitude, intensity, 

and location of possible hazard events and to calculate their losses (Foote et al. 2017). First 

developed in the 1980s, catastrophe models have been applied to model a wide range of hazards 

including tropical cyclones, earthquakes, storm surges and flooding (Grossi & Kunreuther 

2005; Sampson et al. 2014; Foote et al. 2017). The models combine knowledge and techniques 

form multiple disciplines including, natural hazards (e.g. assessments of where, when and how 

a hazard occurs), engineering (e.g. the structural resilience of buildings) and socio-economics 

(e.g. the response of humans, financial markets or technological systems that are directly or 

indirectly effected by a hazard). As such, operational catastrophe models are extremely 

complex systems operated by large multidisciplinary teams of hazard, actuarial and computer 

scientists. The fundamental concepts and key components of a catastrophe model are discussed 

below for the level of understanding required in the context of the models implemented in this 

thesis. For a comprehensive review see Foote et al (2017). 

A catastrophe model, such as those implemented by insurance companies, can be considered 

as a computerised, practical implementation of the risk formula in Equation (2.4). As in 

Equation (2.4), catastrophe models have a typical modular structure. 

• The hazard module incorporates information of the probability and intensity of a 

hazard event within a given period of time. Each ‘event’ includes information for the 

relative likelihood and the characteristics of a single hazard occurrence, such as a 

landslides timing, location and magnitude. The ‘event set’ is a catalogue of multiple 

hazard events. At its simplest, the event set can be a catalogue of the events from the 

observed historical record. More commonly, the event set contains many thousands of 

events that are generated through random sampling (e.g. Monte Carlo simulation) of 

the hazard probabilities. These stochastic and simulated event sets are produced in 

order to extend the limited record of past events into the realm of what may plausibly 

occur. The stochastic element is usually based on the probability density function and 

the expected return periods of relevant phenomena, such as extreme rainfall or 

earthquakes.  
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• The exposure module. This module contains information for the objects being 

modelled. This typically takes the form of an exposure database that includes, the 

location of buildings and assets, their physical value, the value of a buildings contents, 

the value of business disruption, amongst others. In traditional risk assessment, the 

exposure module is comparable to the register of the elements at risk. For operational 

catastrophe models, the exposure model also includes information on the financial 

structures and obligations of the insurance policies for the modelled objects.  

• The vulnerability module represents the interface between hazard and exposure 

modules. It estimates the damage to buildings or assets given the characteristics of 

each hazard event. The components of the vulnerability module can range from 

relatively simple and deterministic operations for example, if there is a landslide then 

the road can be considered to be blocked, to complex damage functions such as those 

that relate building and contents damage to flood inundation depth (Grossi & 

Kunreuther 2005). 

• The financial module translates the expected physical damage and the monetary losses 

(hazard + exposure + vulnerability) to quantify the probability distribution of loss. 

These distributions include several useful metrics. Annual Average Loss (AAL): the 

average loss of all simulated events weighted by their annual probability of 

occurrence. ALL indicates the losses that are expected within a typical year. 

Occurrence Exceedance Probability (OEP) curve: the probability distribution that a 

loss will exceed a certain value within a year. OEP can be used to determine the 

likelihood of high losses due to rare and extreme events. Aggregate Exceedance 

Probability (AEP): the probability that the sum of event losses exceeds a certain 

amount within a year. These metrics are the primary output of the catastrophe model 

and combined are used to inform hazard and risk managers of the expected losses so 

that they can better apportion mitigative measures. 

The models can operate in two ways: deterministically, to approximate the loss of a particular 

or hypothetical hazard event; and probabilistically, to approximate the full range of potential 

hazard events and their losses. In the probabilistic case, the model is calculated for numerous 

iterations that often represent the passing of time (e.g. > 10,000 years) and potential events are 

created by repeated random sampling of the hazard probabilities. For each of the sampled 

events the expected losses (e.g. AAL and AEP) and the potential maximum loss (i.e. OEP) is 

evaluated and aggregated for a defined time period, for example the losses expected per year, 

per decade or for specific recurrence intervals (e.g.  the 1 in one-thousand-year loss).  

As with all models, catastrophe models provide an abstraction of real world processes and the 

suitability and interpretation of the model outputs is determined by the quality and availability 

of empirical data (i.e. the primary model input), the specialist assumptions and the scientific 

knowledge on which they are based. The models are calibrated so that the frequency or rate of 

hazard event occurrence (i.e. how many events occur within a given period) is consistent with 

the historical record or of a hazard modelling methodology. This enables modellers to evaluate 

how changes to individual or combinations model parameters, such as the number of buildings 

within an area or the duration of hazard disruptions, can influence the expected level of loss. 

This information can be used to implement mitigative measures and to enact management 

strategies to minimise hazard impacts.   
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2.3 Quantifying Impact on Transport Infrastructure Networks 

2.3.1 Introduction 

Section 2.3.1 presents a critical literature review regarding road transportation networks in the 

UK, key concepts within the fields of transport and network vulnerability research, and the 

methodologies used to calculate indirect impacts on road networks. 

2.3.3 Road Network Vulnerability  

Within the past two decades the concept and study of ‘network vulnerability’ has been of 

growing interest within the fields of complex networks and transportation research. These 

efforts are often cited as being in response to an increased awareness of the vulnerability of 

transport networks and the potential for catastrophic, far reaching socio-economic 

consequences following events such as the 1994 Northridge, California and 1995 Kobe, Japan 

earthquakes or the 2001 World Trade Centre, New York terrorist attacks (Boarnet 1996; 

Berdica 2002; Srinivasan 2002; Murray-Tuite & Mahmassani 2004). In this body of literature 

there are two prevailing definitions. First, and for studies which often focus on a specific threat, 

network vulnerability is equivalent to vulnerability in hazard risk assessment - a function of 

the probability and consequences of a threat (Berdica 2002). In the second definition, network 

vulnerability is related solely to the consequences of disruption irrespective of any specific 

threat or its likelihood (Taylor & D’Este 2007). The latter is based on the principle that multiple 

known and unknown threats exist and which may have a low, unknown or random occurrence 

probability, yet society may consider the consequences to be unacceptable and worthy of 

safeguarding against (Evans 1994; Haimes 2006). This definition is also analogous to the 

concept of ‘criticality’ and critical-link identification that is now commonplace in operational 

infrastructure management guidelines (HMEP 2012; Mott MacDonald & Patterson 2014).  

Table 2.6 lists several other concepts in transportation network research that are more or less 

related with network vulnerability. Reliability measures assess the probability of a network to 

provide a defined level of service or performance (Berdica 2002). Measures of network 

robustness and resilience compare the relative (un)reliability of two or more sections of 

transport network with greater robustness and resilience at sections which act to alleviate the 

impact of disruption (Chen & Miller-Hooks 2012; Dijkstra et al. 2014a). Reliability measures 

include: Travel Time Reliability is the likelihood of trip completion within a given time 

threshold (Bell & Iida 2003), Capacity Reliability is the likelihood that the network has 

sufficient capacity to accommodate the level of demand whilst limiting delay or congestion 

(Yang et al. 2001), and Connectivity Reliability considers the number of connections or 

accessibility between different locations by the probability that a link remains in the event of a 

disruption (Iida 1999; Chen et al. 2007).  
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Network reliability and network risk are similar in that they both focus on the probability of 

occurrence for a disruptive phenomenon. Reliability measures provide information relevant to 

managing the day-to-day performance of transportation networks and for relatively common 

disruption phenomena, for instance due to diurnal temporal demand fluctuations (e.g. rush 

hour) or non-severe, inclement weather conditions (Clark & Watling 2005; Bourne et al. 2008; 

Hooper et al. 2014). The short duration and regular occurrence of these disruptions enable 

relatively thorough assessments of their impacts for instance, by measuring and comparing the 

travel time or capacity on each road link under various situations.  

The limitation of network reliability is that it may obscure potential network problems in large 

scale national road networks where there is limited understanding and past experience for the 

impact of certain threats or for events with low and unknown probabilities of occurrence. It is 

often very impractical and financially infeasible to conduct detailed hazard risk assessment for 

each threat on large networks and therefore there is the requirement for methods to target 

resources in order to get the best value from them (Nicholson & Dalziell 2003). D’Este and 

Taylor (2001) highlighted the limitations of network reliability by considering low probability 

events on the Australian rail and road networks. Figure 2.8 shows their example for a 1 in 500-

year flood event on a section of coastal highway and rail where the measures for travel time 

and connectivity reliability remain high despite a significant 5,000 km detour which would 

likely cause significant but unknown socio-economic consequences. Thus, each of these 

concepts is closely related to one another but studies network vulnerability are most closely 

aligned with determining the consequences of failure. 

Studies of transport network vulnerability (and risk or reliability) follow a similar conceptual 

framework. The focus of this thesis and the majority of transport network vulnerability studies 

is on road networks (70%), yet the same basic principles hold for other transport networks such 

as rail, aviation, shipping or power and gas infrastructure (Wang et al. 2014). First, a geometric 

and topological model of the transport network is constructed in a graph of road links and 

junction nodes, often with details for link speed, capacity and turn restrictions. Second, a set of 

hypothetical network disruption events, scenarios or a disruption strategy is selected. Lastly, 

an impact measure of disruption is defined in order to evaluate the impact of each disruption 

event before and after its occurrence.  

The impact measure is critically dependent on the aim of the investigation, and this in turn 

influences the representation of the network, its users and demand. For instance, one may 

 Definition Cited in: 

Risk 
Risk is the network disruption probability of occurrence 

multiplied by its consequences. 

(Nicholson & 

Dalziell 2003) 

Reliability 
Reliability is the probability that a network will deliver a 

required level of serviceability or performance 

(D’Este & Taylor 

2001) 

Resilience 
Resilience is the networks ability to resist and recover from a 

disruption. 

(Dijkstra et al. 

2014a) 

Robustness 
Robustness is the extent to which a network can maintain the 

function for which it was originally designed 

(Sullivan et al. 

2010) 

 
Table 2.6. Concept definitions used in transportation and network research. 
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examine the shortest routes and uncongested travel times of emergency responders to certain 

network locations or consider the routes and congested travel times for groups of road users 

each with different transport modes, costs, trip origins and destinations. For each stage in this 

framework a variety of approaches and methods exists, each with varying levels of theoretical 

and practical trade-offs. In the following sections, each of these stages is discussed. 

 

 

2.3.4 Network Definition 

Transportation networks are geo-spatial structures located in Euclidean space. A network is 

comprised of road links and junction node elements that have relative spatial position and to 

other objects and facilities, such as, engineered assets, natural terrain and populations. As 

illustrated in Figure 2.9A, at the most basic level a transport network is represented by its 

topology in a 2-dimensional graph 𝐺(𝐿, 𝑁) formed by a set road links (𝐿) and a set of nodes 

(𝑁) in an adjacency matrix. Each row and column in the adjacency matrix describes each how 

road-link (𝐿𝑖) is (un)connected to each node (𝑁𝑖), for instance, the link (𝐿1) connects 𝑁1 to 𝑁2 

and is represented by a 1-digit in the (𝑥 = 1, 𝑦 = 2) and (𝑥 = 2, 𝑦 = 1) matrix positions, 

whereas a 0-digit indicates that no connection exists from 𝑁4 to 𝑁5. Figure 2.9A is a diagonally 

symmetric and un-weighted adjacency matrix therefore it assumes that each road-link can be 

traversed in either direction and at the same cost, which in this case, the cost value per link is 

1. The un-weighted adjacency matrix provides the basic topological information about the 

network such as: node degree, which is the number of link connections incident at each node 

(e.g. 𝑁1 = 3 and 𝑁5 = 1) and is given by the sum of each row or column in the matrix; or path 

costs which are the sum of the link weights between a series of nodes (e.g. 𝑁4 to 𝑁3 has a cost 

of 3 via 𝑁2 and 𝑁1, red arrow).  

The realism and detail of network topology models is increased using directional and weighted 

adjacency matrices. In Figure 2.9B, the black arrows indicate the permitted direction of travel 

on each link and the cost of traversing each link is now given by weighted links (𝑤𝑛). The link 

weights reflect the cost of traversing each link and range from simple ‘link-level’ measures of 

distance to (un)capacitated and dynamic weights calculated traffic flow algorithms. 

Figure 2.8. The diversionary route following a low probability flood event on the Eyre 

Highway, Australia after D’Este and Taylor (2001). 
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Both the un-weighted and weighted matrices are aspatial, but are readily represented in 

Euclidean space and maps by assigning coordinates to each node and link. The definition of 

transport network matrices and coordinates is rarely conducted by hand. Instead, the network 

topology and weights are derived from national road-highway mapping and GIS data products 

including OpenStreetMap (OSM) or the UK Ordnance Survey.  

 

2.3.5 Disruption Events 

Network vulnerability is the study of disruption events and their consequences. A disruption 

event is a unique set of conditions which have some disruptive effect on the network including: 

the time of occurrence and duration; its location and the link effected in the network; the 

physical effect it has on the weight of the disrupted road link, including complete or partial 

road-link failure; and the number of road-links that are disrupted simultaneously (and how) in 

the case of area covering and dispersed disruption events. The inclusion or exclusion of certain 

disruption events could lead to an incomplete picture of network vulnerability. Therefore, the 

approach used to determine disruption events is of critical importance and concern for 

researchers, transport mangers or network analysts whose goal is to identify all relevant 

network vulnerabilities (Murray-Tuite & Mahmassani 2004; Wang et al. 2014; Mattsson & 

Jenelius 2015). In the review by Murray et al (2008) three different disruption event selection 

methods were identified which are simulation-, strategy- and scenario-assessments.  

In simulation-assessment, the full extent of network vulnerability is assessed by exhaustive 

calculation of all possible disruption events. Simulation adheres to Taylor & D’Este (2007) 

definition of network vulnerability, which makes no a priori assumption for occurrence 

probability. The approach provides information for the full range of possible impacts which is 

used to rank and identify critical-links or events with unacceptable consequences that may not 

have been identified otherwise (Haimes 2006). However, simulation assessments are often 

unfeasible for all but small scale road networks and for studies which employ mathematically 

efficient impact measures such as the disrupted link length or increased path length between 

nodes in weighted graphs (e.g. in Figure 2.9B). This limitation is a combinatorial problem as 
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Figure 2.9. (A) Adjacency matrix and graph for an un-weighted and un-directed road graph. 

(B) A weighted and directional adjacency matrix and road graph. 
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the number of single link disruption scenarios (
𝑛
1

) is equal to the total number of links (𝑛) 

factorial: 

Therefore, the total number of disruption events is given by the sum of equation (2.7) for all 1, 

2, 3…𝑛 combinations. The total number of disruption events soon becomes intractable for even 

modest size networks. For instance, Matisziw & Murray (2009) note that there are 17 billion 

possible events in the 24 node 34 link undirected graph of the Ohio interstate highway network, 

and it would take approximately two years to calculate each of the 39,018 single road-link 

disruption events using a capacitated traffic model of Chicago’s urban road network (Wang et 

al. 2014). For capacitated impact models and measures, the number of disruption events is 

further increased by considering the potential for partial link closures or reduced serviceability 

(Sullivan et al. 2010). Most simulation-assessments are thus limited to all single link failures 

on, (i) national scale road networks using graph theoretical and link-level impact measures 

(D’Este & Taylor 2001; Murray-Tuite & Mahmassani 2004; Jenelius et al. 2006a; Jenelius 

2009), or (ii) using more computationally intensive, traffic models and system-operation 

impact measures in small scale and urban networks (Knoop et al. 2007; Sullivan et al. 2010). 

Therefore, the potential for compounding impacts due to simultaneous link disruption events 

is often overlooked. One possible solution suggested in Murray et al (2008), is to examine a 

representative number of simultaneous 1, 2, 3,… 𝑛 link failure disruption events in order to get 

a view for the range of potential impacts and network vulnerabilities. 

Strategy-assessment examines the vulnerability of networks in response to a coordinated 

strategies or sequences of attack (Murray et al. 2008), and are often described in terms of ‘game 

theory’. The general approach is to rank each network element using an initial measure of their 

importance such as the node or link degree (i.e. number connections), average traffic flow or 

their ‘betweeness centrality’, which is a measure for the number of paths that depend on a 

network element (Newman 2003). Then, the most important network elements are disrupted 

‘attacked’ individually or in sequence and the network impact is re-evaluated after each 

successive attack (Bell 2000; Murray-Tuite & Mahmassani 2004; Bell et al. 2008; Yi-Ming et 

al. 2009; Duan & Lu 2014). Conversely, one may disrupt network elements believed to be of 

low importance until only the critical network elements remain and a certain level of network 

serviceability is maintained. Strategic-assessment has proved beneficial to identify worst case 

scenarios and for the study of how varying network topologies (e.g. grids and hub-and-spoke) 

respond to identical attack strategies (Albert & Barabási 2002; Srinivasan 2002; Murray et al. 

2008; Wang et al. 2013; Mattsson & Jenelius 2015). Indeed, Jordan (2008) reported that the 

three London Underground stations targeted in the 7/7 2005 bombings were all within the top 

six most important targets identified using the betweeness measure. A potential disadvantage 

of this approach is that the not all disruption events are considered and these are themselves 

determined by the choice for different attack strategies which may be more or less relevant for 

networks exposed to different threats and in different environmental and socio-political 

settings.  

Scenario-assessment evaluates the network vulnerability by analyzing a finite number of 

disruption events. Limiting the number of disruption events is achieved by constraining the 

(
𝑛
1

) =  
𝑛!

(𝑛 − 1)!
 (2.7) 
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analysis to a particular threat or to a particular sub-section of the road network, enabling more 

computationally intensive impact measures and therefore more detailed vulnerability 

assessments (Murray et al. 2008).  

There are relatively few examples of scenario-assessment as the majority of literature concerns 

the development of suitable network models and impact measures (Wang et al. 2014). 

Nonetheless, hazard and risk analysis provide suitable conceptual frameworks and tools 

(Chapter 2.7) that can be applied in order to select disruption events and constrain network 

vulnerability assessment to specific threats. Examples include: link-level impact measures for 

single link disruption events on national road networks subject to earthquakes (Khademi et al. 

2015), severe wind storms (Nyberg & Johansson 2013) landslides (Meyer et al. 2015), sea-

level rise (Demirel et al. 2015) and urban flooding (Green et al. 2017); and system operation 

measures for urban road networks subject to flooding (Dawson et al. 2011; Pregnolato et al. 

2016). Alternatively, the scenario-assessments are constrained to disruption events which occur 

on a particular road link and the impact is constrained to the local diversionary links which 

form a sub-section of the larger network. For example, Dalziell & Nicholson (2001) assess 

disruption events due to snow, flooding, severe wind, earthquake and volcanic eruptions on the 

State Highway 1 ‘Desert Road’, New Zealand, whereas the impact of local traffic diversions 

due to landslide hazards are evaluated in the Swiss Alps by Voumard et al (2013) and in 

Scotland by Winter et al (2014). Scenario-assessments provide detailed understanding for the 

ramifications and of the ways in which particular threats interact with transport networks. 

However, as in strategic-assessment, a potential disadvantage is that network vulnerability is 

assessed only in relation to the disruption events identified allowing potential vulnerabilities to 

go unnoticed (Murray et al. 2008). Moreover, the relative impact and criticality of disrupted 

links is constrained to the type of events identified and, in the case of local diversion or sub-

networks, only for the links included in the network model.  

2.3.6 Network Impact Measures 

As indicated, in recent decades there has been increasing interest in network vulnerability from 

researchers within the fields of complex networks, transportation, and systems optimisation. 

As a result there are two distinct types of impact measure (Murray et al. 2008; Wang et al. 

2014; Mattsson & Jenelius 2015). First, there are ‘link-level’ measures which use static values 

of the level of transport demand, topological and spatial properties networks, such as, 

connectivity, shortest path distances and daily average traffic counts, calculated using abstract 

road graphs formed by weighted and un-weighted adjacency matrices. The second are ‘system-

operation’ impact measures. System-operation seek to measure impacts from the perspective 

of entire groups of transport users and are therefore based on the interactions that occur between 

factors related to network capacity and supply and the factors related to traffic demand and 

user cost.  

As described in detail below, both link-level and system-operation approaches include impact 

measures and different techniques to calculate additional travel time. Measures of additional 

travel time provide the most suitable network impact measure as, (1) additional travel time 

reflects the concerns of both transport users and operators, (ii) travel time is readily converted 

to economic losses by values for user generalized-cost, and (iii) travel time takes account of 

different speeds and demands allowing comparisons for the relative performance and efficiency 

of individual links and different networks with contrasting topologies and levels of demand 
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(Berdica et al. 2003; Scott et al. 2006; Qiang & Nagurney 2008; Tampère et al. 2008; DFT 

2014a). 

Link-level measures: 

Link-level measures include those which describe the relative criticality (importance) of 

individual network nodes and links based on their connectivity. The degree of a node (or link) 

is a measure for the number of connections it supports to other nodes within the network. For 

example, in well-connected urban grid networks, each node has relatively equal degree and 

number of connections to its neighbours. Conversely, for networks that have random or hub-

and-spoke topology (e.g. railways and supply chains) the hub node(s) have relatively high 

degree, and are therefore critical, as they offer the only connection point between otherwise 

unconnected nodes (Watts & Strogatz 1999; Albert & Barabási 2002; Newman 2003). Gamma 

index is a network-wide measure of connectivity, it is the ratio between the actual number of 

links between network nodes of the network and the total number of links when all nodes are 

completely connected to one another (Scott et al. 2006). Gamma index provides a measure to 

compare the relative connectivity of different networks ranging from 0 (no connections) to 1 

(fully connected).  

Many link-level measures are related to the number and the distance of paths (routes) between 

pairs of nodes. In un-weighted networks, the shortest-path is the least number sequence of links 

connecting two nodes. In weighted networks, the shortest-path is the link sequence with the 

minimum sum of link weights between nodes, such as the link lengths. Comparing the 

minimum, mean or maximum shortest-paths of different networks provides another indicator 

of overall network connectivity (Newman 2003). Betweeness centrality is a measure for the 

number of shortest-paths that utilize each link, thus indicating the relative importance of each 

link by the number of shortest-paths it supports (Albert & Barabási 2002; Mattsson & Jenelius 

2015). Cut-links, are road links which provide the only, therefore also the shortest, path to 

certain nodes. When a disruption event severs a cut-link, the node is no longer connected to or 

reachable from any other node within the network. Several authors note that cut-links and those 

featuring high Betweeness centrality are the most important links for maintaining connectivity 

in strategic-assessments of disruptions on urban road transport networks (Porta et al. 2006; 

Demšar et al. 2008; Duan & Lu 2014) and for scenario-assessments of urban flooding 

(Pregnolato et al. 2016). 

A great deal of research has been conducted for the identification and optimization of shortest-

paths (Pallottino & Scutell 1998). Some of the earliest and most notable contributions were 

those of efficient shortest-path algorithms by Dijkstra (1959), and their application by Garrison 

(1960) who examined link disruptions on the US interstate highway network which led to the 

largest increase in the shortest-path distances between pairs of major cities. For a vehicle 

travelling within an un-capacitated network (no other vehicles), one can infer a simple estimate 

of increased travel time by knowing the detour distance and the approximate speed of travel 

based on the free-flow speed (e.g. road speed limit). Therefore, in some cases, examining 

shortest-path distances with free-flow speeds provides a sufficient measure of network 

vulnerability. For instance, consider emergency responders, their primary concern is for 

network connectivity or ‘accessibility’ as they travel relatively unimpeded and regardless of 

other road users, congestion and costs of travel (Taylor & D’Este 2007). Therefore, the most 

vulnerable, conversely most critical, links are those where a disruption event causes a cut-link 
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or a detour that dramatically increases the travel distance and time between origins (e.g. police, 

fire or ambulance stations) and destinations (e.g. vulnerable populations, schools or hospitals).  

This approach has been applied to examine travel distance-time between urban centres in 

simulation-assessments of all single link disruption events in national road networks (D’Este 

& Taylor 2001; Taylor & D’Este 2007) and in scenario-assessments of road networks 

susceptible to earthquakes (Sohn et al. 2003; Peeta et al. 2010) and flooding (Sohn 2006). In 

Sweden, Nyberg & Johansson (2013) consider the accessibility of O-D pairs for emergency 

responders and elderly populations residences under road disruption events caused by felled 

trees during severe wind storms, and Green et al (2017) consider similar situations and develop 

contingency plans for emergency responders during flood events in the city of Leicester, UK. 

The additional travel time provides a holistic, system-operation based vulnerability measure 

(Murray et al. 2008; Wang et al. 2014; Mattsson & Jenelius 2015). For link-level assessments, 

these are based on the same shortest-path, free-flow speed and travel time calculations as 

above, but with additional information for traffic volume. Traffic volume is often represented 

by the sum or average traffic count measure on a link. 

In Norway, Meyer et al (2015) assessed network vulnerability to landslides using a measure of 

displaced traffic flow distance (vehicle km day-1), given by the shortest-path detour (km) 

connecting the start-end nodes of a disrupted link multiplied by its daily average traffic volume 

(vehicles day-1). As illustrated in Figure 2.10A, this approach may underestimate the additional 

travel time by assuming that detours only occur around the disrupted link (links a,d,e and c), 

whilst shorter routes may be available (link f). A similar approach and traffic displacement 

measure is adopted in single link simulation-assessment by Jenelius et al (2006), however, 

using the shortest-path distances of trips between population O-D zones derived from a national 

transport model in Sweden (Beser & Algers 2002); illustrated by the blue nodes in Figure 

2.10A. On busy links, traffic volumes are in the order of 10,000 to 35,000 vehicles per day but 

are much lower 500 – 2500 on the majority of links (Jenelius et al. 2006b; Meyer et al. 2015). 

For this reason, un-capacitated travel time is assumed using the function of distance and free-

flow speed, enabling the use of simpler and faster shortest-path algorithms (Dijkstra 1959), but 

irrespective of traffic volume, link capacity and the potential for congestion.  
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Though lacking a generally accepted formal definition, link capacity is a measure for the 

physical space available on a road link to accommodate vehicles, such as the width and number 

of lanes (DFT 1999). However, link capacity is also time dependent, as vehicle speed increases 

the capacity of a road link is reduced as a greater proportion of the link area is occupied per 

unit of time. Figure 2.10B shows the density-flow relationship for a single road link where: at 

low traffic density there is spare road capacity and traffic flow can adhere to the link free-flow 

speed; synchronized-flow occurs when the maximum number of vehicles are travelling at the 

free-flow speed and spare capacity is limited; and as traffic density increases, vehicle speed is 

reduced leading to travel delay and congestion on links (Ortuzar & Willumsen 2011). As a 

result, delay and congestion can develop in even low to moderate traffic flow conditions if 

there is limited or reduced road capacity (Berdica et al. 2003; Bourne et al. 2008; Notley et al. 

2008). Several authors have attempted to resolve this issue using link-level capacity measures 

in order to define the spare capacity on individual links and to sum these values across detour 

shortest-paths with other measures for: the link flow-density relationship, and the time needed 

to fully congest a link (Murray-Tuite & Mahmassani 2004; Taylor & D’Este 2007; Tampère et 

al. 2008; Knoop et al. 2012; Watling & Balijepalli 2012). However, empirical estimation of 

link capacity using point source traffic count data is non-trivial as link-level traffic flow and 

density is significantly affected by the traffic flow and capacity conditions on upstream and 

downstream links within a network (Minderhoud et al. 1997). In addition, for disruption events 

that displace a large proportion of traffic flow the detour shortest-path may lack sufficient spare 

capacity leading to widespread changes in route choice, traffic displacement and cascading 

congestion effects (Cascetta 2001; Knoop et al. 2008, 2012; DFT 2014b; Mattsson & Jenelius 

2015; Peeta et al. 2015). Un-capacitated link-level travel time impact measures may therefore 

underestimate additional travel time, cost and thus network vulnerability. 

 

System-operation measures: 

System-operation impact measures are based on time discretized model simulations of traffic 

flow in capacitated networks (Berdica 2002). Transport models are generally created in a four-

 

Figure 2.10. (A) Abstract road graph showing the link weights (a4, b2) and two methods for 

defining the shortest-path around a disrupted road link (red box). (B) A plot showing the road 

link traffic-flow relationship for capacitated network conditions. 
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step process: (i) trip generation determines the level of travel demand between O-D zones based 

on population demographics and social or economic factors; (ii) trip distribution portions the 

travel demand into distinctive O-D node trips within the network; (iii) mode choice allocates a 

proportion of O-D trips to specific modes of transport; and (iv) route assignment determines 

which path, therefore time and cost, is taken by each trip (Ortuzar & Willumsen 2011; Peeta et 

al. 2015). Ortuzar & Willumsen (2011) define these models as ‘a simplified representation of 

a part of the real-world system of interest, which focusses on certain elements considered 

important from a particular point of view’. Models are therefore both problem and perspective 

specific. For instance, the construction of rail link between two previously unconnected 

locations requires detailed assessment of the present and expected future trip demand, the 

proportion of trips that will utilize the new link, and how these new trips and routes will interact 

with the route choices and travel costs for all other modes of transport available between the 

locations (Burton 2010; DFT 2014a). In the case of transport network vulnerability studies, the 

primary aim is to provide network wide measures of additional travel time as disruption events 

represent time discrete and short duration road closures typically lasting ≤ 1 day, or daily values 

are summed for the duration of an event lasting one or more days (Voumard et al. 2013; Winter 

et al. 2014; Meyer et al. 2015). Therefore, it is assumed that disruption events necessitate a 

recalculation of mode choice and route assignment, but are short enough to have little effect on 

longer term trip generation and trip distribution (Berdica 2002; Murray et al. 2008; Wang et 

al. 2014; Mattsson & Jenelius 2015). Instead, transport demand, trip generation and trip 

distribution is based on predefined O-D matrices for each transport mode derived from a variety 

of sources including census, travel survey, traffic count or national traffic model data provided 

by national statistics bureaus and road authorities (Beser & Algers 2002; Murray-Tuite & 

Mahmassani 2004; Taylor & D’Este 2007; Kraan et al. 2008; ONS 2011a; DFT 2015b). A 

major benefit to the transport model approach is that simultaneous link disruption events are 

readily evaluated (Murray et al. 2008). Multi-modal modelling is in its relative infancy 

(Krajzewicz et al. 2012; Burgholzer et al. 2013; Wang et al. 2014), therefore most 

investigations focus on individual transport modes and the selection of suitable route 

assignment procedures. 

Real world traffic flow and its representation in modelled route assignment are each an attempt 

to optimize the equilibrium between transport utility over transport cost (Glaister & Graham 

2006; Bourne et al. 2008; Burton 2010). Wardrop & Whitehead (1952) propose two principle 

conditions that formalize the notion of equilibrium within road transportation networks. First, 

‘user equilibrium’ (UE) states that drivers act in a ‘selfish’ manner selecting a path through the 

network that minimizes their own personal cost of travel. UE is generally accepted as the most 

appropriate principle to model the day-to-day behaviour of road users in capacitated and 

congested networks (Ortuzar & Willumsen 2011; Peeta et al. 2015). At UE conditions, traffic 

flow is arranged in such a way that no individual vehicle can reduce its own travel cost by 

altering its path or route, thus capturing any cascading congestion effect due displaced traffic. 

Moreover, although a complete UE state is unlikely to arise in reality due to aleatory 

uncertainties, including human behaviour, weather or other factors effecting road capacity, UE 

models provide a ‘best case’ user response to disruption events and therefore provide an 

approximate minimum estimate of additional travel time for vulnerability studies (Berdica et 

al. 2003; Scott et al. 2006; Knoop et al. 2012; Wang et al. 2014; Mattsson & Jenelius 2015). 

Wardrop & Whitehead's (1952) second principle is ‘system optimal’ equilibrium (SOE), stating 

that drivers act cooperatively in order to minimize the system wide travel time at the expense 
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of individual efficiency, arising in organized traffic flows such as autonomous vehicle, rail and 

urban metro transport systems. SOE assignments can be applied in order to realise the potential 

benefits of managed traffic flow, including, SOE conditions for lowering transport greenhouse 

gas emissions (Nagurney et al. 2010).  

To achieve UE conditions, models follow an iterative procedure whereby the O-D trip paths 

and link weights are calculated using a shortest path algorithm, such as Dijkstra's (1959), and 

these are then updated and recalculated in successive iterations until no further decreases in 

trip travel times are achieved. Additional travel time is defined as the increase in UE travel 

time between the un-disrupted and disrupted network (Berdica et al. 2003; Scott et al. 2006; 

Murray et al. 2008; Wang et al. 2014; Mattsson & Jenelius 2015). There are several variations 

of UE assignment relating to the technical aspects of different traffic models, including, the 

representation of time, spatial resolution and path uncertainty. These can be broadly 

categorized according to increasing model complexity and required computation time as 

follows.  

Macro-simulation UE models are computationally efficient as they formulate the traffic flow-

density relationship using aggregated components of vehicle quantities on links, and are 

comparable to the modelling of fluid flows. Moreover, these models are temporally discretized 

by a single time-step for the model period, typically 24 hours, and the vehicle paths, link 

weights and costs are only updated after each successive iteration. As a result, additional travel 

time delay due to congestion which spills onto multiple links may be underestimated (Berdica 

et al. 2003; Knoop et al. 2007, 2008). Macro-simulation UE models have been used to assess 

network vulnerability on: conceptual road networks (Scott et al. 2006), national road networks 

(Dalziell & Nicholson 2001; Jenelius et al. 2006a; Kraan et al. 2008; Erath et al. 2010), urban 

scale networks (Berdica et al. 2003; Berdica & Mattsson 2007; Issacharoff et al. 2008; Sullivan 

et al. 2010; Pregnolato et al. 2016) and for individual links with specified diversions (Tampère 

et al. 2008; Winter et al. 2014).  

In meso and micro-simulation models, the link flow-density relationship is calculated for 

individual vehicles and the vehicle paths, link weights and costs are updated periodically at 

multiple time-steps within each iteration. Meso-simulations allow for aggregated and efficient 

computation of vehicles passing link junctions and intersections whereas in micro-simulation 

models, these are modelled explicitly, including, traffic control signals and turning priorities. 

Link congestion is taken into account by the regular updating of travel paths and costs (Berdica 

et al. 2003; Peeta et al. 2015). Given the increased number of computations, these models are 

typically created for periods of peak demand, lasting 1-12 hours, and with time-step intervals 

in the order of 1 second to 10 minutes (Ortuzar & Willumsen 2011; Krajzewicz et al. 2012). 

Such models are sub-categorized according to the information used to update vehicle paths at 

each time-step. In Dynamic User Equilibrium (DUE), vehicle paths are updated according to 

the link weights calculated at each time-step. Therefore, in DUE, road users have perfect 

knowledge of the network conditions at each time-step, degrading between time-steps, and is 

analogous to modern in-car navigation systems and intelligent-transport-systems which inform 

drivers of the shortest route according to network congestion (Burghout et al. 2006; Knoop et 

al. 2007; Burgholzer et al. 2013). In Stochastic User Equilibrium, vehicle paths are updated at 

each time-step according to link weights based on probability distribution in order to account 

for driver uncertainty of network conditions, for instance, high uncertainty during sudden 
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disruption events caused by terrorism (Murray-Tuite & Fei 2010; Mattsson & Jenelius 2015) 

or urban flooding (Dawson et al. 2011; Lu & Peng 2011).  

Berdica et al (2003) compare macro, meso and micro DUE models for simulation-assessment 

of single link disruption events in a small urban network and varying levels of traffic demand. 

Berdica et al (2003) note that the impact disruption events varies significantly according to 

model used. Whilst computational efficiencies are achieved through macro-scale DUE models, 

the resulting levels of disruption are found to be higher in the meso and micro models due to 

increased traffic queuing, flow displacement and spillback (congestion) onto other links. 

Knoop et al (2008) conduct similar assessments evaluating the effect on travel times calculated 

by DUE micro-simulations with fixed or flexible-route-choices and spillback or non-spillback 

conditions in the city of Rotterdam, Netherlands. With fixed-route-choice, spillback leads to a 

6.6 factor increase in travel times compared to the non-spillback model, whereas with flexible-

route-choice, the increase due to spillback is only 2.3 times greater than in the non-spillback 

model. Consequently, most network vulnerability studies employ meso and micro-simulation 

DUE models which include consideration for flexible route choice and congestion, including 

for disruption events on individual links with specified diversions (Voumard et al. 2013) and 

for link disruptions in urban networks (Burghout et al. 2006; Knoop et al. 2007; Qiang & 

Nagurney 2008; Nagurney et al. 2010; Sullivan et al. 2010; Burgholzer et al. 2013). However, 

these are yet to be applied to assess impacts and network vulnerability in larger scale, national 

road transport networks.  

 

2.4 Summary of the Literature Review and Research Gaps 

The literature review has provided an in-depth discussion of the issues and present level of 

understanding of landslide activity in the UK, landslide hazard and risk analysis, and evaluating 

the indirect impact of landslides on road transport networks. The key findings and research 

gaps are summarised below. 

The literature review began by considering the processes and distribution of landslide activity 

in the UK and the issues they cause on transportation infrastructure, finding that: 

• The direct and indirect impact of landslides represent significant economic losses that 

are in the range of tens of thousands to tens of millions of pounds per single event. For 

several high-profile events in recent years, the estimated economic loss due to road 

and rail transport disruption has far exceeded those caused by direct physical damage. 

These impacts therefore represent a significant proportion of total hazard risk which 

is largely unaccounted for in state-of-the-art hazard risk assessment. In addition, 

identifying the critical network segments where the potential for indirect impact is 

most severe is therefore a strategic priority for the national governments in Scotland 

and the UK.  

• A high proportion of the UK’s strategic transportation networks are situated in 

locations considered to be of heightened landslide susceptibility. In Scotland, and 

other upland regions, the threat of landslides effecting road networks is particularly 

severe as the availability of alternative transport routes and modes is relatively limited. 

Shallow translational landslides and debris flows (hereafter ‘landslides’) are the 

dominant failure mechanisms these regions. 
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• Most of the reported landslides have occurred following periods of prolonged or 

intense rainfall and in locations that feature landscape characteristics that are known 

to be associated with heightened landslide susceptibility.  

• The literature review has identified several empirical analysis techniques that can be 

applied to quantify and model the landslide potential at scales relevant for national 

infrastructure management. These include landslide susceptibility modelling and 

threshold analysis. Using these techniques, it is possible to develop a modelling 

framework that can be used to systematically evaluate the present-day landslide 

hazard, and the risk of indirect impacts due to transport network disruption.  

The methods used to evaluate landslide hazard were investigated in detail. It was found that:  

• Risk assessment provides a suitable framework to evaluate the combined effect of 

landslide hazard and impacts on transport networks. 

• Physically-based-models (PBMs) provide detailed hazard analysis based on the 

modelling of physical processes and with specific parameter values, including, slope 

angle, the geotechnical properties of soils and the location of potential shearing 

surfaces. However, PBMs require large quantities of high resolution and detailed data 

that are generally unavailable at scales applicable to national scale infrastructure 

networks.  

• Logistic regression has been identified as a suitable method to model landslide 

susceptibility. The most significant input variables are for the slope: elevation, angle, 

aspect, curvature, lithology, drainage and land-use. The use of hydrological terrain 

units, including hillslopes and gullies, and slope roughness indices has proven 

beneficial for the identification of debris flow deposits in other fields, but are yet to be 

applied for landslide susceptibility assessment.  

• Landslide initiation thresholds can be used to provide the conditional probability of 

landslide occurrence for various sequences of triggering and antecedent rainfall 

conditions. Nonetheless, current thresholds are influenced by the subjective selection 

of rain event criteria, the number of rain events and the use of selection techniques 

that do not consider non-landslide conditions. As a result, threshold values may be 

biased and the reported probabilities do not adhere to the assumption of uniformity in 

hazard risk assessment models.  

• To be of use, initiation thresholds must be derived using rainfall records characteristic 

of the conditions at each landslide site and the effect of record length must be 

evaluated.  

• For a landslide risk assessment, the landslide hazard can be determined by combining 

the landslide susceptibility and the initiation thresholds to produce a spatio-temporal 

probability of landslide occurrence. This technique is applicable at scales spanning 

tens to hundreds of square kilometers, and thus is suited to assessments of large 

infrastructure networks.  

The methods used to quantify network impacts were investigated, focussing on conceptual 

models and techniques used to evaluate the effect of disruptions on road transport networks. 

It was found that:  

• Studies of network and transport vulnerability offer suitable conceptual frameworks 

to evaluate transport impacts. Whilst most studies consider the topological weaknesses 

of networks, scenario-assessments are focused on specific hazard and disruption 

events are therefore applicable to studies of landslides on transport networks. 
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• In transport planning and appraisal, the economic outcomes of changes to 

transportation supply or demand are evaluated by combining measures of additional 

travel time with monetary values of transport user generalized-cost.  

• Link-level impact measures indicate the relative importance of individual links and 

nodes based on their level of connectivity and position within the network. Link-level 

calculations of additional travel time are applicable for un-capacitated travel 

conditions.  

• More realistic, system-operation impact measures of additional travel are calculated 

using dynamic user equilibrium (DUE) traffic flow models. These models consider 

the interactions between link capacity, user demand and route choice which have been 

shown to have a large influence on system wide travel times in urban road networks. 

Based on the above assessment of the literature review and the research gaps identified the 

proposed approach is to: 

• Develop and apply a logistic regression analysis to identify the terrain characteristics 

associate with increased landslide activity and to model the landslide susceptibility of 

hillslopes adjacent to the highway network. 

• Develop and apply a dynamic user equilibrium traffic simulation model to calculate 

the indirect impact of network disruptions.  

• Develop landslide initiation thresholds using normalised radar rainfall data that 

characterize the rainfall conditions associated with landslide occurrence and to 

estimate their likelihood.  

• Develop a catastrophe model to evaluate the risk due to indirect impact of landslide 

on traffic. The hazard module will be driven by landslide hazard derived from the 

combination of the results of the landslide susceptibility and initiation threshold 

assessments.  
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Chapter 3 Methodology 

 

3.1 Introduction 

3.1.1 Overview and justification of the method 

The aim of this thesis is to develop a method to systematically quantify and evaluate the indirect 

impact of landslide hazards on a national highway network. To achieve this aim A literature 

review was conducted to evaluate the present state of knowledge (Chapter 2) and to inform the 

development of a methodology to: evaluate the spatial distribution and susceptibility (or 

proneness) of the terrain to potential landslide hazards; to quantify the rainfall conditions, and 

their likelihood, that are most commonly associated with landslide occurrence; to develop a 

model that can calculate the impact of landslides on road transportation at the national scale 

(i.e. the objectives in section 1.2). These constitute three components of novel research 

conducted for this thesis (Chapters 3.2, 3.3 and 3.4). They are combined to produce a fourth 

component, that is, to demonstrate a catastrophe model that estimates the potential losses due 

to landslide travel disruption (Chapter 3.5). Conceptually, it is convenient to consider how 

these four components of research and their methods fit together within the context of the 

simplified hazard risk formula (e.g. 𝐻𝑎𝑧𝑎𝑟𝑑 ×  𝐶𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 =  𝑅𝑖𝑠𝑘). First, the landslide 

hazard is determined by combining landslide susceptibility with the initiation thresholds (i.e. 

section 3.2 and section 3.3). Second, the consequence is determined using the traffic simulation 

model (i.e. section 3.4). Third, the hazard and consequence are combined to evaluate the 

landslide risk (i.e. section 3.5). Figure 3.1 is a schematic illustrating how each of these 

components are linked together.  Figure 3.1 schematic shows the raw and primary data sources 

used in the study and how these are processed and analysed, the arrows and boxes indicate the 

transition and flow of data through each component of the thesis.  
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Figure 3.1. Conceptual framework of the method used.  
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To assess landslide susceptibility (Chapter 3.2), the general approach is to use logistic 

regression to model the landslide susceptibility of areas adjacent to a highway network. 

Logistic regression was identified as suitable method in the literature review (Chapter 2.2.4). 

The modelling approach enables the evaluation of each explanatory variables contribution to 

increased or decreased landslide susceptibility, such as the slope angle, elevation, aspect, 

superficial lithology and proximity to roads. This information makes it possible to identify the 

most active landslide processes and to map the relative landslide potential (i.e. spatial 

probability) in different locations and at scales relevant to national infrastructure networks. 

Though logistic regression is widely used for landslide susceptibility modelling, several 

research gaps were identified that need to be addressed to achieve the aim and objectives of 

this thesis.  

• First, a selection of suitable explanatory variables need to be identified for the study 

area. Although a list of relevant candidate variables is provided in the review of 

previous studies (Chapter 2.2.4), this study requires an independent evaluation to 

account for the availability and quality of input data, the landslide mechanisms, and 

the landscape and terrain characteristics that are unique within each study area.  

• Second, the review of literature identified that the Melton Ratio terrain roughness 

metric has been successfully applied in hydrological investigations to differentiate 

hillslopes and gullies that are likely (or unlikely) to produce landslides with flow 

components, such as debris flows (Wilford et al. 2004; Welsh & Davies 2011). Despite 

this, the metric and hillslope and gully terrain units are yet to be applied in landslide 

susceptibility modelling. As there are multiple size criteria that may be used to define 

these terrain units, the performance of susceptibility models that use these different 

units needs to be systematically investigated.  

• Third, most landslide inventories are known to exhibit recording biases since most 

landslides are reported when they have had some interaction with the built 

environment, such as on roads (Malamud et al. 2004; Kirschbaum et al. 2015). To 

limit the influence of this bias, the models are developed using only the terrain units 

and landslide records that are found adjacent to the road network. This approach 

improves the reliability and relevance of the model in the areas of interest (i.e. on the 

road network). However, this is at the expense of increased uncertainty if the model 

were to be applied in other areas, such as on new roads or hillslopes away from the 

road network.  

In section 3.3, a set of empirical landslide initiation thresholds are developed. The literature 

review established that for landscapes where rainfall is a dominant factor, and other 

contributing factors such as land use remain relatively constant, it is reasonable to use empirical 

thresholds, and the conditional probability of threshold-landslide occurrence, to quantify the 

rainfall conditions in which the hydro-geological responses are sufficient to result in the 

triggering of a landslide (Caine 1980; Van Asch et al. 1999; Waltham & Dixon 2000; 

Pennington et al. 2014). Empirical and probabilistic rainfall thresholds have been shown to be 

of particular practical use for: examining the hydrological processes and conditions conducive 

to landslide initiation (Brunetti et al. 2010; Segoni et al. 2014b; Abancó et al. 2016); 

determining the likelihood and return period of landslide triggering conditions (Chleborad et 

al. 2008; Berti et al. 2012); and early warning systems that consider forecast weather conditions 

several days in to the future (Martelloni et al. 2013; Segoni et al. 2015a).  
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In recent decades several different threshold selection techniques have been developed 

including methods to objectively choose the thresholds that provide the highest predictive 

accuracy (Jakob & Weatherly 2003; Staley et al. 2013; Segoni et al. 2014b, 2015a; 

Giannecchini et al. 2016; Piciullo et al. 2016). Based on a review of past studies (Chapter 2.2.5) 

it is evident that the threshold values and their probabilities are likely to be influenced by 

several factors of uncertainty that restrict their wider use, such as in landslide hazard 

assessments and in early warning systems (Guzzetti et al. 2008; Kirschbaum et al. 2012). These 

factors are addressed in this thesis:  

• First, many thresholds are derived by analyzing the rain events that co-occur or do not 

occur with landslides. However, there is no common or agreed criteria to define these 

events and there is little consistency between the approaches adopted in the literature 

(Chapter 2.2.5). Alternatively, thresholds may be based on an analysis of time series 

data to avert this issue by including all available rain information at the expense of 

greater numbers of time periods without landslides (Chleborad et al. 2006, 2008). 

• Consequently, the second factor is related to the type and length of the rain record 

used. Increasingly, thresholds are derived using remotely sensed data, including by 

high resolution satellite (Hong et al. 2006; Kirschbaum et al. 2012) and weather radar 

systems (Winter et al. 2010; Marra et al. 2014; Abancó et al. 2016). These spatially 

continuous observations provide a site-specific-rain record (SSR) at each landslide 

location. This is beneficial in the study of landslide initiation thresholds due to high 

spatial variability of rainfall, particularly in mountainous terrain (Sidle & Ochiai 

2013). The use and length of these SSR can lead to a significant increase in the number 

of days without landslides and so places an additional influence on threshold selection, 

particularly, the sensitivity of threshold values and their occurrence probabilities. 

These effects are yet to be systematically evaluated for different threshold selection 

techniques. 

In section 3.3, thresholds are derived using radar SSR time series, as applied to gauge records 

and by Chleborad et al (2008). A receiver operating characteristic (ROC) analysis is used to 

select two types of threshold. First, ‘threat score’ (TS) is used to select the threshold that offers 

the greatest level of predictive accuracy and minimizes false results (Staley et al. 2013). 

Second, the ‘optimal point’ (OP) threshold is selected to provide the highest rate of landslide 

detection for the lowest number of false results. OP is yet to be applied to landslides, but is 

common in other disciplines for the detection of rare phenomena, including disease and signal 

processing (Schisterman et al. 2005; Perkins & Schisterman 2006a; Rota & Antolini 2014). 

For each threshold, the effect of varying the SSR record length is systematically evaluated 

using 10 different record lengths representative of those implemented in past studies. The 

coefficient of variance quantifies the relative sensitivity of the thresholds. The adopted 

approach is the first to demonstrate the threshold sensitivity in relation to changes in the rain 

records used. 

Section 3.4 of the methods chapter details the development of a traffic model that can calculate 

the indirect impact of network disruptions. The rationale and benefits of such models are 

discussed in the literature review (Chapter 2.3) and summarised here. Road transport networks 

are continuously exposed to weather driven hazards including landslides (Jaroszweski et al. 

2010). The economic impact of these hazards is accrued by direct physical damage or by 

indirect impacts and disruptions to network operation, such as travel delays, costlier routes and 

reduced accessibility to vital services. Due to the indirect impacts, the effect of landslide 
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hazards and population exposure is distributed far beyond the hazard’s physical location. A 

poignant example is the estimated £2.6M regional economic losses incurred in the West 

Midlands, UK due to the 40 hr closure on the M1 motorway following a storm flood event in 

June 2007 (Chatterton et al. 2011; Dawson et al. 2016b). Critical network segments are those 

characterised by a high consequence of failure generally irrespective of the likelihood of failure 

(Kaplan et al. 1981; Murray et al. 2008). The identification of critical segments is integrated 

within network management guidelines (HMEP 2012; Mott MacDonald & Patterson 2014). 

However, current assessments are limited to static indicators of, for example, road segment 

classification and the long-term average traffic flow (Jenelius et al. 2006b; Sullivan et al. 2010; 

Nyberg & Johansson 2013). These assessments do not capture the traffic flow element of 

transport systems. Consequently, they fail to capture the potential for cascading and 

propagating disruption effects where network serviceability is reduced across a wide area, for 

instance by increasing congestion and travel time on alternative routes (Knoop et al. 2008; 

Mattsson & Jenelius 2015). At present, there is a lack of analysis techniques and models that 

can be used to pre-emptively identify the network segments (or the hazard events) that have 

the potential to generate high indirect impacts on national scale infrastructure. This was 

identified as a key priority in the 2017 UK Climate Change Risk Assessment (Krebs 2017).  

To evaluate the indirect impact of landslide hazards, a road network traffic model at peak flow 

conditions is developed. The model is developed using Simulation of Urban Mobility (SUMO), 

an open source, meso-microscopic and time continuous traffic simulation software package 

developed by the German Aerospace Center - Institute of Transportation Systems (Krajzewicz 

et al. 2012). The SUMO software is executed from the command line and includes all 

applications for running the simulation and handling input and output files. The online 

documentation provides comprehensive guidance on developing traffic simulations using 

SUMO. In addition, the approach follows guidance set out in the UK Department of Transport 

website Transport Analysis Guidelines ‘WebTAG’ (DFT 2014a). The development of the 

SUMO model follows: i) to define the road transport network, ii) to generate the network 

demand using Origin-Destination matrices, iii) to develop a road transport model to simulate 

the network traffic flows, iv) create a set of network disruption events, and v) to measure the 

impact of each event on the road transport system.  

Section 3.5 details the steps taken to produce a prototype catastrophe. As set out in the literature 

review (Chapter 2.2.8), catastrophe models (also termed ‘hazard risk models’) are primarily 

used within the insurance industry to produce probabilistic assessments of natural hazard risk 

and to estimate potential losses. Though they have been applied to assess risk for a number of 

different hazards, such as property damage from flooding and hurricanes, this is a first 

application of the approach to evaluate the indirect impact of landslides (a hazard-network 

catastrophe model). The absence of such models is primarily due to: one, the challenges 

associated to assessing the level of the landslide hazard across large and expansive 

infrastructure networks; and two, the lack of available techniques that can be used to calculate 

indirect impacts for a large number of potential hazard events.  

The catastrophe model developed here illustrates how these issues may be addressed and 

provides a basic modelling framework for future studies. The landslide hazard is determined 

by combining the landslide susceptibility and the initiation threshold assessments (Chapters 

3.2 and 3.3). The landslide hazard represents the spatio-temporal probability of landslide 

occurrence as defined by equation 2.6 (Guzzetti et al. 2005) and is used to generate many 
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stochastic events (the event set). The landslide hazard used to generate the event set is based 

on the analysis of landslides for the period 2004 to 2016, and so the modelled events can be 

interpreted as producing multiple different realisations of the conditions that occurred in this 

period. Based on the premise that the conditions that caused landslides are unlikely to vary 

significantly in the short term, the event set can be construed as a list of potential landslide 

scenarios that may occur in the future. The model then uses the traffic model (Chapter 3.4) to 

evaluate the economic impact of each of event by its disruption to traffic.  

3.1.2 Case study area 

The aim and objectives of this thesis are to quantify the indirect impact of landslide hazards on 

a national scale highway network. As established in the literature review and the text above, 

landslide susceptibility modelling and initiation thresholds are to be used to evaluate and assess 

the landslide hazard on a large scale and expansive highway infrastructure network. These 

empirical methods utilise historical records and observations to improve understanding of the 

landslide processes involved in the past and these are then used to inform expectations for the 

future. Though empirical models provide insight and knowledge of the fundamental landslide 

mechanisms and processes, and that are applicable in other landslide prone regions around the 

world, the models are specific to the local conditions on which they are based (Carrara et al. 

1995; Chau & Chan 2005; Glade et al. 2005; van Westen et al. 2006). Consequently, a case 

study area with data of past landslide occurrences is required to develop and validate these 

model’s.  

Suitable case study areas will feature the following basic characteristics: 

• Detailed observations and data of historic landslide activity including, time of 

occurrence, location, and the landslide mechanisms involved.  

• High resolution and timely data for landslide susceptibility and initiation variables, 

such as, digital elevation models, superficial and bedrock geology, and precipitation. 

• A highway road network and sufficient origin-destination and traffic counting data to 

construct and validate a traffic simulation model.  

In addition to fulfilling these criteria, pragmatically, Scotland was selected as a case study as 

it offers a unique research setting and several methodological advantages.  

First, the impact of landslides in Scotland is primarily due to a limited number of landslide 

mechanism and this constrains the complexity of the study and limits the number and variety 

of analyses required. The study area is characterized by post-glacial upland and mountainous 

terrain which features many incised valleys and steep slopes. In high elevations (≤ 1346 m asl), 

escarpments expose the bedrock and the slopes are overlain by unconsolidated regolith, glacial 

and post-glacial deposits which are generally 1 - 5 m bgl in depth but can reach depths of up to 

15 m bgl in hollows and other depressions (Ballantyne 1986; 2002; Trewin 2002). In such 

shallow, coarse grained materials there is often a rapid response to rainfall, while finer 

materials have lower permeabilities or have deeper slip surfaces, which may see delays 

between ‘triggering’ rain conditions and landslide occurrence of several days or more (Iverson 

et al. 1997; Stoffel et al. 2014). As a consequence, although there is evidence of complex 

rotational landslides and rock falls or topples such as at Trotternish on Skye (Ballantyne et al. 

2014), most of the reported landslides are planar slides with a flow component or planar slides 

that develop into debris flows in response to a short term influx in the slope water content, such 

as during storms (Ballantyne 2002). As this relatively straightforward conceptual model of the 
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landslide failure mechanism is reasonably well understood, including knowledge of the 

relevant geomorphological conditions and the hydrological triggers, they are most suited to the 

empirical approach; in contrast to larger and more complex landslides such as rotational 

failures. In addition, the data required for these studies (e.g. landslide database, elevation 

models, land cover and precipitation) are widely available; the landslide data used in this study 

is described in section 3.2.1. Subsequently, empirical analyses have been conducted in a wide 

variety of regions prone to shallow failures and debris flow including in, North America and 

Canada (Jakob & Weatherly 2003; Cannon et al. 2008; Staley et al. 2013), Italy and the 

European Alps (Guzzetti et al. 2008; Catani et al. 2013; Segoni et al. 2015b) and Norway 

(Søren et al. 2014; Meyer et al. 2015).  

Second, debris flow and planar slides are responsible for most of the damage and disruption 

caused by landslides on Scotland’s strategic infrastructure, including the highway, rail and 

power networks (Winter et al. 2005; Dijkstra et al. 2016a). For example, Figure 3.2 shows a 

landslide which resulted in the closure of the A85 road at Lochernhead. This landslide was one 

of seven similar scale events to occur following a series of low pressure weather systems and 

heavy rain in August 2004. These landslides caused disruption on three separate sections of the 

road network and for a combined duration of 18 days. Figure 3.3 shows a more recent landslide 

that occurred on 28th October 2014 and that resulted in the closure of the A83 road for a total 

of 11 days (see also section 2.1). The research is therefore of strategic importance to the 

national government in Scotland (and wider UK) and is also of high public interest.  

Figure 3.2. Debris flow on the A85 road at Lochernhead 18/08/2004. Adapted from BGS 

report http://www.bgs.ac.uk/landslides/GlenOgle.html 
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Figure 3.3. Debris flow on the A83 road near the Rest and Be Thankful pass 2014. Image taken 

from http://forargyll.com/?p=90101 
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Third, there are benefits related to the geography of Scotland. Figure 3.4 shows the case study 

area which comprises the Scottish mainland including the Isles of Sky, Mull and Bute, an area 

of approximately 70,100 km2. The islands are included as they are connected to the mainland, 

and the wider strategic road network (SRN), via bridges or year-round and short duration (< 

45 min) ferry services. The lack of national borders (except to England) simplifies the 

development of the traffic model by limiting the potential for model boundary effects. The area 

population is approximately 5.20 M and represents 98.3 % of the total population of Scotland 

(5.29 m) based the most recent 2011 UK census; this data is also used as input to the network 

model (ONS 2011a, 2011b). Some 73.4 % of the study area population reside within moderate 

population density sub-urban to urban areas (purple shading and circles in Figure 3.4), whilst 

the remaining 26.6 % (1.4 m) are reside in lower population density and rural locations (blue 

shading). The study area has global significance as the geographical setting is analogous (i.e. 

in terms of size, population and population density) to other landslide prone regions, including 

Norway, Malaysia and New Zealand. In addition, the traffic model may be used to evaluate the 

impact of other hazards and multi-hazards in Scotland, such as flooding and severe wind. The 

process to develop the traffic model and evaluate the impact of hazards is portable to these and 

other regions around worldwide.  

Figure 3.4. Map showing the study area (white and colours) and the other islands which are 

not included (grey shading). Blue and purple shading illustrates population density (p / km2) 

and the major urban areas are shown using circles.  
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3.1.2 Landslide database 

The landslide information used in this research is provided by the British Geological Survey 

(BGS). The BGS develops and maintains the National Landslide Database (NLD) which, with 

over 17,000 records, is the most extensive source of landslide information in Great Britain 

(Foster et al. 2008). The data are gathered through a range of sources and procedures including: 

incorporation of other databases; scientific literature; field and desk-based surveying; reports 

from infrastructure, insurance and other private organisations; social and broadcast media; and 

citizen science (Pennington et al. 2015). Whilst each of these sources provide valid landslide 

reports, when using the NLD it is important to consider the following assumptions and 

limitations: (i) the NLD provides a comprehensive record of all landslide activity; (ii) the NLD 

is biased toward landslides which occur in close proximity or cause impact on human activity, 

such as by damage to roads or buildings, as these are more likely to be reported; (iii) the NLD 

underestimates the number of landslides which occur in remote locations and where there is 

little to no impact on human activity; and (iv) the NLD is biased toward large landslide events 

as these are more likely to cause societal impact and are more easily detected, for example, 

visually or using aerial imagery. 

The above limitations are true for almost all national scale landslide database around the world 

(Malamud et al. 2004; Guzzetti et al. 2008). For this research, the data issues related to the 

underrepresentation of landslides is likely to have limited negative effect as the analyses is 

focussed on the threat of landslides impacting the road transport network – and such events are 

relatively well represented in the NLD. Indeed, some 68 of the 75 verified (see below) landslide 

records in Scotland are situated on slopes adjacent to the road network. The clear recording 

bias toward the landslides occurring in proximity to the road network calls into question the 

validity of the analyses for small scale landslides and those occurring at distance to the road 

network. Since 2016, several strategies have been proposed that could be employed to limit 

this bias (Steger et al. 2017). The simplest approach, and that generates the most plausible 

results, is to constrain the analyses to the slopes adjacent to the road network (Freeborough et 

al. 2016; Martinovic et al. 2016). This approach is applied here.  

The variety of NLD data sources means that the data are of varying levels of detail, for example, 

the spatial and temporal accuracy of landslide records, information on the landslide mechanism 

or slope material and as to whether the landslide datum has been quality checked by the BGS. 

As illustrated in Figure 3.5, a set of procedures were followed to verify and select NLD records 

with the following attributes: 

• Database Query to select: 

o Landslide records with date of occurrence.  

o Landslide records within the period of radar data (01/03/2004 to 31/08/2016). 

• Landslide Classification to determine: 

o Record Flow type and select planar slides with a flow component or debris 

flows (PS-FL). 

• Source Check to remove PS-FL records: 

o With temporal accuracy of ≤ 48 h and spatial accuracy of ≤ 2500 m. 

o Records enriched solely using Google aerial imagery. To remove NLD records 

with no text source for flow type.  
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In practice, the classification and selection process involved the cross-validation of the NLD 

records with information internal to the NLD including: the NLD landslide comment fields; 

examination of the NLD data sources or BGS site-survey reports; and liaison with the BGS 

NLD personnel. NLD records were also cross-validated with external information not included 

in the NLD including: peer reviewed literature; print and online media; and visual inspection 

of annual time-step aerial imagery via Google Earths timeline feature (1984 – 2016). During 

this process many NLD records were updated with new information and some previously 

unreported landslides were detected that have now been incorporated into the NLD. The output 

is a verified landslide database or inventory of 75 landslides with the required attributes. In the 

remainder of this section, the attributes of the 178 NLD records that were successfully 

classified are summarised.  

Figure 3.5. Process to update and select NLD records. 
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A total 178 landslides were classified according to failure type. PS-FL comprise 52 % (92) of 

the records, 31 % (51) are unknown, 12 % (22) are falls or topples, 0.4 % (7) are rotational 

landslides and one landslide was classed as ‘man-made’ which occurred due to a burst water 

main. Figure 3.6 shows the proportions of each landslide type per year and per month. The 

average rate of occurrence is 13.7 and 7.7 landslides per year for all and PS-FL classes, 

respectively. The landslide date of occurrence accuracy indicates the period within which the 

landslide is known to have occurred, for example, 24 h indicates that the day of landslide 

occurrence is known and confirmed. For all the NLD records the temporal accuracy is 12 h 

(5.6 %), 24 h (72.5 %), 48 h (0.6 %), 1 week (5.6 %) and 1 year (0.6 %). Some 15.2 % of the 

records have an unknown temporal accuracy, that is, the day of occurrence is recorded but is 

not confirmed within publicly available print media or site-survey report. It is likely that many 

of these were reported via informal communication to the NLD team. 

Figure 3.7 shows the location of each landslide. The location information specifies the grid 

reference of the landslide source area and ranges in quality from several meters obtained by 

site-surveys and aerial imagery (19 % of records), 100 m - 2 km from 1:10,000 scale maps and 

aerial imagery (73 %) or they are recorded for entire valleys or by sections of road which can 

exceed 5 km in length (8 %). These coordinates allow further landslide properties and attributes 

such as geology, slope angle and elevation to be derived from other datasets using geographical 

information systems (GIS).  

 

 

 

 
Figure 3.6. Landslide classes by year and by month for the period March 2004 to September 

2016. 
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The rainfall conditions prior to and at the onset of failure are also of particular interest. Figure 

3.8 shows the amount of rain accumulation on the day of landslide occurrence (1-day) and for 

the 12-day antecedent rain accumulation. These are selected to illustrate the significant 

triggering (i.e. day of failure) and antecedent rainfall periods as noted in previous studies 

(Milne et al. 2009; Winter et al. 2010). Rain accumulation is shown as multiples of the rainy-

day-normal (RDN), the average rain accumulation that falls of days with rain per location. For 

reference the RDN values in Scotland are in the range of 3 to 20 mm of accumulation varying 

by location and season (see Figure 6.1). Figure 3.7 shows that a large proportion of PS-FL, in 

addition to many unknown classified landslides, occur on days with more than two days’ worth 

of rain and following 12-day periods with 10 to 30 days’ worth of rain. Conversely, many of 

the recorded topples-falls and rotational landslides are shown to occur in relatively dry 

conditions and irrespective of increases in the 1-day rain accumulation. The rainfall data was 

obtained from the UK Met Office Nimrod weather radar system (Met Office 2003).  

Figure 3.7. Landslide classes and location for the period March 2004 to September 2016. 
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3.2 Landslide Susceptibility 

3.2.1 Input data 

In this study, two primary data sources are used in addition to the NLD. First, is the 5 m2 digital 

terrain model NEXTmap (DTM) which is available under academic or commercial license. 

The DTM is available across the British Isles and was produced from airborne Interferometric 

Synthetic Aperture Radar. The DTM is a so called ‘bare earth’ product that has had artefacts 

due to vegetation, roads, buildings and other cultural features removed via orthorectification 

with aerial photography, high resolution mapping and digital surface and elevation models 

(IntermapTechnologies 2009). The DTM is used to determine the hillslope units and to derive 

5 m2 resolution arrays (raster’s) of the geomorphological factors slope angle, aspect, roughness, 

curvature and elevation. The arrays for slope angle, curvature and aspect are generated using 

the ‘r.slope.aspect’ procedure in GRASS GIS 7 which employs a 3 × 3 pixel kernel window 

and is equivalent to the procedures implemented in most other mainstream GIS software 

including the geospatial data abstraction library (GDAL), SAGA and ArcMap 10 (Horn 1981; 

Hofierka et al. 2009).  

The second data used is the 1 km2 soil parent material model (PMM) developed by the BGS 

(Lawley & Smith 2008). The PMM was generated using lithological maps, borehole records 

and other physical soil survey data in a combined spatial-generalisation and heuristic GIS 

modelling procedure. The data is distributed under an open commons license by the BGS. The 

PMM represents the very near surface geology and provides geotechnical factors and 

Figure 3.8. Scatter plot showing rain the 1 and 12-day rain accumulation for landslide classes 

in the period March 2004 to September 2016. Rain accumulation is given as multiples of the 

landslide location rainy-day-normal (not mm), which is the average amount of rain falling on 

days with rain in the location of the landslide.  
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information on the weathered material from which the superficial and subsoil horizons form 

including arrays for: soil material grain size, soil depth and soil texture.  

Measures of central tendency and summary statistics are calculated for each of the factors, 

including the mean, median, mode, minimum, maximum and range, as each hillslope unit may 

contain one or more unique values. The selection of suitable statistics is informed by the 

literature review and by knowledge of landslide processes. For example, minimum elevation 

is likely to provide little insight on landslide processes whereas the maximum elevation or 

elevation range is indicative of the slope gravitational and weathering potential. A description 

of each factor is included below: 

• Slope angle: the mean, median and maximum slope angle in decimal degrees. 

• Elevation: the range and maximum slope elevation in meters. 

• Slope aspect: mean slope aspect is included as a proxy for several environmental 

factors such as wind, rain and solar insolation which are related to weathering 

processes (Hughes et al. 2009; Budimir et al. 2015).  

• Curvature: Three measures of curvature are used: profile curvature is the slope 

curvature parallel to the direction of the steepest slope (vertical plane of flow), plan 

curvature is perpendicular to the direction of the steepest slope (horizontal or contour), 

and general (total) curvature is the overall curvature of the slope surface. Each is 

measured by the radius of curvature in 1 / meter units (e.g. a slope with a radius of 

curvature of 0.04, is equivalent to a circle with radius 1 / 25 m).  

• Terrain roughness: Melton Ration (MR), higher values indicate steep and elevated 

terrain which are more liable to increased erosion and gravitational potential. 

• Soil depth: PMM has 5 classifications of soil depth listed in Table 3.1.  

 

 

Class Description  Depth 

(m) 

Deep A thick soil profile is likely. Soil should be easily dug to a 

depth of 2 to > 5 m.  

2 - > 5 

Deep-intermediate  

 

The soil profile may vary from thick to intermediate. Soil 

can be dug to a depth of 1 m and possibly more in some 

places.  

1 - 2 

Intermediate  A ‘typical’ soil profile is likely. Soil can be dug to a depth 

of 1m  

1 

Intermediate-

shallow  

The soil profile may vary from thin to intermediate and is 

potentially difficult to dig at depths greater than 0.5 m  

0.5 - 1 

Shallow  A thin soil profile is likely. The soil will be extremely 

difficult to dig at depths of 0.5 m or less. 

< 0.5 

Table 3.1. Soil depth categories from PMM.  
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• Grain size: PMM has seven categories for soil material grain size listed in Table 3.2. 

 

 Class Description Size 

(mm) 

N
o
n
-i

g
n
eo

u
s 

Argillaceous  

(Argillic)  

Materials that are dominantly fine grained (clay and silt 

grade)  

< 0.06 

Arenaceous  Materials that are dominantly medium grained (fine to 

medium sand grade)  

0.06 - 2.0 

Rudaceous  Materials that are dominantly coarse grained (coarse 

sand to gravel grade)  

> 2.0 

Peat*  Material is Peat  NA 

Ig
n
eo

u
s 

Fine  Materials that are dominantly composed of fine 

crystals.  

< 0.25 

Medium  Materials that are dominantly composed of medium 

crystals.  

0.25 > 2 

Coarse  Materials that are dominantly composed of coarse 

crystals.  

> 2.0 

Table 3.2. Soil material grain size categories from PMM. 

 

• Soil texture: soil texture classifications that are based on a UK classification scheme 

(Hodgson 1997). PMM has five generalized textures that are moderated (e.g. Silty – 

clay) to produce 25 unique classifications listed in Table 3.3. 

 

Class Description Size (mm) 

Clay  Soil is generally dominated by clay grade particles. < 0.002 

Silt  Soil is generally dominated by silt grade particles. 0.002 < 0.06 

Sand  Soil is generally dominated by sand grade particles.  0.06 < 2.0 

Loam  Loam soils are soils with a distributed/even mix of particle sizes  - 

Peat  Not a texture term, but defines areas dominated by Peat materials  - 

Table 3.3. Soil texture classifications from PMM.  

 

3.2.2 Generating hillslope sections 

Hillslopes are characterised by distinguishing areas with similar geomorphic features and 

hydro-geological processes. In the literature review it is shown that the characteristics of 

different hillslopes may be used to identify the slopes which are more or less prone to 

generating landslides. However, there is limited application of hillslopes in landslide 

susceptibility modelling which is instead limited to pixel, UCU or watershed basin scale units. 

In addition, there is no universally accepted criterion for the size of a hillslope and this very 

much depends upon the resolution of the input data (e.g. the terrain model) and the scope and 
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purpose of the investigation. Below, the procedures used to generate hillslopes and the criteria 

to select a suitable hillslope size are outlined.  

Hillslope sections are generated using the ‘r.watershed’ procedure in GRASS GIS 7 

(Ehlschlaeger 1989). R.watershed uses an A* least-cost path algorithm and a terrain elevation 

model to calculate hydrological parameters including flow accumulation, drainage direction, 

stream locations, watershed basins and half-basins. Half-basins divide the watershed basins 

into their left and right constituent slopes and are here used as the hillslope sections or 

‘hillslopes’. The default (recommended) r.watershed settings are used for all of the model 

parameters and the maximum computing RAM is set to 3000 mb. A comprehensive description 

of r.watershed with reference to the relevant peer reviewed literature is available online. 

Comparisons of r.watershed outputs to those of other software and of ground observations, 

including r.terraflow and ESRI ArcGIS watershed, suggest that r.watershed produces more 

realistic stream locations and watershed basins and is less sensitive to low slope areas or to 

elevation data containing vegetated areas or missing data values (Holmgren 1994; Kinner et al. 

2005; Metz et al. 2011). The NEXTmap DTM used by this study is void of vegetation and 

missing data and so this should have little effect on the model outputs. Nonetheless, for the 

purpose of hillslope creation the DTM is resampled to 25 m2 as the majority of literature on 

r.watershed uses SRTM DEM data at resolutions of 10 to 90 m2 and the performance of 

r.watershed at resolutions < 10 m2 is uncertain (Metz et al. 2011).  

The DTM registers water bodies as missing data, including oceans, seas, inland lakes and lochs. 

This can lead to the production of erroneous hydrological flow profiles and hillslopes at 

shorelines where the water flows into these natural depressions and water bodies. To overcome 

this issue, the water body areas were assigned a value of -50 m which is below the minimum 

elevation of the DTM (-23 m). An alternative solution which involved the coupling of the DTM 

to bathymetry data was attempted, however, it is uncertain how the software may respond to 

any boundary artefacts and to using different data resolutions. The result of the adopted solution 

is to produce hillslopes which flow into the natural depressions and water bodies, as is 

expected. Lastly, the hillslope sections are clipped to the original DTM shoreline to re-

introduce and preserve the original water body areas.  

To determine the size of the generated hillslopes, the ‘basin threshold’ parameter is altered to 

control the minimum number cells of upland flow required for a basin to be formed. For 

example, if the threshold parameter is set to 100 then the minimum allowed size of a basin is 

equal to 62,500 m2 (100 × 25 m2 cells) – with the two hillslopes which form this basin having 

an equivalent sum area.  

Six basin threshold values were evaluated for 100 to 1600 cells in 300 cell increments (e.g. 

100, 400…, 1600). The range of threshold values is determined by visual inspection of the 

generated hillslope sections and by comparing these to integrated hydrological unit sections 

(IHUS) – the smallest official hydrometric area used in the UK and developed by the Centre 

for Ecology and Hydrology (Kral et al. 2015). These are shown in Figure 3.9. 

A lower limit threshold value of 100 cells is used as lesser values were found to result in poorly 

defined hillslope sections. For example, many hillslopes were formed of single-cell width 

columns parallel to the angle of slope. Lower threshold values (< 100 cells) may be suitable 

for higher resolution DTM yet this is beyond the scope of this study. Threshold values greater 

than 1600 cells result in hillslope sections that capture large slope faces and that are generally 
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in line with the topography and borders of the IHUS, this is therefore used as the upper limit 

threshold. Figure 3.9A and Figure 3.9B illustrate the IHUS (blue lines) and the 100 (black 

lines) and 1600 (orange lines) threshold hillslope sections created by r.watershed at the Ben 

Nevis mountain complex. The IHUS blue lines extending beyond the mountain illustrate how 

the official IHUS are relatively large scale areas which capture both sides of a drainage basin. 

These are unsuitable for measuring several of the factors related to landsliding, for example 

slope aspect or curvature. The 1600 hillslopes follow the primary drainage divide lines of the 

IHUS (e.g. ridge crests and watersheds) and separate the left and right hillslope faces by the 

valley-floor divides. The 100 hillslopes are also terminated at the drainage divide lines and 

delineate many smaller areas of flow accumulation on hillslope faces. The selection of the most 

suitable threshold value is determined by comparing the performance scores of logistic 

regression models using the hillslopes with different basin threshold values. 

  

A B 

Figure 3.9. Plan (A) and 3D (B) views of Ben Nevis with overlaying IHUS (blue) and 

r.watershed generated hillslopes with 1500 (orange) and 100 (black) minimum cell thresholds. 

The ‘view’ box and dashed lines in A display the field of view in figure B.  

VIEW 
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3.2.3 Logistic regression modelling 

Logistic regression (LR) models quantify the relationship between a series of independent 

explanatory variables and a binary dependant variable. In the case of landslide susceptibility 

mapping, the objective of LR is to produce the best-fit model which describes the relationship 

between the input variables of each hillslope (e.g. its environmental or geotechnical 

characteristics) and the presence or absence of a landslide. LR is used as it has been extensively 

applied and validated in studies of landslide susceptibility and has been shown to outperform 

other multi-variate classification techniques (Ayalew & Yamagishi 2005; Brenning 2005; 

Budimir et al. 2015). A LR model is developed using the python StatsModels package 

(Oliphant 2007; Seabold & Perktold 2010). A detailed description of the modelling process is 

provided.  

The result of the LR model is a landslide susceptibility probability (𝑝) for each hillslope ranging 

from 0 to 1 (Chapter 2.2.4 pg 31). The probabilities are determined by logit and the linear 

combination of the input variable coefficients. The natural exponent of the model coefficients 

gives the odds-ratio for a given independent variable. The higher the value of the explanatory 

variable coefficients and odds-ratios, the greater the influence the variable has on increasing 

the susceptibility of a hillslope. One of the main advantages of LR is that odds-ratios can be 

used to compare the relative contribution of each input variable on susceptibility. In addition, 

both continuous and categorical data are accommodated. For continuous data, the odds-ratio 

indicates the change in the odds for a 1 unit increase in a variable. 

The Wald test is used to test the statistical significance of each explanatory variable in the 

logistic regression model (Dai et al. 2001; Agresti 2002). For a given explanatory variable, if 

the Wald test is significant (𝑝 <  𝛼), then the variable coefficient is not zero (i.e. a coefficient 

of zero has no effect). If the Wald test is not significant (𝑝 >  𝛼) then the explanatory variable 

can be omitted from the model. A critical p-value of 𝛼 = 0.1 is used as a threshold as suggested 

by Dai et al (2001). 

Feature-engineering is the nomenclature term for the process of re-coding input variables, such 

as converting continuous data to categorical data. The purpose of feature engineering is to 

improve model fit by reducing the effect of the input data variance by applying heuristic or 

theoretical knowledge of the modelled processes. For example, in the UK one might assume 

that west facing slopes may be more susceptible to landslides as most weather systems move 

westward across the UK – driving wind and rain. The variable for slope aspect may therefore 

be engineered in to two or more distinct classes to compare the relative contribution of each 

class on susceptibility, for instance: east and west (0 - 180o and 180 - 360o); four cardinal 

classes (e.g. N, E, S and W) or inter cardinal classes (e.g. NW – NE, NE – SE) or eight 45o 

classes and so on.  

Feature-engineering and the selection of suitable classes is primarily determined by the 

investigators domain knowledge and modelling experience. Quantitative selection of classes 

may be achieved by examining the class frequency tables and histograms of the landslide and 

non-landslide data. For continuous data, the overlapping area between the two probability 

density functions (pdf) is a useful measure for the skill of the input variables to discriminate 

between landslide and non-landslide slopes (Cho et al. 2006; Berenguer et al. 2015). For 

categorical data, for instance the PMM soil depth classes, each class is mapped to a binary 

dummy variable which take on the value of 1 if a class is present and 0 if otherwise. A model 
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coefficient and odds-ratio is generated for each dummy variable. One of the dummy variables 

is used as the reference class to which all other classes are compared (Dai & Lee 2001; Wilks 

2006). For example, for the different PMM soil textures, one may use peat soil as the reference 

class. The model coefficients and odds-ratios for each other soil texture class indicate the 

change in the odds relative to peat soil class. Reference classes are typically selected to ease 

interpretability of the results, for example, by selecting the class with the smallest number of 

landslides or selecting the class which capture the minimum value within a range.    

Model over-fitting can occur due to: (1) high collinearity between the input variables, and (2) 

perfect separation errors that are caused by input variable classes that match those of the 

dependant variable (Suits 1957; Konis 2007). First, Pearson’s product-momentum correlation, 

Spearman’s rank-order correlation and chi-square tests are used to identify input variables that 

are highly correlated with one another (Thiery et al. 2007). Second, in most modelling 

applications it is very unlikely to be unaware of, or to find a single input variable that perfectly 

predicts the dependent variable. Instead, these separation errors are often caused by the over-

engineering of input variables or are by-products of the data sample, such as using low 

resolution spatial data so that all of the hillslopes with landslides are within a single class. Class 

frequency tables are again used to identify the variables with class imbalances that may cause 

separation errors and these are removed from the model (Konis 2007). As a check, the 

performance of the model is evaluated both with and without the offending classes.  

Four statistical measures are produced and used to evaluate the goodness of fit and statistical 

significance of the LR model (Oliphant 2007; Seabold & Perktold 2010).  

• Chi-square test: used to determine if there is a significant difference between the log-

likelihood function of the null model (−2𝐿𝐿𝑜, no input variables) and that of the new 

model (−2𝐿𝐿𝑓). The log-likelihood is multiplied by -2 to convert the values to the 

chi-square distribution. The difference between the log-likelihood of the null and new 

model is referred to as the model chi-square test (𝑥2). The significance level of the 

chi-square test is used to determine the statistical significance of the new model and 

to reject or accept the null. A 95 % (α = 0.05) significance criteria is used to reject the 

null model.  

• The Akaike Information Criterion (AIC) is a goodness of fit measure that favors 

smaller residual model error, but penalizes for including additional predictors and 

helps avoiding overfitting. AIC is given by: −2 × (𝐿𝐿𝑓 − 𝑛), where 𝑛 is the number 

of input variables including the intercept. For a collection of different models of the 

data, AIC estimates the relative quality of each model with lower vales indicating 

greater model fit and model simplicity. Hence, AIC provides a means for model 

selection. 

• McFadden pseudo 𝑅2: used to assess the model goodness of fit (McFadden 1974). The 

interpretation of the pseudo 𝑅2 is equivalent to that of ordinary least squares linear 

regression (OLS). However, pseudo 𝑅2 values are considerably lower than those of 

OLS and values of 0.2 – 0.4 indicate very good fit (McFadden 1974; Clark & Hosking 

1986). As a guide, Domencich and McFadden (1975) state that this range is equivalent 

to 𝑅2 0.7 – 0.9 in OLS regression. 

• Area Under Curve (AUC): the AUC of the receiver operating characteristic (ROC) is 

a measure of model accuracy (Fawcett 2006). AUC measures the ability of the model 

to correctly classify landslide and non-landslide slopes. 
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Cross-validation is the iterative process of fitting and evaluating a model using many unique 

training and validation dataset samples. As a rule of thumb, the data set is split 70 – 80 % for 

training and 20 – 30 % for validation. First, a model is created using a selection of the 

independent variables. For each iteration, the training data are used to fit a new instance of the 

model and the performance of the model instance is evaluated using the validation data. Once 

all of the iterations are complete, the performance scores of each model instance, such as the 

AUC and pseudo R2 values, are averaged to assess the overall ability of the model to learn and 

predict the data (Wilks 2006; Kuhn & Johnson 2013a). The purpose of cross-validation is not 

to select the single best performing model instance to generate the result. The purpose of  cross-

validation is to evaluate the overall skill and validity of the model (and selection of variables) 

to accurately predict susceptible hillslopes given all possible combinations of the dataset or 

given a sufficiently large number of random samples.  

To produce the LR model investigators must: i) select a suitable sample size for use in cross-

validation, and ii) select the most suitable model instance to generate the final results. Firstly, 

in the literature several approaches are offered to select suitable sample sizes. Many studies 

use all of the available data within a study region and this typically leads to highly unbalanced 

samples of landslide and non-landslide units (Ohlmacher & Davis 2003; Ayalew & Yamagishi 

2005; Catani et al. 2013; Meyer et al. 2014; Martinovic et al. 2016). Others recommend the 

use of more balanced or equal sample sizes to avoid the underprediction of landslide occurrence 

(Can et al. 2005; Jaiswal et al. 2010; Yilmaz 2010) and in applications of logistic regression to 

other rare phenomena (King & Zeng 2001; Kuhn & Johnson 2013b). Second, to produce the 

final model instance, there are two generally accepted approaches. One approach involves 

using all the available data to train the model and to generate the result (i.e. unbalanced 

sampling). This is done following a cross-validation process to provide an overall estimate of 

model performance (i.e. with balanced sampling). Alternatively, one can use the ‘ensemble’ or 

‘majority-vote’ method. Here, each of the model instances created in cross-validation are used 

to make a prediction for every hillslope. The average value of the predictions across each of 

the cross-validation iterations is used as the result, termed an ‘ensemble result’. The primary 

advantage of the ensemble approach is that it reduces the effect of model variance between 

cross-validation data samples. 

Here, the latter, balanced sampling approach is adopted due to the relatively limited number of 

hillslopes with landslides in comparison to those without. For cross-validation, a repeat random 

sub-sampling without replacement is used. In each iteration, the landslide slopes are randomly 

split to training and validation samples of 75 and 25 %, respectively. An equivalent number of 

randomly selected non-landslide slopes are added to each of the samples and a model instance 

is fitted and a prediction is made. The process is repeated 30 times and the model predictions 

are averaged to provide an ensemble result.  

The results of LR model is a value for each hillslope that indicates the landslide susceptibility 

between 0 and 1. To produce a landslide susceptibility map, the susceptibility values are split 

into four bands using ROC threshold selection: the bands are zero, low, moderate and high 

susceptibility. The zero and low susceptibility bands are selected using the optimal point 

threshold: the optimal point is the threshold that maximises landslide detection and minimises 

false positives. Values below the optimal point threshold are considered as ‘zero’ or uncertain 

susceptibility. The threat score threshold maximises accuracy, and selects the threshold with 

the greatest number of true positives to the lowest number of false negatives of false positives. 
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The susceptibility values above the threat score thresholds are in the ‘high’ susceptibility class. 

The threshold value that divides the range between the optimal point and threat score threshold 

is used to defined the low and moderate classes. 

3.2.4 Limiting the influence of landslide database bias 

Complete landslide databases are rarely available. Of particular concern is the systematic 

reporting bias due an abundance of landslides recorded adjacent to infrastructure networks (e.g. 

road, rail and power networks). Nonetheless bias databases are widely used to calibrate and 

validate empirical landslide susceptibility models (Malamud et al. 2004; Guzzetti et al. 2007; 

Kirschbaum et al. 2015). Recently, several studies attempt to quantify these biases by 

comparing real world databases to synthetically generated data sets (Stanley & Kirschbaum 

2017; Steger et al. 2017). However, these assessments are subject to many uncertainties as the 

synthetic data sets are themselves generated using the statistical properties of ostensibly 

‘complete’ landslide databases gathered at smaller spatial scales, such as in individual valleys 

or mountain sides. The degree that the properties of these smaller scale databases can be 

appropriately extrapolated to broader spatial scales is a prominent challenge.  

To overcome this issue, several authors note that landslide susceptibility maps generated using 

biased databases are still relevant and accurate for the areas adjacent to infrastructure networks 

(Chau & Chan 2005; Van Westen et al. 2008; Jaedicke et al. 2009). In addition, slope proximity 

to infrastructure networks is often reported as one of the most significant indicators of increased 

landslide susceptibility (Dai et al. 2002; Budimir et al. 2015). In this authors opinion, a more 

appropriate approach is to constrain the analyses to only those slopes that are situated adjacent 

to or are intersected by the infrastructure network. The benefit of this is that all modelled slopes 

share the property of being next to the infrastructure network thus limiting the influence of both 

bias in the landslide database and the effects of close network proximity. Though suitable in 

the context of this study, a clear downside is that susceptibility is only modelled for the slopes 

next to these networks. 

Two types of model are created. The first is a network-specific-model, that uses only the 

landslides and hillslopes adjacent to the road transport network. The second model is a 

nationwide-model that uses all landslides and hillslopes. 

3.2.5 Susceptible road segments and model validation 

As a means of validation, the logistic regression susceptibility model is compared to the 

existing British Geological Survey GeoSure landslide susceptibility model (Walsby 2008). 

GeoSure was produced using a combined heuristic and deterministic modelling of 

environmental and hydrological factors (e.g. soil permeability). The model was developed 

using ~15,000 landslide records and includes all types of failure, such as falls, topples, slides 

or flows. The data is supplied as unique-condition-unit polygons 0.5 – 5 km 2 in size and in 5 

classes of increasing landslide susceptibility (i.e. compounding causative factors A – E; Table 

3.4) at 1:50,000 scale. GeoSure is available nationwide and is widely used by insurers and 

infrastructure operators. This study uses categories D and E as these represent areas that are 

most susceptible to landslides (See Table 3.4).  
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GeoSure 

category 

Description 

A Slope instability problems are not thought to occur but consideration to 

potential problems of adjacent areas impacting on the site should always be 

considered 

B Slope instability problems are not likely to occur but consideration to 

potential problems of adjacent areas impacting on the site should always be 

considered 

C Slope instability problems may be present or anticipated. Site investigation 

should consider specifically the slope stability of the site 

D Slope instability problems are probably present or have occurred in the past. 

Land use should consider specifically the stability of the site. 

E Slope instability problems almost certainly present and may be active. 

Significant constraint on land use. 

Table 3.4. GeoSure landslide susceptibility categories. 

A direct comparison of the two models is not possible given the different output scales (e.g. 

polygons and hillslopes). Therefore, the two models are compared by examining the number 

and spatial distribution of road segments that are found to be susceptible to landslides in 

Scotland’s 4,300 km strategic road network. This has the additional benefit of comparing the 

two models in the locations where most landslides are recorded (i.e. along transport corridors). 

The susceptible road segments are identified as follows: 

• For the hillslope susceptibility model developed in this study, the road segments that 

are susceptible to landslide are identified using a spatial join to the hillslope sections.  

• For the GeoSure model of landslide susceptibility a spatial buffer analysis is used to 

identify road segments with areas of neighbouring susceptible ground using the 

GeoSure data. The search area is selected using two different buffer values to account 

for the fact that the GeoSure data does not distinguish between different landslide 

mechanisms. Each road segment (𝑟) is classified as susceptible when segment 

susceptibility (𝑆𝑟 > 0), as given by Equation 3.1 and 3.2: 

where 𝛼𝑟 is the fraction of susceptible ground area (𝐴𝑠 m2, i.e. GeoSure categories D and 

E) to total ground area (𝐴𝑡 m2) within a 50 m or 500 m buffer (𝑏) of a road segment, and 

𝐿 is the segment length in meters. The buffer distance (𝑏) is set to 500 m if a segment 

intersects a basin with a maximum slope angle ≥ 26o. This is based on analysis of shallow 

translational slides and debris flow in Scotland noting that they most often occur on steep 

slopes (≥ 26o) producing deposition run-out distances of up to 500 m (Winter et al. 2005; 

Foster et al. 2008; Milne et al. 2009). In other regions road segments are more likely to 

be susceptible to underlying and closer proximity slope movements and for all other cases 

a 50 m buffer is used. A 50 m road buffer is also used in other landslide studies (Shahabi 

& Hashim 2015) and by UK insurance and infrastructure organisations using GeoSure 

(Booth et al. 2010; Mott MacDonald & Patterson 2014).  

𝛼𝑟 = 𝐴𝑠𝑏 𝐴𝑡𝑏Τ    

𝑆𝑟 =  𝛼𝐿   

(3.1) 

(3.2) 
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3.3 Landslide Rain Initiation Thresholds 

3.3.1 Input data 

The rainfall data are radar quantitate precipitation estimates produced by the UK Met Office 

network of 15 C-band Doppler radar sites (Met Office 2003). The radar system provides 

precipitation observations at 5 km2 resolution for 15 min intervals over the entire UK and 

Western Europe for the period March 2004 to present. The radar is calibrated to account for, 

amongst others, echoing, beam blockage and attenuation as described in Harrison et al (2000; 

2009). At ≥ 1 h aggregations the radar data adequately reproduce gauged precipitation 

observations, however, the accuracy for short duration and low intensity precipitation is 

uncertain as most gauges require ≥ 0.2 mm per record (Harrison et al. 2000; Villarini & 

Krajewski 2008; Villarini et al. 2008). The data represent the state-of-the-art in UK weather 

radar and it is widely applied for national meteorological forecasting and research on flooding 

(Schellart et al. 2012; Parkes et al. 2013), climatology (Fairman et al. 2015), and water 

management (Harrison et al. 2009). 

3.3.2 Rain variables 

The rain variables used are summarised in Table 3.5 and include: non-normalized, total rain 

accumulation (𝑉 mm); rain-day-normal (RDN) normalized rain accumulation (𝑁𝑉); hourly 

maximum rain intensity (𝐼𝑚𝑎𝑥 mm h-1) and rain duration (𝑅𝐷 h). The data are prepared as 

daily time series. Rolling window statistics are used to calculate the variables over antecedent 

periods of 1, 2, 3, 6, 12, 18, 24, 30, 50 and 60 days (e.g. 12 days = 𝑁𝑉12). The range of 

antecedence periods were chosen and skewed more to shorter durations (i.e. 1 to 18 days) based 

on the identification of significant thresholds for these periods in other temperate climates 

including Scotland (Guzzetti et al. 2007; Chleborad et al. 2008; Winter et al. 2010; Meyer et 

al. 2012; Søren et al. 2014). 

Thresholds are developed using RDN normalized rain accumulation variables as thresholds 

which apply in one region do not apply to regions with different climatic regimes and weather 

variability (Jakob & Weatherly 2003). An empirical measure of local climate is used to 

normalise the rainfall values, for instance mean annual precipitation (Cannon & Ellen 1985). 

In this study the RDN is used for normalisation (Wilson & Jayko 1997). RDN is a more 

appropriate measure than mean annual precipitation for assessing rain events associated with 

landslides as it is not influenced by periods of no rain (Wilson & Jayko 1997; Guzzetti et al. 

2007, 2008; Brunetti et al. 2010; Meyer et al. 2012; Gariano et al. 2015). As shown in Table 

3.5, for each radar pixel and landslide location the RDN indicates the mean daily rainfall 

accumulation on days with rain. In addition, and in contrast to past studies, monthly RDN 

values are used to account for the seasonal variability in rain accumulation. Therefore, the RDN 

provides spatially and temporally normalised thresholds.  

The rain duration (𝑅𝐷) variable is a new measure for the hours of rainfall above the monthly 

rainy-day-normal-intensity (RDNI = I / t). Like RDN, RDNI is the average of the rainfall 

intensities (I) recorded for all time periods (t) with > 0.01 mm h-1 rain. 
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3.3.3 Selecting thresholds 

The determination of thresholds is approached as a binary classification problem (Staley et al. 

2013; Segoni et al. 2014b; Gariano et al. 2015). The classification seeks to find the threshold 

that best separates the rainfall conditions that coincide with landslide occurrence from the rain 

conditions that do not coincide landslides. A systematic classification procedure is applied to 

the daily time series data as follows.  

• For each rain variable, a set of 250 candidate thresholds are created at equal increments 

between the observed minimum and maximum values for all days with landslide 

occurrence. The number of candidate thresholds (250) is selected to give small 

increments (e.g. 5 mm rain accumulation) between potential threshold values.  

• For each candidate threshold, a binary classification procedure is applied to the time 

series data. The time series values are assigned a value of one if they are equal to or 

exceed the candidate threshold value and a value of zero if otherwise. The binary 

classification yields four mutually exclusive contingencies that are used to evaluate 

each threshold (see below).  

• The process is repeated until contingencies are calculated for all rain variables and 

candidate thresholds.  

As illustrated in Figure 3.10b, the binary classification generates four contingencies: true 

positive (TP) is when a threshold is exceeded and a landslide occurs; false positive (FP) is when 

the threshold is exceeded but no landslide occurs (a false alarm); false negative (FN) is when 

rainfall is below the threshold yet a landslide occurs (a failed alarm); and true negative (TN) is 

when neither the threshold is exceeded or a landslide occurs.  

Variable Description Units Reference 

𝑅𝐷𝑁 

Rainy Day Normal: the average of total accumulation 

(𝐴) and the number of days with > 0.01 mm rain (𝐷) 

in a month. (𝑅𝐷𝑁 𝑚𝑚 =  𝐴 / 𝐷) 

mm 
(Wilson & 

Jayko 1997) 

𝑅𝐷𝑁𝐼 

Rainy Day Normal Intensity: the average of the 

rainfall intensities (𝐼) recorded for all time periods (𝑡) 

with > 0.01 mm hr-1 rain in a month. (𝑅𝐷𝑁𝐼 =  𝐼 / 𝑡) 

mm/hr  

𝑉𝑛 
Rainfall accumulation over 𝑛 day’s antecedence 

calculated by sum rolling window. 
mm (Innes 1983) 

𝑁𝑉𝑛 
Normalised accumulation over 𝑛 day’s antecedence. 

(𝑁𝑉𝑛 =  𝑉𝑛 𝑅𝐷𝑁)Τ  
 

(Wilson & 

Jayko 1997) 

𝐼𝑚𝑎𝑥𝑛 
Maximum rainfall intensity over 𝑛 days antecedence 

calculated by rolling window. 
mm/hr 

(Onodera et 

al. 1974) 

𝑅𝐷𝑛 

Duration of rainfall greater than 𝑅𝐷𝑁𝐼 over 𝑛 day’s 

antecedence. Calculated by applying a binary filter to 

the 15-minute rainfall intensity data (1 𝐼𝐹 ≥
𝑅𝐷𝑁𝐼, 𝐸𝐿𝑆𝐸 0). The sum of the binary columns over 

𝑛 day’s gives the count of 15-minute periods above 

𝑅𝐷𝑁I. 

hours  

 
Table 3.5. Precipitation variables used to define landslide thresholds and their common 

description, units, antecedence period and known earliest reference. 
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ROC analysis is applied to evaluate each rain variable (Wilks 2006; Gariano et al. 2015; 

Abancó et al. 2016; Giannecchini et al. 2016; Piciullo et al. 2016). The contingencies are used 

to calculate the skill scores, true-positive-rate (TPR) and false-positive-rate (FPR). For each 

rain variable, an ROC curve is formed by plotting FPR and TPR. The area under curve (AUC) 

provides a formal measure for each rain variables classification performance between 0 and 1 

(Bradley 1997; Wilks 2006; Staley et al. 2013; Carvalho et al. 2014; Giannecchini et al. 2016). 

An ROC curve which tends toward the upper left portion of the chart indicates a variable that 

distinguishes useful information from the data. The diagonal, no-gain-line (AUC = 0.5) 

indicates a variable with random performance, with equal FPR and TPR. AUC is used to 

compare the performance of each rain variable.  

 

Each point on the ROC curve corresponds to the candidate threshold values. As illustrated in 

Figure 3.10a, two types of threshold are selected at different cut points on the ROC curve. First, 

Staley et al (2013) demonstrate that landslide thresholds can be selected by maximising ‘Threat 

Score’ (TS). TS measures threshold accuracy after correct negatives are removed and ranges 

from 0 to 1, with each incorrect classification reducing TS (Schaefer 1990). In the ROC space 

the ‘optimal point’ (OP) represents a hypothetical threshold which classifies all outcomes 

correctly. Therefore, second, thresholds are selected with minimum radial distance (𝑅𝑑) to OP 

to maximise landslide detection whilst minimising errors. 𝑅𝑑 is found using Pythagorean 

Figure 3.10. (a) Example ROC curve for a rain variable (V1, blue line). AUC indicates the 

predictive performance of a variable, and the no gain line (AUC = 0.5) indicates a variable 

with random performance. The two ROC threshold selection metrics are shown, (i) optimal 

point (black points), and (ii) threat score. (b) Is a contingency table and formulae for true 

positive rate (TPR), false positive rate (FPR), Pythagoras theorem to find the radial distance 

(𝑅𝑑) and threat score. 
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theorem. In other fields, OP thresholds are applied for the detection of rare phenomena and in 

situations where missed alarms (false negatives) may result in fatalities or unacceptable losses 

(Schisterman et al. 2005; Rota & Antolini 2014). OP thresholds may therefore be appropriate 

for use in landslide early warning but are yet to be applied. Conceptually, the OP and TS 

thresholds are similar to the lower and upper limit thresholds used in early investigations (Caine 

1980). Like lower limits, OP thresholds capture the rainfall conditions below which it is 

unlikely for landslides to occur. Conversely, TS thresholds capture the upper limit rainfall 

conditions above which landslides are most likely to occur.  

 

3.3.4 Threshold probabilities 

In addition to the threshold values, a probability analysis is conducted to quantify the likelihood 

of landslide occurrence, the uncertainty, and the statistical significance of each threshold 

(Glade et al. 2005; Chleborad et al. 2008; Berti et al. 2012). The probabilistic assessment is 

also used in the quantitative landslide hazard assessment (Chapter). Bayes theorem (3.3) is 

applied to determine conditional probabilities: 

Where: 𝑃(𝐿𝑆|𝑇𝐻) is the posteriori conditional probability that a landslide (𝐿𝑆) occurs given 

the exceedance of a threshold (𝑇𝐻), 𝑃(𝑇𝐻|𝐿𝑆) is the conditional probability of observing the 

TH when a LS occurs, 𝑃(𝐿𝑆) is the priori probability that a landslide occurs regardless of 

rainfall conditions, and 𝑃(𝑇𝐻) is the marginal probability of TH regardless of landslide 

occurrence. 

The terms in Bayes theorem are calculated using the contingencies computed in the binary 

classification (Figure 3.10b). Where: 𝑁𝐷 is the total number of days recorded in the rainfall 

time series (= TP + FP + FN + TN); 𝑁𝐿𝑆 is the total number of landslides recorded (= TP + 

FN), 𝑁𝑇𝐻 is the number of days with threshold exceedance (= TP + FP); and 𝑁(𝑇𝐻|𝐿𝑆) is the 

number of days with threshold exceedance and landslide occurrence (= TP). The Bayes terms 

are approximated by: 

Equation 3.3 is therefore equal to Equation 3.7:  

𝑃(𝐿𝑆|𝑇𝐻) =  
𝑃(𝑇𝐻|𝐿𝑆)  ×  𝑃(𝐿𝑆)

𝑃(𝑇𝐻)
 

 

3.3 

𝑃(𝐿𝑆) =  𝑁𝐿𝑆 / 𝑁𝐷 

𝑃(𝑇𝐻) =  𝑁𝑇𝐻 / 𝑁𝐷 

𝑃(𝑇𝐻|𝐿𝑆) =  𝑁(𝑇𝐻|𝐿𝑆) / 𝑁𝐿𝑆 

 

3.4 

3.5 

3.6 

𝑃(𝐿𝑆|𝑇𝐻) =  𝑁(𝑇𝐻|𝐿𝑆) / 𝑁𝑇𝐻 

 

3.7 
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The statistical significance of the thresholds is assessed using Bernoulli trials to approximate 

the binomial probability density function (i.e. a coin toss experiment): 

Where: 𝑃(𝑘 𝑜𝑢𝑡 𝑜𝑓 𝑁) is probability of getting 𝑘 landslides out of 𝑁 independent trials, and 

𝑁 is equivalent to the total number of landslides recorded (𝑁𝐿𝑆). The cumulative binomial 

probability density function (𝐶𝐷𝐹𝑘) states the probability of getting between 0 and 𝑘 landslides. 

The test answers ‘given the probability of observing the threshold within a given time period, 

𝑃(𝑇𝐻), how many landslides are expected to co-occur with the threshold by random chance?’. 

Thus, a threshold is statistically significant if (1 − 𝐶𝐷𝐹𝑘  ≤ 𝛼), when 𝑘 is the number of 

landslides that co-occur with a threshold (i.e. TP) and 𝛼 is the confidence level. For example, 

consider a threshold that is exceeded on 80 days out of 1000, so 𝑃(𝑇𝐻) = 80/1000 = 0.08. 

During 1000 days, 60 landslides were recorded and 45 of these occurred on days when the 

threshold was also exceeded (i.e. TP). For the 95 % confidence interval (𝛼 = 0.05), the null 

and alternative hypotheses state: 

𝐻0 : 𝑐 ≥  𝛼 ; the occurrence of landslides is not related to threshold exceedance.  

𝐻1 : 𝑐 ≤  𝛼 ; the occurrence of landslides is related to threshold exceedance. 

In the example, the critical value to reject 𝐻0 at the 95 % confidence level is 13 landslides, so 

𝐻1 is accepted as 45 landslides were recorded.  

3.3.5 Effects of rainfall record length  

To evaluate the influence of rain record length, the contingency scores, AUC, threshold 

values and Bayesian probabilities are calculated using ten different rainfall record lengths 

which reflect the approaches taken in previous landslide threshold investigations. The process 

involves using different proportions of the landslide site-specific-rainfall records (SSR), or 

time series, obtained from the precipitation radar. The different SSR lengths used are: 10, 20, 

30, 45, 90, 180, 365, and 730 days before each landslide event, all days before (‘Prior’), and 

all (‘All’) which includes all available data either side of landslide occurrence (March 2004 to 

August 2016). The ‘Prior’ record is influenced by the date of landslide occurrence. 

In addition to graphical plots, the mean (µ) and standard deviation (𝜎) of the rain variable 

AUC scores and thresholds probabilities are used to assess the effects of varying rainfall 

record length. For the ‘Threat Score’ and ‘Optimal Point’ threshold values, the coefficient of 

variation (𝐶𝑉 =  
𝜎

𝜇
) is used to measure the amount of threshold variability. 𝐶𝑉 is used 

because it is a unit-less measure and can be used to compare the relative variance of the 

threshold values for different rain variables, units and means.  

3.3.6 Threshold combinations 

In addition to finding thresholds for each individual rain variable, the above processes are used 

to determine combined thresholds for pairs of rain variables. Combinations can produce more 

robust threshold as they are able to capture both the short-term, landslide triggering rainfall 

conditions (e.g. 1 - 2 days) and the long-term antecedent rainfall (e.g. 3 – 20 days). The 

inclusion of antecedent rainfall is of particular importance as this is known to increase the slope 

𝑃(𝑘 𝑜𝑢𝑡 𝑜𝑓 𝑁) =  
𝑁!

𝑘! (𝑁 − 𝑘)!
𝑃(𝑇𝐻)𝑘(1 − 𝑃(𝑇𝐻))

(𝑁−𝑘)
 

3.8 

 



 

86 

 

material pore water pressure and to reduce effective stress, so that shear strength is reduced 

and a landslide occurs (Iverson et al. 1997; Wieczorek & Glade 2005; Napolitano et al. 2016). 

It is meaningless to examine all possible threshold combinations because many of the rainfall 

variables may be poor predictors of landslide occurrence and many variables may be highly 

correlated with one another. For example, the 1 and 2-day rain accumulation variables are 

likely to be highly correlated. Including highly correlated variables may over or under-estimate 

the threshold probabilities. In addition, this is an exhaustive and inefficient process given that 

there are some 500,000 possible threshold combinations ( 
10,000!

2!(10,000−2)!
, 10,000 is the total 

number of candidate thresholds = 4 variables × 10 antecedence periods × 250 candidate 

thresholds).  

A criterion is applied to select suitable pairs of rain variables. First, the AUC scores are used 

to identify the best performing rain variables. Second, statistically independent and weakly 

correlated pairs of variables are identified using Spearman’s rank order correlation (𝑅). To 

avoid issues with the large sample sizes, the average 𝑅 is used from a 500 random sub-sampling 

tests of the data (𝑛 = 300). The cut off values of AUC and 𝑅 are selected based on the range 

of obtained values and is also guided by values used in previous studies. Søren et al (2014) use 

𝑅 < 0.8 and several studies report good AUC ≥ 0.85 (Staley et al. 2013; Giannecchini et al. 

2016).  
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3.4 Network Traffic Model 

3.4.1 Definition of the road transport network 

The road network is obtained from OpenStreetMap (OSM), the native input for the SUMO 

simulation software used. The OSM network data is supplied in a OSM extensible markup 

language format (OSM-XML) that describes the network as a directed graph. The OSM-XML 

network contains the following information: each road segment is a collection of road lanes 

with information on their classification (e.g. secondary roads or motorways), location, 

geometry, direction of travel and speed limit; junction nodes provide the connections between 

the road segments and lanes, including rights of way and turn restrictions.  

As the OSM network data is open source, the network is validated using a proprietary integrated 

transport network (ITN) produced by the Ordnance Survey (Ordnance Survey 2016). The ITN 

is the official dataset developed and maintained by regional and national road authorities in the 

UK. The two networks share the same geometry and topology (i.e. the road segment lengths 

and connections are correct). The validation ensures that the attributes of each road segment in 

the OSM network reflect those recorded in the ITN, including the turn restrictions, road speed 

limits, and road segment classifications. The validation is an attribute table comparison 

conducted within a geo-spatial SQL database PostGIS. Only a small number (24) of road speed 

corrections were made to reflect the speed limits recorded in the ITN.  

The simulation network includes roads classified as strategic (e.g. motorway and arterial), 

primary and secondary (e.g. inter-regional and regional) in mainland Scotland. The roads on 

the Isles of Sky, Mull and Bute are also included as these are connected by bridges or regular 

ferry services. Roads classified as tertiary, residential and unclassified are omitted, such as 

residential streets, cul-de-sacs and single lane tracks. Omitting these minor roads significantly 

increases the computational efficiency of the traffic simulation. In addition, this strategy is 

consistent with previous studies that note that minor roads contribute little to regional and inter-

regional traffic patterns (Dalziell & Nicholson 2001; Jenelius & Mattsson 2012; El-Rashidy & 

Grant-Muller 2014; Demirel et al. 2015; Meyer et al. 2015).  

 

3.4.2 Network disruption events 

A network disruption event is a hypothetical and/or historical event designed to represent 

conceivable manifestations of a landslide hazard on the road network. Each event represents a 

road segment closure which lasts for the duration of the traffic simulation. To clarify the 

adopted terminology, ‘event’ (i.e. single hazard occurrence) and ‘event set’, is widely used in 

this way in probabilistic risk assessment, hazard analysis, and catastrophe models (i.e. in 

insurance) (Kappes et al. 2012). This terminology is also applied in past network studies 

(Murray et al. 2008; El-Rashidy & Grant-Muller 2014), however, others also use ‘scenario’ 

specifically for potential hazard occurrences restricting ‘event’ to actual past occurrences 

(Meyer et al. 2015). At its most basic, an event set could simply be compilation of the historical 

occurrences of a hazard, but are commonly supplemented by physical or statistical modelling 

to extrapolate beyond experience to potential and extremely rare events.  

For this study three sets of landslide events are created. First, an event set is formed using the 

known historical landslides that caused disruptions on the road transport network. Then, two 

event more sets are created using the landslide susceptibility models. One of these event sets 
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is created using the logistic regression model described above, whilst the other is created using 

the BGS GeoSure susceptibility model. The process to select each landslide event is identical 

to the steps to identify susceptible road segments in section 3.2.5 Susceptible road segments 

and model validation 

The landslide event sets are generated on Scotland’s 4300 km strategic road network. This 

network is the main transport connection between regions, population centres and key 

infrastructure; locally termed the “trunk” road network. Landslide events are defined for 

individual road segments (i.e. between junctions) and assume complete closure (i.e. all lanes 

in each direction). Events are not created on junctions (i.e. intersection or slip roads) or on 

primary and secondary roads (e.g. interregional and local roads). This is to constrain the scope 

and complexity of the study (Jenelius 2009; Nyberg & Johansson 2013; Demirel et al. 2015; 

Meyer et al. 2015) and to align with national level management of the strategic road network; 

all other roads are managed at the local authority level.  

3.4.3 Creating an Origin-Destination matrix of road traffic demand 

An OD matrix describes the start and end location of every trip made within the network. As 

illustrated in Figure 3.11a, trips are usually distributed between transport analysis zones and 

the OD matrix classifies the number of trips coming from and going to each zone. Note that 

trips with the same origin and destination zone represent internal trips (e.g. local trips).  

 

OD 

Matrix 

Destination Zones 

A B 

O
ri

g
in

 Z
o
n
es

 

A 𝑇𝑟𝑖𝑝𝑠𝐴𝐴 𝑇𝑟𝑖𝑝𝑠𝐴𝐵 

B 𝑇𝑟𝑖𝑝𝑠𝐵𝐴 𝑇𝑟𝑖𝑝𝑠𝐵𝐵 

 

(A)                 (B) 

Figure 3.11. (A) example of an origin destination matrix. (B) A map showing the 1212 

transport analysis zones for Scotland in the 2011 census; the insert (red box) shows the zones 

for Glasgow city.  
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A UK wide OD matrix data was obtained from the recent 2011 census that is available on 

safeguarded release for academic research (ONS 2011a). The dataset represents the “location 

of usual residence and place of work by method of travel to work” on a typical weekday and 

for all residents aged over 16. The OD trips are made between different geographical zones 

including: middle super output areas in England and Wales, super output areas in Northern 

Ireland, and intermediate zones in Scotland. In the study area (Figure 3.11b), the 1212 

intermediate zone boundaries were designed to represent areas of 2500 to 7000 residents based 

on similarities in small area statistics including, population demographics, housing, health, 

crime and education (Flowerdew & Feng 2005). These zones have mean and median area of 

57.8 and 1.7 km2, with smaller zones in urban areas with higher population density.  

 

 

Table 3.6 lists the number of trips made for different methods of transport collected in the 

census OD matrix. The census captured 2.52M respondents, approximately 50 % of the study 

area population. Table 3.6 is split into road and non-road based methods of transport as the 

focus of this study is the road transport network. For road based methods, the percentages show 

that trips made using cars or small vans and their passengers comprise 81 % of all trips made 

on the road network. The information for the number of passengers enables the calculation of 

the vehicle occupancy rate in each zone. Vehicle occupancy is the average number of persons 

per vehicle per trip and is used when estimating the travel time and economic impact of 

disruption. For example, WebTAG gives a UK average vehicle occupancy rate of 1.16 (DFT 

2014a). Pragmatically, the traffic model is constructed using only the car or small van OD 

matrix and the vehicle occupancy rates calculated from the passenger OD matrix. This is 

because: i) these data represent a large majority (81 %) of the total daily trips made in Scotland; 

ii) trips made by other methods, such as by bus, taxi or motorcycle, are likely to be most 

prevalent within urban areas where landslide activity and thus the potential to be disrupted is 

limited; iii) other modes will have little or no effect on road traffic flows, such as cycles and 

 Method of travel to work Count % 

R
o
ad

  

Car or small van 1,374,018 73.20 

Bus 271,337 14.46 

Passenger in a car or van 145,996 7.78 

Bicycle 35,521 1.89 

Other 28,696 1.53 

Taxi 14,377 0.77 

Motorcycle or scooter  7135 0.38 

Sub-total 1,877,080 100.00 

N
o
n
-R

o
ad

 Work from home 276,628 
 

Pedestrian 265,413 
 

Train 101,109 
 

Underground, light rail, tram 7590 
 

Sub-total 650,740 
 

 Total: all categories 2,527,820 
 

 
Table 3.6. The number and percentage of trips made by different methods of transportation in 

the study as reported in the 2011 Census. 



 

90 

 

pedestrians; and iv) as multi-modal trip modelling although possible in SUMO is still in its 

relative infancy.  

Traditionally, OD matrices were generated using surveys of road users travel characteristics, 

such as trip start-end locations and frequency (Ortuzar & Willumsen 2011). These surveys were 

conducted either at the road side or at home addresses and this was very expensive, disruptive 

to travel, cumbersome and hence many people were reluctant to participate. Consequently, data 

quality is usually very poor. Recently, other techniques have been used to generate OD matrices 

including, ‘activity generation’ using population statistics, and maximum entropy estimation 

from traffic count data (Ortuzar & Willumsen 2011; Peeta et al. 2015). Approaches using 

traffic count data are attractive as this data provide a continuous record of traffic patterns, is 

relatively abundant and cheap to obtain. The OD matrix used in this study partially overcome 

issues related to data quality as all eligible persons are required to reply to the census by UK 

law (Census Act 1920). To protect personal identities the OD matrix only specifies the method 

of transport, the number and the start and end zone of each trip. It also lacks information on the 

time of day that trips are made. In reality, the traffic demand represented within the OD matrix 

is time dependant and during rush hour increasing levels of demand often exceed road capacity 

leading to congestion. Therefore, to create the traffic model the OD matrix must be spatially 

and temporally discretised.  

SUMO includes applications to overcome these issues. First, spatial discretisation of the OD 

matrix. The trips in the OD matrix are assigned specific start and end locations in the network 

by the following steps:  

• The ‘EdgesInDistricts’ application is used to create a list of all the road segments and 

nodes within each transport analysis zone. The application also flags any zones that 

are not connected to the network by any road. Five unconnected zones were found and 

these were reconnected by re-building the network and including the minor roads that 

intersect these zones (e.g. tertiary or residential roads). 

• The ‘OD2TRIPS’ application uses the list of road segments and nodes in each zone 

created in step 1 to split the OD matrix into a list of individual trips with distinct start 

and end locations. OD2TRIPS randomly assigns start-end locations at any position 

along a link or start-end positions can be fixed to nodes. The start-ends were limited 

to node positions as this is typically where the minor roads were connected to the 

major road network (e.g. to residential areas or places of business). Internal trips 

starting and ending within the same zone were also assigned random start-end nodes.   

• Second, the trips are temporally distributed by analysing traffic count records from 

across Scotland. The Department for Transport, Scotland provide 15-minute 

resolution automatic traffic count data from 40 sites on the major road network over 

the period January 2004 to March 2015. Figure 3.12 illustrates the average hourly 

traffic count at each site on weekdays for the 11-year period. The traffic model is 

constructed to represent the weekday morning rush hour from 03:00 to 10:00 am 

(vertical dashed lines). This period is selected since it represents one third of the 

weekday traffic count and as the census OD data characterises commuter trips that are 

predominantly made during these hours (DFT 2014a). Additionally, the level of traffic 

demand goes from near zero to the daily peak over these 7-hours. In terms of traffic 

simulation, it is a far more logical approach to gradually increase the number of 

vehicles in the model as opposed to starting from a congested situation. The traffic 

count data is used to temporally distribute the OD matrix trips: 
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• The hourly proportion of traffic 03:00 to 10:00 am is calculated using the annual 

average weekday traffic count data illustrated in Figure 3.12. These are: 03:00-04:00 

am 1.03 %, 04:00-05:00 am 1.15 %, 1.84, 4.20, 11.70, 24.56, 29.49, and 09:00-10:00 

am 26.01 %. OD2TRIPS uses these proportions to assign a start time to each trip. A 

known limitation to this approach is due to the fact that the hourly traffic proportion is 

known to vary by day of the week and seasonally. For example, the mean hourly 

proportion of traffic in the network on a Monday during a summer month is different 

from a Friday during a winter month. This study uses the mean annual weekday 

proportions for simplicity. Other studies focussing on, for instance, the impact of 

landslides initiated solely by winter storms may therefore wish to use seasonally 

adjusted values.  

 

  

(A)               (B) 

Figure 3.12. A) Map showing the location of 40 automatic traffic counting sites on the major 

road network. B) The hourly average traffic count (log scale) on weekdays January 2004 to 

March 2015.  
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3.4.4 Traffic simulation 

The traffic simulation was conducted using a Windows 7 operated Intel Xeon CPU E5-2450 

v2 @2.50 GHz with 128 GB ram. The traffic simulation, including the time and cost of travel, 

can be seen as the result of combining the OD matrix trips (i.e. traffic demand) and the route 

choice behaviour. In the literature review it is established that Wardrop's (1952) user 

equilibrium principle (UE) is an accepted model of route choice for congested networks: every 

vehicle chooses the route that minimises its travel cost, and a UE state is reached when no more 

routes can be adjusted to reduce the cost of travel. UE assumes that as the level of trip demand 

increases on certain routes and road segments, so too will the cost of travel and at some point 

it will become cheaper to use alternative routes. For this reason UE is widely applied to model 

the spill-over effects and self-optimising nature of road network traffic (Ortuzar & Willumsen 

2011; DFT 2014a). 

The SUMO application ‘DuaIterate’ performs an iterative procedure of dynamic user 

assignment to calculate a user equilibrium state. The mathematical implementation of this 

procedure was first developed by Gawron (1998) and is described below: 

1. The SUMO application ‘DUAROUTER’ is called by ‘DuaIterate’ to calculate the 

initial route of each trip using the Dijkstra shortest path algorithm. For each trip (𝑖) in 

the OD matrix, the shortest path route is calculated as a function of the uncongested 

travel-time (i.e. road distance × road speed) between the origin (𝑂𝑖), destination 𝐷𝑖 

and departure time (𝑇𝑖).  

2. The simulation application ‘SUMO’ is used to calculate the ‘real’ travel times of the 

calculated routes, such as trip travel time, average speed and queuing time; the 

technical aspects of the simulation are described below. SUMO also generates a series 

of dump files that hold aggregated information on the travel-time cost of traversing 

each road segment at regular intervals throughout the simulation. The simulation ends 

once all trips are complete. 

3. The next iteration begins by re-initializing DUAROUTER to recalculate the shortest 

routes in step 1. The new routes are calculated taking network congestion into 

consideration by using the road segment costs held within the simulation dump files 

from step 2.  

4. Steps 2 and 3 are repeated until a user equilibrium state is achieved and the DuaIterate 

process is terminated. The convergence of the simulation to UE is measured by the 

standard deviation of the trip travel times across each iteration. The UE convergence 

criteria used is for standard deviation < 0.01, as indicated in the SUMO 

documentation.  

The key publications regarding the technical aspects of the core ‘SUMO’ traffic simulation 

application used in step 2 include: the car following model (Kraus et al. 1997), the dynamic 

user assignment procedure as described above (Gawron 1998), and their implementation within 

an open source software package (Krajzewicz et al. 2012).  

The car-following model is used to define vehicle speeds in relation to other upstream vehicles. 

The model and its default parameters allow vehicles to travel at the maximum possible speed 

so that a vehicle could stop without causing a collision. It also enables vehicle acceleration and 

speed to deviate by 10 % so that overtaking is possible, such as on dual carriageways, but 

without violating the condition for no collisions.  
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The SUMO model is a time-discrete and space-continuous traffic flow simulation. The default 

time step length is 1 second, this is recommended for the car-following model which treats 

vehicle speed as a constant in each time step (i.e. the Euler method). A first order ‘Ballistic’ 

method is planned for future SUMO releases (Treiber & Kanagaraj 2015). Spatially, SUMO is 

an integrated micro-meso scale traffic simulation (Burghout et al. 2006; Krajzewicz et al. 

2012). The model supports micro-scale considerations of for example, calculating the least cost 

routes of each trip, and facilitates extensions for possible areas of future interest, such as 

intelligent transport control systems, partial road closures and multi modal transportation. In 

addition, it enables efficient meso-scale computation of traffic patterns at junctions and 

intersections, such as aggregating traffic movements over complex nodes, that cannot be 

realistically modelled at the micro scale in large and complex networks. These features mean 

that SUMO is designed to handle very large networks, with no hard limits on the number of 

roads or vehicles. 

3.4.5 Model validation 

Several statistical and semi-qualitative procedures are applied to in order validate the traffic 

simulation model: 

• The undisrupted network simulation (e.g. no landslide events) is calibrated SUMO’s 

Calibration of Dynamic Traffic Simulations (CADYTS) application (Flotterod et al. 

2012). The tool bridges the gap between empirical traffic flows, in the form of 

automatic traffic count data, and the traffic flows produced by the simulation. First, 

the calibration computes the normalised Root Mean Square Error (𝑛𝑅𝑀𝑆𝐸) between 

the observed and modelled traffic counts. The error value is calculated using the same 

automatic traffic count data used to define the OD matrix trips. The 𝑛𝑅𝑀𝑆𝐸 measure 

is widely used in transportation modelling and values of 2.5 – 25 % are reported for 

the best models in (Smilowitz et al. 1999; Brockfeld et al. 2003; Ortuzar & Willumsen 

2011). Second, if poor error values are obtained, CADYTs follows a stochastic route 

re-assignment procedure whereby vehicle routes are randomly re-calculated until the 

𝑛𝑅𝑀𝑆𝐸 value is reduced. 

• In addition, a sensitivity test and mean error value for each OD zone (e.g. ±5 minutes) 

is determined by simulating 30 disruptions on segments expected to have little effect 

(i.e. road segments with no undisrupted traffic flow). 

• The results of the model are compared to the results obtained using other models by 

Winter et al. (2014). 

 

3.4.6 Impact measures 

For each event the travel delay and economic impact is considered nationally and within each 

OD zone. Economic impact is derived using UK national average value for travel time 

generalised cost (i.e. the market price value of occupant time and vehicle operation). This value 

is used in transportation planning and appraisal (DFT 2014a), and in previous impact 

assessments (Winter et al. 2014). The nationwide impacts (𝑁𝐼) are given by Equation 3.9:  

𝑁𝐼 =  ∆𝑇𝑜,𝑑𝐶𝑜𝑠𝑡 

where the additional travel time (∆𝑇) between all OD zones (𝑜, 𝑑) in the undisrupted and 

disruption event simulation is multiplied by the user generalised cost (𝐶𝑜𝑠𝑡). 

3.9 
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The spatial distribution of impacts is illustrated in terms of extended hazard impact footprints. 

These footprints are constructed by aggregating the 𝑁𝐼 values of individual trips by their zone 

of origin (i.e. their zone of residence).  

Some disruption events may completely disconnect OD pairs and produce isolated sub-

networks. Travel to and travel from these sub-networks to the primary network is impossible 

(i.e. taking infinite time within a simulation). Therefore, the travel time measures outlined 

above are not suitable. In the literature several approaches and measures have been 

demonstrated to handle sub-network scenarios, including: not fully closing disrupted segments 

(e.g. reducing speed to 99.9 %) (Sullivan et al. 2010); using a measure for the proportion of 

unsatisfied demand (Jenelius et al. 2006a; Rupi et al. 2014); or by setting travel time delay 

equivalent to the disruption duration (Jenelius 2009).  

This study uses a new approach based on the rational that initially, in undisrupted network 

conditions, a trip is made to gain some economic or social benefit. It is reasonable to assume 

that the value of the benefits received by making the trip are equivalent or greater than the cost 

of travel (e.g. an employee must receive the same or more money in their daily pay than the 

cost of commuting to work). Therefore, in this study, trips are omitted from the simulation if 

an event disconnects their OD pair (i.e. there is no possible route). The impact of these trips is 

taken as equivalent to the undisrupted value of the trip. For instance, consider a trip that has an 

initial, undisrupted duration of 1-hour. During an event the trip’s OD pair is disconnected and 

so the trip is omitted from the simulation. However, as the trip was not possible a +1-hour 

travel time impact is still accounted for at the origin zone and national aggregation level. 
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3.5 Catastrophe model 

3.5.1 Catastrophe model framework 

The catastrophe (CAT) model framework developed in this study adopts the logic and modules 

used by best practice academic and state-of-the-art proprietary models, such as those used in 

insurance and re-insurance (Grossi & Kunreuther 2005; Foote et al. 2017). The framework is 

comprised of four modules: hazard, exposure, vulnerability and finance or loss. This enables 

controlled and repeatable experiments to be conducted. A description and details of each 

module, including the input data and the modelling assumptions, is provided in the following 

sections.  

3.5.2 The hazard module 

The hazard module utilises the results of the empirical landslide hazard analyses and a Monte 

Carlo sampling procedure to create thousands of potential landslide events (the event set) on 

the road network in Scotland. Each event is associated with a probability of occurrence and the 

event set is used to drive the exposure, vulnerability and financial modules of the CAT model.  

The criteria for each event is as follows:  

• Each event represents the occurrence of a landslide on a strategic road network (SRN) 

segment and each event must contain one landslide (single segment closure) or 

multiple simultaneous landslides (multiple segment closures).  

• For each event, it is assumed that landslide occurrence causes the complete closure of 

road segments along their entire length (i.e. all lanes are closed between the segment 

start and end nodes). This assumes that the landslide magnitude and intensity is 

sufficient to completely disrupt the road segment. Therefore partial road closures are 

not considered and this is a necessary simplification to constrain the scope and 

complexity of large network studies (Jenelius 2009; Nyberg & Johansson 2013; 

Mattsson & Jenelius 2015; Meyer et al. 2015). A closure duration variable is 

introduced in the vulnerability module to account for landslides that do not cause 

network disruptions (Chapter 3.5.4 The vulnerability module). 

To generate the stochastic event via Monte Carlo simulation, the landslide hazard of each road 

segment must be quantified. The landslide hazard (𝐻) is the probability of landslide occurrence 

within a discrete period of time and space. As defined in Equation 2.6, 𝐻 may be derived from 

the multiplication of: the landslide susceptibility (𝑝𝑆) calculated by the hillslope scale landslide 

susceptibility model; and annual the probability of landslide occurrence (𝑝𝑇) calculated by the 

landslide initiation thresholds on 5 km2 radar arrays, according to Bayes theorem (Equation 3.3 

to Equation 3.7). The following steps describe the technical procedures used combine 𝑝𝑆 and 

𝑝𝑇 to calculate the landslide hazard at the road segment scale.  

1. Spatial database software (PostgreSQL) is used to perform intersections and joins 

between: a raster layer containing the landslide probability of occurrence per pixel, 

the hillslope section units used to model terrain susceptibility, and the road network 

segments. A set of candidate initiation thresholds is selected according to the threshold 

results (Chapter 6).  

2. The landslide hazard (𝐻𝑟) for each road segment (𝑟) is defined by Equation 3.10: 
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where ∑ 𝑝𝑠
𝑟
 is the sum landslide susceptibility for the set of hillslopes (|𝑈𝑟|) that intersect each 

road segment (𝑟), addressing the spatial component of the landslide hazard. And 𝑚𝑎𝑥 (𝑝𝑇
𝑈𝑟

) is 

the annual maximum probability of landslide occurrence within the set of intersecting 

hillslopes on the road segment, addressing the potential loading by rainfall or temporal 

component of the landslide hazard. This definition of landslide hazard is consistent with those 

used in previous studies (Chapter 2.2.7).  

The stochastic event set is then generated by Monte Carlo sampling of the landslide hazard on 

road segments for a representative number of years. In the study of natural hazards it is common 

to use 10,000 years to capture the rare, low probability events (Foote et al. 2017). 

For each simulated year, the occurrence of landslide events is conditioned by an empirical 

distribution for the frequency of storms per year. Therefore, within the simulation the 

occurrence of landslide events is conditional on the occurrence of a storm. It is important to 

stress that the storm conditioning variable does not influence the annual probability of landslide 

occurrence due to calibration of the model, but it provides several modelling advantages. First, 

conceptually the use of storms is a rational approach given the present level of understanding 

for the active landslide process, mechanisms and the observational records obtained in 

Scotland, that indicate a strong association between landslide occurrence and periods of 

prolonged and intense rainfall during storms (Ballantyne 1986, 2002; Milne et al. 2009; Winter 

et al. 2010; Dijkstra et al. 2016b). Second, pragmatically the use of storms enables an 

estimation for the likelihood of storms and events with two or more simultaneous landslide 

occurrences in addition to evaluating how different spatial distributions of storm footprints 

(e.g. size and location) might influence the expected level of loss. Third, it enables the model 

to be used by future investigations of other storm driven hazards (e.g. flooding) and to evaluate 

other factors, including: varying the frequency of storms to reflect scenarios of future climate 

change (Murphy et al. 2010) Lastly, the configuration of the model enables future 

investigations to experiment with alternative conditioning variables with relative ease.  

The storm conditioning variable represents a simplification, necessary in the scope of this 

study. In the most sophisticated catastrophe models the stochastic event sets are created by 

sampling the outputs of complex physical-process-based projections or stochastic weather 

generator models of, for example hourly and daily rainfall and wind speed. For the British Isle, 

a relevant current data set is the weather sequences produced by the stochastic weather 

generator of the UK Climate Impact Programme 2009 (Jones et al. 2009). However, several 

challenges remain as these data are not currently resolved for cell resolutions of < 25 Km2 and 

for spatially coherent projections across groups of cells. These and other limitations are 

expected to be resolved in the next iteration of the weather generator expected in 2018.  

The procedure used to simulate the event set is as follows:  

• The procedure is initialized to run for 10,000 years (iterations).  

𝐻𝑟 =  ∑ 𝑝𝑆

𝑟

|𝑈𝑟|

𝑖=1

 ×  𝑚𝑎𝑥 (𝑝𝑇

𝑈𝑟
) 

3.10 
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For each year, the expected number of storms is sampled from an empirical probability 

mass function for the annual frequency storms of in the UK. This distribution is 

constructed using very-severe-gales in the Jenkinson Gale Index (Jenkinson & Collison 

1977; Jones et al. 2013); the index is compiled of three gale classifications for 

increasing wind vorticity including, gales, severe-gales and very-severe-gales. The gale 

index is available for the period 1871 to present day and the 2004 to 2016 period of the 

index is used to provide consistency with the period of the landslide observations and 

the rainfall data used in by study (Chapter 3.1.2). The gale index and other comparable 

indices, for instance the 1871–2012 record of cyclone frequency, intensity and 

‘storminess’ derived from the 20th Century Reanalysis V2 (20CR), have shown 

cyclonic activity to serve as a meaningful proxy of seasonal precipitation patterns in 

the British Isles (Matthews et al. 2016). The 20CR data was not used as the period of 

landslide data extends beyond 2012.  

• The landslide hazard of each road segment (𝐻𝑟) is calibrated to account for the 

observed number of landslides per storm in the period 2004 to 2016 in Scotland. The 

calibrated landslide hazard (𝐻𝑐𝑟) is: 

where 𝐻𝑟 is the uncalibrated landslide hazard on each road segment and 𝐽 is a 

calibration coefficient for the average number of landslides per storm; 𝐽 is calculated 

using the number of landslides and the number of very-sever-gales in the gale index for 

the period 2004 to 2016. The 𝑓 variable is the approximate mean number of road 

segments effected by a storm and is used to account for storm size. For instance, for a 

very large storm covering all of Scotland 𝑓 = 1. This variable allows for smaller storm 

footprints that cover a portion of the spatial domain to be included.  For each storm in 

each year, the landslide events are sampled using Monte Carlo simulation of the 

calibrated landslide hazard on each road segment. The sampling is conducted in an 

independent fashion so that the occurrence of one landslide does not influence the 

occurrence of another. By this technique, the simulation provides a robust estimation 

for the number of events with 0, 1, 2…∞ simultaneous landslide occurrences. It is 

important to highlight that this reflects the estimated likelihood of landslides occurring 

on one or more individual road segments. It does not reflect the likelihood of multiple 

landslide occurrences along the length of a single road segment.  

The result is of all the above procedures is an event set that represents 10,000 years’ worth of 

randomly sampling the storm frequencies and the road segment landslide hazard for the period 

2004 to 2016 in Scotland.  

3.5.3 The exposure module 

The exposure module contains information on the objects being modelled and their monetary 

values. In this study, the objects being modelled are the SRN segments and their exposure 

values are the indirect economic impacts calculated using the traffic model (Chapter 3.4). The 

event impacts calculated by the traffic model indicate the additional cost of travel during a 

single period of peak traffic flow.  

𝐻𝑐𝑟

(𝐻𝑟 × 𝑓)

𝐽
 

3.11 
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For events with one landslide occurrence (single segment disrupted), the full range of impacts 

is calculated by applying the traffic model to all 580 SRN segments in Scotland. For the events 

with two or three simultaneous landslides there are approximately 170,000 and 32,000,000 

possible combinations. As each traffic simulation takes 6 – 10 hours, simulating the traffic for 

each combination would likely take tens of years without a significant increase in the available 

computing resource. Subsequently, the traffic impacts of 300 events with two landslide 

occurrences and 100 events with three landslide occurrences were calculated to provide a 10 

% margin of error at the 95 % confidence level. The events with two and three simultaneous 

landslides were sampled from the stochastic event set without replacement – each one is 

represents a unique combination of roads. For simplicity and computational efficiency, the 

events with four or more landslides were not included in the CAT model. In addition, the 

simulated probability of these events was found to be very low (Chapter 7.2). 

The CAT model is run for a set number of years. For each year there is a sampled number of 

storms, and within each storm the landslide hazard is sampled to generate one or more landslide 

occurrences on the roads in Scotland. For the storms with one landslide, the exposure module 

retrieves the event losses from an empirical distribution lookup table for each of the 580 SRN 

segments in Scotland. When a storm produces two or three landslides, the exposure module 

samples the event losses from a skewed normal distribution. The skewed normal distributions 

are generated by maximum likelihood estimation for the samples of 300 two landslide events 

and 100 three landslide events described above. Future investigations may reduce the margin 

of error by simulating more events.  

3.5.4 The vulnerability module 

The vulnerability module provides the interface between the hazard, exposure and loss 

modules. Usually this involves a series of damage functions that are used to provide a look-up 

between the hazard intensity and the estimated damage caused to a modelled object as a 

proportion of its total exposure or total value (Foote et al. 2017). For the hazards where loss 

data are generally available (e.g. insurance claims due to flooding), a variety of damage 

functions have been constructed that account for different characteristics including, geographic 

region, flood inundation depth, replacement costs, building construction, and building usage 

(Merz et al. 2004; Sampson et al. 2014). 

In this study, the simplifying assumption is made that when a landslide event occurs its 

magnitude and intensity is sufficient to completely disrupt the road segment and partial road 

closures are not considered (Chapter 3.5.2). However, the duration of a landslide disruption is 

determined by a complex combination of factors including, the hazard magnitude and intensity, 

the complexity and cost of remediation, and the availability of resources. To account for event 

duration, an empirical distribution of road closure duration is constructed using records 

contained in the landslide database obtained for Scotland (3.1.2). The records indicate that the 

range of disruption durations are in the order of 0 (< 12 hours), 1 (12 to 24 hours) to 15 days. 

The CAT model is applied with and without these durations to illustrate the effect of disruption 

duration on landslide losses. For the latter, the duration of disruption is assumed to be 1 day.  

3.5.6 The Financial Module 

The financial model provides the primary outputs of the CAT model. This includes metrics and 

probability distributions of loss. The Annual Average Loss (AAL) is the average loss of all 

simulated events weighted by their annual probability of occurrence. AAL indicates the losses 
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expected within any given year. The Occurrence Exceedance Probability (OEP) is the 

probability distribution that a loss from a single event will exceed a certain value within a year. 

OEP is be used to determine and identify the likelihood of losses due to rare and extreme events. 

The Aggregate Exceedance Probability (AEP) is the inverse of cumulative probability 

distribution function that the sum of event losses is equal to or greater than a certain amount 

within a year. AEP indicates the likelihood of a certain level of loss.  The AEP may also be 

calculated in terms of the losses expected for a certain return period (e.g. the annual losses for 

a 1 in 100-year return period). 
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Chapter 4 Landslide Susceptibility 

 

4.1 Introduction 

Chapter 4 presents the results and discussion of the landslide susceptibility modelling. 

Landslide susceptibility is the spatial propensity or landslide occurrence and it attempts to 

answer ‘where’ and on which roads are landslides most likely to occur in Scotland. In the 

literature review (Chapter 2.2), logistic regression was identified as a suitable method to 

construct a landslide susceptibility model and a set of candidate explanatory variables were 

found. The susceptibility model is trained and tested using A database of 75 shallow 

translational and debris flow landslides for which the landslide source location and date of 

occurrence is known (Chapter 3.1.2). The study area is apportioned in to hillslope units and the 

landslide susceptibility of each hillslope is evaluated. The effect of hillslope size on model 

accuracy is systematically evaluated by comparing the model results for different sized 

hillslope units. The model results examine how each explanatory variable contributes to 

increased or decreased hillslope susceptibility and this is used to inform of the landslide 

processes. A map of the hillslope landslide susceptibility is produced and this is used to assess 

the landslide potential on each road segment in the strategic road network of Scotland. The 

selection of susceptible roads is compared is those selected using a different susceptibility 

model (i.e. GeoSure).  

 

4.2 Generated hillslopes 

One of the objectives of this study was to develop a technique to create different sized 

catchments and their component hillslopes, and to evaluate what size hillslopes are most 

suitable for modelling landslide susceptibility. To this end, six different sized sets of 

catchments-hillslopes were created. Only the hillslopes that intersect the road network are used 

in the logistic regression models and the properties of these hillslopes are shown in Table 4.1. 

The ‘catchment threshold’ is the minimum drainage area required for a catchment to be formed 

by the number 25 m2 DEM cells. For example, the 100 and 1600-cell thresholds create 

catchments of > 0.0625 and > 1.0 km2 and the hillslopes have smaller areas (Table 4.1). A total 

75 landslides are recorded in the landslide inventory. However, the number of landslides 

situated on the hillslopes that intersect the road network varies with the size and shape of the 

different hillslopes.  
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4.3 Input variables  

Exploratory data analysis was used to examine the ability of the different explanatory variables 

to classify landslide occurrence and to create a selection of variables most suitable for use in 

the logistic regression model. With this aim, each variable is analysed using class frequency 

tables, histograms and the empirical probability distribution (pdf). The proportion of hillslopes 

in each class and the overlapping area between the pdf curves (𝐴) are used to evaluate the skill 

of each variable at distinguishing between landslide (LS) and non-landslide (NLS) hillslopes 

(Cho et al. 2006; Berenguer et al. 2015). The smaller the overlapping area between the LS and 

NLS pdf curves, the more skill the variable has.  

Figure 4.1 shows the results of the exploratory data analysis for the 14 explanatory variables. 

For brevity, only the plots of the hillslopes generated using the 1000-cell catchment threshold 

are shown: nonetheless the variables with the highest and lowest skill scores are consistent 

across the five other catchment threshold values. As indicated by the overlapping area of the 

pdf’s, some of the best performing variables include maximum elevation (𝐴 =  0.40), median 

slope angle (𝐴 =  0.46) and general curvature (𝐴 =  0.65). Melton ratio performs relatively 

poorly (𝐴 =  0.82).  

The classes in the soil depth and soil grain size variables exhibit little variation between 

landslide and non-landslide hillslopes (Figure 4.1K-L). In addition, a large proportion of 

hillslopes are characterised by a single soil depth (70 % 2 - > 5 m deep) and grain size class 

(85 % Argillaceous). Subsequently, soil depth and soil grain size are not used in any models. 

The classes in the PMM soil texture variable exhibit a more even frequency distribution (Figure 

4.1J). There are very few hillslopes in the silt and peat soil texture classes, however, most silt 

and peat soils are confined to lowland river channels and on upland moors situated away from 

the major road network and its intersecting hillslopes.  

For the average aspect of hillslopes, two sets of bins are displayed to demonstrate the 

consequence of feature engineering. Figure 4.1N shows the four cardinal aspect classes (bottom 

bars showing NE 0 – 90o, SE, SW, NW) and four intercardinal aspect classes (top bars showing 

NW - NE 315 – 45o NE – SW, etc.). Both sets have an equivalent pdf overlap (𝐴 =  0.80). The 

greatest proportion of landslides are found in the SE-SW and SW-NW intercardinal classes, 

capturing 62 % of all landslides. In contrast, the landslides are distributed more evenly by the 

cardinal aspect classes – albeit still showing a tendency for the SE and SW facing hillslopes. 

Catchment 

threshold 

Total 

area 

(km2) 

Number 

of 

hillslopes 

Number 

of 

landslides 

Mean 

area 

(km2) 

Min 

area 

(km2) 

Max 

area 

(km2) 

Mean 

elevation 

range (m) 

100 9,915.65 81,352 52 0.12 0.0025 1.94 116.47 

400 15,584.30 41,792 56 0.37 0.0119 4.01 127.85 

700 18,640.25 31,852 59 0.59 0.0119 6.91 132.87 

1000 20,882.17 26,580 61 0.79 0.0119 6.96 136.09 

1300 22,594.18 23,086 60 0.98 0.0119 8.53 138.74 

1600 24,130.92 20,653 62 1.17 0.0119 10.08 141.40 

 
Table 4.1. Summary statistics for six sets of hillslopes created in Scotland.  
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The intercardinal classes may therefore be more suitable for use in susceptibility modelling. 

Figure 4.1 O shows the distribution of aspect average in a radial plot.   
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Figure 4.1. A – O histograms and probability distributions of the explanatory variables used to 

model susceptibility. The red bars and lines correspond to landslide hillslopes, the black ones 

to non-landslide hillslopes. The pdf overlap (𝐴) is the shared proportion of the two 

distributions. Plot O is a radial plot of hillslope aspect, scaled on the y-axis using slope max (0 

– 90o).  
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Correlation analysis and chi-square tests are applied to ensure that the explanatory variables 

used in the model are independent. The following figures are again for the hillslopes generated 

using the 1000-cell catchment threshold. Figure 4.2 is a matrix plot that illustrates Pearson’s 

correlation coefficient (𝑟) for the explanatory continuous variables. The matrix is colour shaded 

for negative (Blue) to positive correlation (Red) and asterisks indicate significance at the 95 % 

confidence interval (𝑝 <  0.05). A threshold of 𝑟 ±0.35 is used and only one variable from 

each of the different values are taken (e.g. using mean slope angle eliminates median or 

maximum slope angle). The 𝑟 threshold is based on the absolute mean of the 𝑟 values obtained 

and is within the range of thresholds (𝑟 =  0.25 –  0.45) used in similar studies (Ayalew & 

Yamagishi 2005; Brenning 2005; Berenguer et al. 2015). 

The chi-square statistic tests that the categorical explanatory variables independent of one 

another. For this test, a high p-value (𝑝 >  0.05) rejects the hypothesis that the variables are 

dependent on one another and can therefore be used together in the model: indicated by the red 

boxes in Figure 4.2. The blue boxes and asterisks indicate that a significant association between 

the variables exists. Figure 4.3 displays the chi-square statistical significance for the categorical 

variables aspect (i.e. cardinal and intercardinal), soil depth, soil texture and soil grain size. In 

addition, the curvature variables are classified in to three classes for concave (< -0.001), flat (-

0.001 to 0.001) and convex (> 0.001) hillslopes: the 0.001 interval is equivalent to a radius of 

curvature of 10 km. This classification to makes it easier to interpret the influence of hillslope 

curvature on susceptibility using the logistic regression model coefficients and odds-ratio.  

Two different selections of high skill and independent variables are made to use as inputs to 

the model. These selections are as follows: 

• The first, selection A, includes elevation mean (𝐴 =  0.55) and maximum slope (𝐴 =
 0.54) that exhibit a weak positive correlation (𝑟 =  0.34). Melton ratio is excluded 

due to high positive correlation to mean elevation (𝑟 =  0.81). Selection A also 

contains the categorical variables, soil texture, intercardinal aspect (𝐴 =  0.80) and 

the engineered general curvature classes (𝐴 =  0.65, i.e. concave, flat and convex).  

• Second, selection B, includes median slope (𝐴 =  0.46) and Melton ratio (𝐴 =
 0.82), also with weak positive correlation (𝑟 =  0.32). This eliminates all the 

elevation variables (𝑟 > 0.81). Selection B includes the same categorical variables as 

selection A.  
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Figure 4.3. Matrix showing the explanatory variable chi-square test. The blue squares with an 

asterisk (*) symbol indicate that the association between a pair of variables is highly significant 

(p < 0.05). Associated variables must not be included in the logistic regression model. 

Figure 4.2. Matrix showing the explanatory variable Pearson product momentum correlation 

coefficients from negative (blue) to positive (red). The asterisk (*) symbol indicates that the 

correlation between a pair of variables is highly significant (𝑝 <  0.05). Correlated variables 

must not be included in the logistic regression model.  
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4.4 Logistic regression modelling  

The logistic regression model (LR) of hillslope landslide susceptibility is developed using a 

cross-validated and ensemble prediction approach. Briefly, the hillslope data, including the 

explanatory variable values and landslide records, were compiled into a single hillslope-

database. To avoid known biases in the landslide database, the hillslope-database contains only 

those hillslopes that were found to intersect the major road network. 

To fit the LR models, k-fold cross-validation (𝑘 =  30) is used to randomly split the hillslopes 

with landslides in to model training (75 %) and model validation (25 %) datasets. To each of 

these datasets an equivalent number of randomly selected non-landslide hillslopes is added. 

Producing datasets with equal number of landslide and non-landslide hillslopes. A LR model 

instance is fitted to each of the training datasets and predictions are made for the hillslopes in 

the validation dataset and for all other hillslopes in the hillslope-database. For the validation 

datasets, several statistics are calculated to evaluate the LR model’s accuracy and goodness of 

fit (i.e. AIC, AUC, R2 and chi-square p-value). In addition, the explanatory variable odds-ratios 

show the change in the odds for a one unit increase of a continuous variable or between each 

class and the reference class: higher odds-ratios (> 1) indicate that a variable contributes to 

increased susceptibility. The LR model prediction results for the entire hillslope-database are 

averaged to give an ensemble prediction of landslide susceptibility across the entire road 

network. The entire process is repeated for hillslopes created using six different thresholds, 

100, 400, 700, 1000, 1300 and 1600 cells (i.e. hillslopes increasing in size).  

A unique LR model and set of results is created for each set of input explanatory variables 

outlined in Chapter 4.1 (i.e. the variables selected using the correlation scores in Figures 4.2 

and 4.3: selection A = Model A, selection B = Model B etc.). The following sections present 

the results for each of these models. The tables summarise the model performance statistics 

across hillslope sizes and the plots show the ROC curves and odds-ratios obtained for the 1000-

cell hillslopes. 

Model A: 

Model A is comprised of five explanatory variables including the continuous variables for: 

elevation mean (1) and maximum slope (2), and the categorical variables, intercardinal aspect 

(3), general curvature (4) and soil texture (5). The reference classes for the categorical variables 

are as follows: north east to south east “NE-SE2 (3); flat general curvature (4); and for soil 

texture (5), the loam, peat and silt soil classes are combined due to them having low frequency 

amongst landslide hillslopes – leaving only the sand and clay classes.  

Table 4.2 summarises the statistical measures used to evaluate model A. Smaller AIC values 

indicate models with fewer number of input variables (e.g. simpler) and a larger log-likelihood 

function (e.g. better model fit). As the number of input variables used is constant, increasing 

the hillslope size is shown to increase Model A’s goodness of fit. The models AUC (0.79 – 

0.83) and R2 (0.27 – 0.28) also indicate a relatively good fit, yet these do not appear to be 

associated with changing hillslope size: pseudo 𝑅2 values of 0.2 – 0.4 indicate very good fit 

(McFadden 1974; Clark & Hosking 1986). Crucially, only the 400-cell hillslope chi-square test 

(𝑥2) between Model A and the null model is significant at the 95 % confidence interval (𝑝 =

0.035, <  0.05). Though the p-values are close to significance for the 700 and 1000-cell 

hillslopes (0.057).  
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In Table 4.2, Table 4.3, Table 4.4 and in section 4.5 it is shown that each of the LR models 

performed greatest when using the 1000-cell hillslopes. As such only the plots for the 1000-

cell hillslope models are shown. 

Figure 4.4 displays three plots of results for Model A using 1000-cell hillslopes. Plot (A) shows 

30 ROC curves for each validation dataset used in cross-validation. This illustrates the variance 

in model fit across the model training and validation samples. Plot (B) shows the ROC curve 

(grey line) for all the hillslopes on the road network in Scotland, the AUC and error (pink 

shading) are the mean and one standard deviation of the AUC values obtained in cross-

validation (i.e. the ROC curves shown in plot A). Plot (B) also shows three susceptibility levels, 

‘Low’ (yellow), ‘Moderate’ (amber) and ‘High’ (red). The low and high levels are the optimal 

point and threat score thresholds, the moderate level threshold is exactly halfway between the 

low and high levels. The accuracy of each level is reported (Ac) and the threshold values are 

given in brackets (i.e. the cut points in the modelled susceptibility probabilities between 0 and 

1). Lastly, plot (C) shows the variable odds-ratios and their statistical significance (𝑝) given by 

the Wald test: a critical p-value of < 0.1 is suggested by Dai et al (2001). Categorical variables 

are deemed significant if at least one of their classes is significant.  

For model A using 1000-cell hillslopes (Figure 4.4C), all variables are shown to induce 

increased hillslope susceptibility and are significant at the 95 % confidence level. The odds-

ratios (𝑂𝑅) may be converted to probabilities using: 𝑃 =  (𝑂𝑅 –  1.0) × 100. For example, a 

one unit increase in the mean elevation (𝑂𝑅 = 1.003) or maximum slope (𝑂𝑅 = 1.042) of a 

hillslope translates to a 𝑃 = 0.3 % and 4.2 % increase in the likelihood of a hillslope being 

susceptible, respectively. To calculate the odds-ratio for a specific value of a continuous 

variable, take the OR to the power of the number of units. For example, if the maximum slope 

on a hillslope is 30o, 1.04230 = 𝑂𝑅 3.435 = 𝑃 243.6 %.  

For soil texture, clay (𝑃 = 17.4 %) and sand (𝑃  = 71.7 %) soils increase hillslope susceptibility 

relative to the reference class of loam, peat and silty soils. Figure 4.4C also displays several 

interesting associations between the general curvature and intercardinal aspect of hillslopes to 

increased susceptibility relative to their reference classes. The odds-ratio of the model intercept 

can be interpreted as the likelihood that a hillslope is susceptible for the reference classes and 

when all continuous variables are zero. 
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Model A     

Catchment threshold AIC AUC R2 𝒙𝟐 p-value 

100 121.57 0.83 0.27 0.119 

400 92.12 0.83 0.28 0.035 

700 80.24 0.79 0.28 0.057 

1000 80.34 0.83 0.28 0.057 

1300 71.47 0.82 0.27 0.156 

1600 65.07 0.82 0.27 0.183 

Mean 85.14 0.82 0.27 0.101 

 Table 4.2. Model A – statistical measures to evaluate the goodness of fit and significance of 

logistic regression models. AIC: the Akaike information criterion. AUC: the area under the 

receiver operating characteristic. R2: McFadden’s pseudo r square. 𝑥2 p-value: the p-value of 

the chi-square statistic between model A and the null model.  

Figure 4.4. Results of Model A using 1000 cell hillslopes. (A) 30 ROC curves for each dataset 

created in cross-validation. (B) ROC curve (grey line) for all hillslopes on the road network; 

the average AUC and error values (red shading); and the low, moderate and high susceptibility 

cut points ‘(values)’ and their accuracy (Ac). (C) Odds-ratios for the model explanatory 

variables and their statistical significance (α). The red line indicates no change. 
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Model B: 

In Model B, median slope and Melton’s ratio are used instead of elevation mean and maximum 

slope. Model B also includes the same categorical variables and reference categories as model 

A (i.e. NE-SE, flat general curvature, and the combined loam, peat and silt soil texture classes). 

As for model A, Table 4.3 shows that model B’s AIC values decrease for increasing hillslope 

size, indicating improved goodness of fit. The AUC (0.85 – 0.87) and R2 (0.34 – 0.43) values 

are higher for model B than model A and all hillslope sizes feature significant p-values. Figure 

4.5A-C shows the ROC plots (A-B), susceptibility levels (B), and odds-ratios (C) for model B 

using 1000-cell hillslopes. Compared to model A, Plot A illustrates that model B produces 

more uniform ROC curves in the cross-validation datasets. This translates to a higher mean 

AUC (0.87) and lower error (± 0.06). There is also a 10 % increase in the accuracy of the low-

yellow susceptibility level. The accuracy of the other susceptibility levels is unchanged (Figure 

4.5B). All the model’s explanatory variables are shown to increase hillslope susceptibility and 

are statistically significant. Each unit increase in the median slope angle of hillslopes exerts a 

greater influence (𝑂𝑅 = 1.329 or 𝑃 = 32.9 %) on slope susceptibility than the maximum slope 

angle variable used in model A: as expected given the smaller overlapping area of the median 

slope pdf’s (Figure 4.1). A hillslope with Melton’s ratio of 0.5 and > 0.65 increases the 

likelihood of hillslope susceptibility by 37.7 and > 51.6 %. 

Each of the statistical measures used to evaluate the logistic regression models show that model 

B performs better than model A. In multi-variate modelling, the overarching aim is to develop 

the simplest possible model (i.e. fewest input variables) whilst maximising the model fit to the 

data. The benefits of reducing the number of input variables are twofold: first, it improves 

prediction accuracy by limiting the variance of multiple coefficients; second, it eases 

interpretation by focussing on the predictors with the strongest effects (Menard 1997; Brenning 

2005). With this aim, many past studies attempt to remove input variables in a stepwise fashion 

and using a threshold of variable significance (Dai & Lee 2001; Brenning 2005). Here, a 

different approach is adopted given that each of the variables in model B are significant. Model 

B is re-run following a leave-one-out strategy in which one of the input variables is omitted 

and the model is re-evaluated. The process is repeated for each input variable. Removing the 

general curvature variable marginally improves the model. The removal of all other variables 

leads to a decrease in model performance and these iterations are subsequently discarded. The 

new model is named ‘Model C’.  
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Model B     

Catchment threshold AIC AUC R2 𝒙𝟐 p-value 

100 107.58 0.87 0.38 < 0.000 

400 89.26 0.85 0.35 0.008 

700 81.27 0.87 0.34 0.003 

1000 71.86 0.87 0.39 0.008 

1300 69.37 0.88 0.38 0.003 

1600 60.32 0.87 0.43 0.012 

Mean 79.94 0.87 0.38 0.006 

 Table 4.3. Model B – statistical measures to evaluate the goodness of fit and significance of 

logistic regression models. AIC: the Akaike information criterion. AUC: the area under the 

receiver operating characteristic. R2: McFadden’s pseudo r square. 𝑥2 p-value: the p-value of 

the chi-square statistic between model B and the null model.  

Figure 4.5. Results of Model B using 1000 cell hillslopes. (A) 30 ROC curves for each dataset 

created in cross-validation. (B) ROC curve (grey line) for all hillslopes on the road network; 

the average AUC and error values (red shading); and the low, moderate and high susceptibility 

cut points (values) and their accuracy (Ac). (C) Odds-ratios for the model explanatory variables 

and their statistical significance (α). The red line indicates no change. 
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Model C: 

Model C includes the continuous variables: median slope (1), Melton’s ratio (2), and the 

categorical variables, intercardinal aspect (3) and soil texture (4). The reference categories are 

NE-SE (3) and the combined loam, peat and silt soil texture classes (4). Table 4.4 summarises 

the performance statistics of model C across the different hillslope sizes. In comparison to 

model B (Table 4.3), the most significant changes are the reduced AIC values and chi-square 

test p-values. Improved AIC scores are most likely due to the removal of the general curvature 

input variable (i.e. a simpler model). This is supported by the fact that the AUC and R2 scores 

exhibit little change. Figure 4.6A-B also shows that there is little change in the average AUC 

scores or in the susceptibility levels and their accuracy for the 1000-cell hillslopes. In 

comparison to model B, the variables feature increased odds-ratios indicating that they have a 

stronger effect at increasing hillslope susceptibility (Figure 4.6C). Nonetheless, the relative 

strength of each explanatory variable is unchanged. For instance, the sand soil class still has a 

stronger influence than the clay class. 

Model C national: 

Models A, B and C are trained and tested using the hillslopes that intersect the major road 

network in Scotland to avoid the bias in the landslide database. To evaluate the effects of this 

bias, a new implementation of Model C is trained and tested using all of the hillslopes in the 

study area – it is not limited to the hillslopes adjacent to the road network. In summary, this 

national model provides similar AUC (0.84 – 0.87) and R2 (0.24 – 0.28) values as the models 

constrained to the hillslopes on the road network. The AIC values are notably higher (86.95 – 

243.90) indicating reduced goodness of fit. The chi-square test p-values (0.1 - < 0.001) indicate 

that there is still a significant relationship between the independent and dependent variables 

used in Model C in comparison to the null model. Crucially however, the Wald Test 

significance of the coefficients and odds-ratios of each individual variable are now found to be 

insignificant (𝑝 > 0.1). In other words, an insignificant relationship was found between each 

input variable and the dependent variable when controlling for all the other input variables. 
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Model C     

Catchment threshold AIC AUC R2 𝒙𝟐 p-value 

100 102.94 0.86 0.38 < 0.000 

400 83.64 0.86 0.36 < 0.000 

700 75.37 0.88 0.36 < 0.000 

1000 67.97 0.88 0.38 0.001 

1300 64.43 0.88 0.39 0.002 

1600 59.63 0.87 0.38 0.014 

Mean 75.66 0.87 0.38 0.003 

 Table 4.4. Model C – statistical measures to evaluate the goodness of fit and significance of 

logistic regression models. AIC: the Akaike information criterion. AUC: the area under the 

receiver operating characteristic. R2: McFadden’s pseudo r square. 𝑥2 p-value: the p-value of 

the chi-square statistic between model C and the null model.  

Figure 4.6. Results of Model C using 1000 cell hillslopes. (A) 30 ROC curves for each model 

validation dataset created in cross-validation. (B) ROC curve (grey line) for all hillslopes on 

the road network; the average AUC and error values (red shading); and the low, moderate and 

high susceptibility cut points (values) and their accuracy (Ac). (C) Odds-ratios for the model 

explanatory variables and their statistical significance (α). The red line indicates no change. 
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4.5 Selecting the optimal hillslope size 

One of the objectives of this study was to evaluate what size hillslopes are most suitable for 

modelling landslide susceptibility. Six different sets of hillslopes were created and these were 

used to develop logistic regression models of hillslope landslide susceptibility: the properties 

of the different hillslope sets are summarised in Table 4.1. Four statistical measures are used 

to evaluate each model and to select the optimal set of hillslopes. In order of decreasing 

importance based on their prevalence within the literature the measures include: the chi-square 

test statistic p-value (𝑥2 p-value), the statistical significance of the model compared to the null 

model with no input variables; AIC, a measure of model simplicity and goodness of fit (lower 

AIC values indicate simpler and better fitting models); AUC, a measure of the model’s 

accuracy to independent validation datasets created in cross-validation; and Mc Fadden’s 

pseudo R2, another indicator of goodness of fit.  

Figure 4.7 illustrates each different set of hillslopes and their susceptibility as calculated using 

model C. The plots in Figure 4.7 are centred on the A83 trunk road (dashed line) between 

Arrochar and Cairndow (i.e. the Rest & Be Thankful pass), one of the most active landslide 

regions in Scotland. The plots illustrate the merging of hillslopes as the catchment cell-

threshold is increased. The 1000-cell hillslopes are selected as the most optimal for modelling 

the susceptibility of the hillslopes that intersect the road network in Scotland. Pragmatically, 

these were selected based on an evaluation of the statistical measures obtained for models A, 

B and C. Table 4.5 shows the average value of these measures across the three models: 

individual model values are in Tables 4.2, 4.3 and 4.4. For each model, only the AIC measure 

is shown to improve for increasing hillslope size. However, for model A, the > 1300-cell 

hillslopes produced insignificant models. The other measures show no clear association to 

varying hillslope size yet many of the highest scores are obtained for the 1000-cell hillslopes. 

In addition, the 1000-cell hillslopes capture 61 (81 %) of the 75 landslides recorded in Scotland: 

only the 1600-cell hillslopes capture more with 62 landslides (Table 4.1). 

 

  

Average of models A, B and C    

Catchment threshold AIC AUC R2 𝒙𝟐 p-value 

100 110.70 0.85 0.34 0.040 

400 88.34 0.85 0.33 0.015 

700 78.96 0.85 0.33 0.020 

1000 73.39 0.86 0.35 0.022 

1300 68.42 0.86 0.34 0.054 

1600 61.67 0.86 0.36 0.070 

 Table 4.5. Average values of the statistical measures to evaluate the goodness of fit and 

significance of the logistic regression models A, B and C. 
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Figure 4.7. Maps showing the susceptibility of 6 different sets of hillslopes on the A83 trunk 

road between Arrochar and Cairndow (Rest and Be Thankful Pass): hillslope susceptibility is 

calculated using model C.  
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4.6 Hillslope Landslide Susceptibility on the Scottish road network 

Hillslope susceptibility is evaluated according to the results of Model C using the 1000-cell 

hillslopes. Pragmatically, Model C is selected as it features the least number of input variables, 

high goodness of fit, significance (𝑝 < 0.05) and high prediction accuracy. The results are 

displayed in Figure 4.8. Most hillslopes that are found to be of low (yellow), moderate (amber) 

and high (red) susceptibility are situated in the central, west and north-west highland regions 

of Scotland. As may be expected, there are notably fewer susceptible hillslopes on roads in 

urban areas and in the lower lying eastern and coastal regions. Hillslopes that were less than 

‘low susceptibility’ are not shown. The dark shading indicates areas and hillslopes that do not 

intersect the road network. The major road network is displayed in thin grey lines.  

Figure 4.8. Map of Scotland showing susceptible 1000-cell hillslopes on the major road network: 

susceptibility is calculated by model C. The major road network (white-grey lines) includes all 

the motorway’s, arterial, primary and secondary roads in the study area (dark shading).  
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4.7 Road segment susceptibility on the Scottish road network 

The major road network is comprised of road segments between network nodes (i.e. road links 

between junctions). The susceptibility of each road segment is given by spatial analysis of the 

intersection of road segments and hillslopes, taking the highest hillslope susceptibility band: as 

shown in Figure 4.9. Approximately 37 % of the major road network is of low to high 

susceptibility (6,500 km / 17,600 km). Individually this is: 40 % of the strategic road network 

is susceptible, comprised of motorways and arterial roads (1,700 / 4,300 km); 39 % of primary 

roads (2,600 / 6,600 km); and 33 % of secondary roads (2,200 / 6,700 km). By warning level, 

10 % is of low susceptibility (1,800 km), moderate 21 % (3,600) and high 4 % (700 km).  

Figure 4.9. Map of Scotland showing susceptible road segments on the major road network: 

susceptibility is calculated by model C and using 1000-cell hillslopes. The major road network 

(grey lines) includes all motorway’s, arterial, primary and secondary roads in the study area 

(dark shading).  
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The SRN is the primary means of transport between regions, population centres and other key 

infrastructure in Scotland, such as ports, airports and rail terminals. As such, the SRN is the 

focus of this investigation. Additionally, focussing on the SRN constrains the scope and 

complexity of the analysis (Jenelius 2009; Nyberg & Johansson 2013; Demirel et al. 2015; 

Meyer et al. 2015) and aligns with national government level management of the SRN; all 

other roads are managed at the local authority level. Figure 4.10 displays the 161 susceptible 

SRN road segments (yellow, amber and red lines), the non-susceptible SRN segments (thick 

grey lines), and the other major road segments, including primary and secondary roads (thin 

grey lines). Approximately 9 % (400 km) of the SRN is high susceptibility, 20 % moderate 

(850 km) and 10 % low (450 km). The blues labels in Figure 4.10 highlight several road 

corridors which were subject to repeated disruption by landslides 2002 to 2009 and that were 

indicated as highly susceptible in the 2005 Scottish road network landslide study (Winter et al. 

2005). The new model also categorises these roads in the high susceptibility level. 

Please turn over.  
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Figure 4.10. Map of Scotland showing susceptible SRN road segments: susceptibility is 

calculated by model C and using 1000-cell hillslopes. The major road network (grey lines) 

includes all motorway’s, arterial, primary and secondary roads in the study area (dark shading). 

The Blue labels highlight roads disrupted by landslides: 1 the A9 at Helmsworth (01/02/2016), 

2 the A82 south from Fort William (multiple recorded instances, latest in 17/10/2014), 3 the 

A85 north from Lochearnhead (multiple, 18/08/2004), 4 and 5 are the A83 south and north 

sections at Rest and Be Thankful (multiple instances in 09/08/2004 and 28/10/2007, latest on 

04/01/2016), 6 the A9 north from Dunkeld (11/08/2004), and 7 is the A82 at Letter Finlay 

(29/01/2016). 
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4.8 Comparison to the GeoSure susceptibility model 

A comparison is made between the road segments identified as susceptible to landslides by the 

logistic regression model C to those segments identified using the GeoSure susceptibility 

model. GeoSure is a national model of landslide susceptibility produced by the British 

Geological Survey. The GeoSure model differs from the models developed in this study in 

several ways, including: i) GeoSure was produced using a combined heuristic and deterministic 

methodology; ii) GeoSure indicates terrain susceptibility to a wider variety of landslide 

mechanisms, including topples, falls, flows and rotational slides; and iii) GeoSure is supplied 

as 1:50,000 scale unique-condition-unit polygons in 5 classes (A-D) of increasing susceptibility 

(Chapter 3.27).  

Figure 4.11A shows the susceptible SRN road segments according to the GeoSure 

susceptibility model. Figure 4.11B illustrates how spatial analysis is used to select susceptible 

SRN road segments by evaluating their proximity to GeoSure polygons. A 50 m buffer is used 

to measure the total area of GeoSure classes D or E in proximity to each road segment. A 50 

m buffer is selected as this is the distance used in similar studies (Shahabi & Hashim 2015) and 

by other GeoSure users, such as UK insurers and infrastructure operators. For road segments 

in upland regions featuring higher elevation and steeper slopes (max slope > 26 o), a 500 m 

Figure 4.11. (A) Map of Scotland showing susceptible trunk road segments according to 

GeoSure classes D and E. (B) Illustrates a road segment with a 500m buffer (dashed black 

line), GeoSure polygons (grey area) and areas where the terrain slope angle is ≥26° (red 

shading and arrows). 

A) 
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Figure 4.12. Map of Scotland showing susceptible SRN road segments identified by GeoSure 

and model C (green lines), just GeoSure (pink lines), and just model C (orange lines).  

buffer is applied to each road segment to account for the potential for longer landslide run-out 

distances (Chapter 3.27). 

The GeoSure model categorises 152 SRN road segments, or 35 % of the SRN, as susceptible 

to landslides (1,500 / 4,300 km); approximately 200 km less than for model C. Figure 4.12 

shows the SRN road segments identified by both model C and GeoSure (green lines), and those 

solely from model C (orange lines) and GeoSure (pink lines). A chi-square test indicates that 

there is a highly significant association (p < 0.001) between the road segments marked as 

susceptible and non-susceptible by each of the models.  
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4.9 Discussion 

Generating hillslopes: 

River catchments are a fundamental geomorphic unit that outline the areas where precipitation 

collects and drains into a common outlet. Landslide susceptibility assessments are frequently 

conducted at the catchment scale (Catani et al. 2005; Guzzetti et al. 2006; Chevalier et al. 2013; 

Berenguer et al. 2015). Given that landslides (i.e. debris flows and shallow translational 

failures) predominantly occur in mountainous environments, the catchment units used in these 

assessments are typically headwater stream basins and upland valley’s. The units are usually 

sourced from national hydrological authorities, for example, in the UK catchments are best 

captured by the integrated hydrological unit sections (IHUS) – the smallest official hydrometric 

area in the UK (Kral et al. 2015). As outlined in the literature review, a potential limitation of 

this approach is the fact that the individual hillslopes that comprise each catchment (i.e. the left 

and right side of a catchment) are likely to have different geomorphological and geological 

characteristics to one another, such as slope angle, mean aspect and soil type, and that influence 

their relative susceptibility to landslides. In addition, researchers have no control over the 

parameters used to create catchments, including their size.  

For this study, six different sized sets of catchments and their component hillslopes were 

created. A minimum drainage area threshold was used to control the size of the catchments, 

ranging from 100-cells (> 0.0625 km2) to 1600-cells (> 1.0 km2) in 300 cell increments. As far 

as this author is aware, this is one of the first applications using hillslopes as a terrain unit in 

landslide susceptibility assessment. Consequently, there is limited opportunity for direct 

comparison to other investigations. In the central Pyrenees, a landslide susceptibility 

assessment was conducted using catchments created using a > 1 km2 minimum drainage area 

threshold by Chevalier et al (2013): these units were also used by Berenguer et al (2015). 

Compared to the hillslopes created by this study (Table 4.1), the catchments have a larger mean 

area of 2.29 km2. Similarly, in Scotland, the IHUS catchments also have a larger mean area 

1.67 km2 (min = 0.002, max 647.09 km2). Therefore, the created hillslopes provide a new and 

relatively high-resolution modelling unit to examine landslide susceptibility. 

Input variables: 

Each hillslope was sampled for 14 geomorphological and geotechnical explanatory variables 

including: the mean, median and maximum slope angle; the mean, median and range of 

elevation; profile, plan and general curvature; soil texture, depth and grain size; Melton ratio 

and mean aspect.  

Among the 14 variables, the median slope angle, maximum elevation, mean aspect and general 

curvature were the most skilful at distinguishing between landslide and non-landslide hillslopes 

(i.e. featured the smallest overlapping area between pdf, 𝐴 < 0.65). These variables were used 

in more than 60 % of 145 landslide susceptibility studies (Süzen & Kaya 2011; Budimir et al. 

2015). The Melton ratio exhibits relatively less skill (𝐴 = 0.82) yet this variable has been shown 

to be significant at distinguishing between flood, debris flood and debris flow producing slopes 

in other studies (Jackson et al. 1987; Bovis & Jakob 1999; Wilford et al. 2004; Welsh & Davies 

2011; Berenguer et al. 2015), and is significant in this study area as well. A similar set of 

variables and results were found for an assessment of susceptible catchments in the central 

Pyrenees by Chevalier et al (2013) and Berenguer et al (2015). In contrast to this study, these 

authors used mean slope angle and this may be due to the fact that visually their data appears 
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to be more normally distributed (see figure 4 in Berenguer et al (2015)), whereas here the data 

is positively skewed (Figure 4.1D, E and F). This is likely because of the national scope of this 

study and increased number of hillslopes with low slope angles.  

The variable for the mean aspect of hillslopes is of interest from the hydro-meteorological point 

of view as it reveals the influence that dominant weather patterns and differential weathering 

have on the spatial distribution of landslides (Dai & Lee 2001; Ayalew & Yamagishi 2005; 

Jaiswal et al. 2010). In the study area, and wider UK, west facing hillslopes are likely to be 

subject to increased rates of wind and precipitation due to low pressure and cyclonic weather 

systems driven north westerly by the North Atlantic Oscillation and polar front  and amplified 

in high elevations (Wilby et al. 1997). In addition, southerly facing hillslopes experience more 

solar irradiance. In dry conditions, these factors can act to exacerbate soil desiccation and 

cracking, increasing the permeability of soils. In wet conditions, higher rates of water 

infiltration, and to greater depths, may lead to a critical increase of porewater pressure and 

reduction of effective stress, so that shear strength is reduced and a landslide occurs (Crozier 

1997; Iverson et al. 1997; Iverson 2000; Stoffel et al. 2014). This observation is supported by 

the computed class frequencies and the hillslopes that are orientated to the SE-SW and SW-

NW have the most landslides (Figure 4.1N and Figure 4.1O). In contrast, the Northerly aspect 

classes have lower frequencies. 

The input variables obtained from the UK soil parent material model ‘PMM’ (Lawley & Smith 

2008) provide near surface geotechnical information on soils, including soil depth, texture and 

grain size. A large proportion of landslides were confined to a single class for the soil depth 

(70 % of landslide are at 2 - 5 m bgl) and soil grain (85 % Argillaceous < 0.06 mm diameter) 

variables (Figure 4.1J, K and L). Tentatively, this may suggest that these classes are some of 

the best data to identify landslide susceptible hillslopes in Scotland. In support, most field 

observations note that landslide shearing planes and failed soil horizons are typically 1 – 4 m 

in depth (Ballantyne 1986; Milne et al. 2009). In addition, these observations and other 

photographic evidence (e.g. Figures 3.2 and 3.3) indicate that a large proportion of the landslide 

deposits in Scotland are comprised of fine clay to silt materials that are the result of weathering 

and accumulation within failure conduits (i.e. gulley’s and hillslopes). These materials produce 

the liquified flows of material that are typical for landslides in Scotland, but these also contain 

larger size rocks and boulders (0.2 to 5 m in diameter) that are not reflected in the PMM data.  

It is also reasonable to assume that there is a degree of bias in the PMM variables given the 

limited availability and limited spatial distribution of bore hole and detailed geotechnical 

investigation data used to construct the PMM. In the PMM, these data are generalised across 

the study area using heuristic, statistical and spatial analysis (Lawley & Smith 2008). For 

instance, there are very few hillslopes, landslide or non-landslide, in the larger soil grain size 

classes (e.g. < 10 % of hillslopes are in the medium, coarse and Rudaceous classes). 

Additionally, field observations note that most landslides and their deposits are comprised of 

fines mixed with medium to coarse grained materials (Ballantyne 1986; Milne et al. 2009; 

Dijkstra et al. 2016a). For these reasons, the soil depth and grain size variables were not used 

in the logistic regression models. It is however stressed that the parent material model 

represents the state-of-the-art in the UK and is perhaps the global standard for evaluating the 

near surface geotechnical properties of soils at national scale. The classes in the PMM soil 

texture variable were used the models as they exhibit a more even frequency distribution 

(Figure 4.1J). This is attributed to the wider range of high resolution input data sources, 
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primarily the interpretation of surface and vegetation cover via remotely sensed satellite and 

aerial imagery (Lawley & Smith 2008).  

Logistic regression models: 

The Pearson correlation coefficient and chi-square statistic were applied to select sets of 

independent explanatory variables and these were used to produce two different logistic 

regression models’, model A and model B. Based on the AIC, AUC, pseudo R2 and p-value 

measures for model goodness of fit and accuracy, model B was found to have higher 

performance than model A and included the variables, Melton ratio, median slope angle, 

intercardinal aspect, general curvature and soil texture. Following a leave-one-out strategy, a 

new model, model C, was formed by dropping the general curvature variable. This led to further 

improvements in the goodness of fit and accuracy measures and model C was selected as the 

final model. The variable coefficients and odds-ratios from each model indicate their 

contribution to increased or decreased hillslope susceptibility, highlighting several interesting 

trends: 

• In model A, the poorest performing model, a per unit increase in the mean elevation 

of a hillslope contributes 3 % increase to its modelled susceptibility. The elevation 

variables are highly correlated (𝑟 ≥ 0.5) to all the other variables except profile 

curvature, a limitation on their wider use in the models. 

• The coefficient for maximum slope angle (1.042, model A) suggests that it has a 

smaller influence on susceptibility than the median slope angle (1.329 – 1.428, in 

model B and C). Though the comparison of model coefficients does not offer a 

conclusive assessment, the variables for median and mean slope are by far the most 

prevalent variables in landslide susceptibility literature (Dai et al. 2001; Catani et al. 

2005; Glade et al. 2005; Guzzetti et al. 2005; Shahabi & Hashim 2015). 

• Hillslope aspect is a significant variable in each of the models, with the SE-SW and 

SW-NW classes having the largest influence on increased hillslope susceptibility, 

relative to the NE-SE reference class. Hillslopes orientated to the South and West 

receive increased solar irradiation, wind and precipitation which may act to increase 

their relative susceptibility.  

• The general curvature variable included three classes for, concave (< -0.001), flat (-

0.001 to 0.001) and convex (> 0.001) hillslopes. Relative to flat (i.e. the reference 

class), convex and concave hillslopes were 130 % and 200 % more likely to be 

susceptible (model A and B).  

• The soil texture classes clay (0.002 – 0.06 mm) and sand (0.06 – 2.0 mm) increase 

hillslope susceptibility by 165 % and 220 % relative to the reference class of peat, silt 

and loam soils (model C). The coarsest, sandy soils class consistently has the greatest 

influence on susceptibility across the three models (170 – 220 %) and this fits with the 

physical descriptions of Scottish landslides (Ballantyne 2002; Milne et al. 2009). 

• The Melton ratio was a strong indicator of increasing hillslope susceptibility (model 

B and C). In British Columbia, the hillslopes that produce shallow landslides and 

debris flow were associated to Melton ratio values > 0.65 (Jackson et al. 1987; Wilford 

et al. 2004). Similarly, in New Zealand, a slightly lower Melton ratio criteria > 0.5 

was found (Welsh & Davies 2011). Using the Melton ratio coefficient from model C, 

these values increase hillslope susceptibility by 164 % (0.65) and 111 % (0.50), 

respectively.  
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Optimal hillslope size: 

Hillslopes, and other hydrological units such as catchments, differentiate areas of terrain 

characterised by distinct suites of hydrogeomorphic process (Bovis & Jakob 1999; 

Montgomery 1999; Wilford et al. 2004). As such, it is reasonable to assume that, for different 

landscapes, there exists an optimal hillslope size that best characterises the slopes capable of 

generating landslides. The logistic regression models were developed and evaluated using 6 

different sized sets of hillslopes with the aim of selecting the most optimal hillslope size to 

assess landslide susceptibility. Pragmatically, the hillslopes created using a 1000-cell 

catchment threshold (> 0.625 km2) were selected as the optimal based on an evaluation of the 

model performance measures obtained across the different hillslope sizes and for each model. 

Only the AIC measure was shown to improve with increasing hillslope size whilst model 

accuracy and statistical significance showed little change, but with marginally better values for 

the 1000-cell hillslopes.  

The lack of a clear ‘optimal’ hillslope size may be due to limitations in the adopted method. 

First, the low 25 m2 resolution of the digital terrain model and the software used to create the 

hillslopes. Whilst the 5 m2 NEXTmap digital terrain model is available for the whole study 

area, there is limited application of < 10 m2 resolution terrain data in current state-of-the-art 

hydrological software (Metz et al. 2011). Once these issues are resolved, higher resolution data 

and smaller hillslopes may provide improved modelling scores. The second limitation concerns 

the spatial scale of the study. In attempting to evaluate the susceptibility of a strategically 

important national road network, this study examines all hillslopes across this network in 

Scotland (i.e. national scale). The network traverses landscapes with varied geography, from 

heavily faulted and uplifted mountainous terrain in the north-west highlands and central north 

Grampians; more gentle, undulating mountains in the southern uplands; to lowland areas in the 

central south and east. Subsequently, the optimal hillslope size may differ between areas. In 

Italy, Segoni et al (2014) demonstrated an improved landslide warning system using a 

regionalised mosaic of landslide assessments – albeit for precipitation initiation thresholds. 

Such a strategy may also improve terrain susceptibility assessments. In this case, this was not 

possible given the relative paucity of landslide data in Scotland. Nonetheless, this study was 

the first to use hillslopes as a modelling unit and the first to compare and evaluate different 

hillslope sizes in landslide susceptibility assessment. 

Predicted probabilities and warning levels: 

The logistic regression model calculates a value of susceptibility for each hillslope between 0 

and 1. To produce a susceptibility map, these values are divided into ranges for increasing 

susceptibility. In traditional applications of logistic regression modelling it is common to split 

the predicted values at 0.5, any values below 0.5 are assigned to the negative class (e.g. not 

susceptible) and values above 0.5 are assigned the positive class (e.g. susceptible). Many 

different methods have been adopted in the landslide susceptibility literature including using, 

the 0.5 threshold, equal intervals (e.g. 0.0 – 0.1, 0.1 – 0.2), natural breaks and standard 

deviations (Dai et al. 2001; Ayalew & Yamagishi 2005; Van Westen et al. 2008; Martinovic 

et al. 2016).  

In this study, a new approach is demonstrated that was inspired from the parallel investigation 

examining different threshold selection techniques for landslide rainfall initiation thresholds 

(Chapter 4.3). As illustrated in the ROC plots (Figure 4.4, 4.5 and 4.6), three different 
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thresholds were used to give four susceptibility warning levels: marginal (grey), low (yellow), 

moderate (amber) and high (red). First, the low (yellow) warning level is selected by the 

optimal point threshold on the ROC curve: values below this level are assigned to the marginal 

susceptibility warning level. The high (red) warning level is given by the threat score threshold 

on the ROC curve. Respectively, these thresholds optimise landslide detection (i.e. optimal 

point) and accuracy (i.e. threat score). The moderate threshold is selected halfway between the 

low and high threshold values. The moderate threshold does not have a formal mathematical 

formula but is chosen as most other susceptibility maps contain three or more warning levels. 

A primary advantage to this system of thresholds is that each warning level is selected 

according to a measure of threshold detection or accuracy and their accuracy increases along 

the higher susceptibility levels. For instance, for model C and the 1000-cell hillslopes, the 

accuracy of the low-yellow susceptibility level is 80 % (threshold value = 0.57), consequently 

one fifth of hillslopes within this level are incorrectly labelled as susceptible or not-susceptible. 

In contrast, the moderate and high-red warning levels have accuracy of 91 % (0.77) and 99 % 

(0.98). Therefore, this system of thresholds serves to reduce false alarms for the higher 

susceptibility warning levels.  

Susceptible hillslopes and road segments: 

The final results are spatially attributed datasets that display the susceptibility warning level 

for each hillslope and road segment in Scotland. The new model and analysis using hillslopes 

is a first attempt to classify road network landslide susceptibility at the national scale. The 

majority of the hillslopes (75 %) were classified as having a very low, marginal susceptibility 

to landslides which is expected given that most hillslopes and road segments have been 

serviceable throughout the past century. When attributing the susceptibility of hillslopes to the 

individual segments in the major road network, the analysis indicates that 37 % of road 

segments are situated next to hillslopes that feature a low to high degree of landslide 

susceptibility. As a proportion of length, the strategic road network (SRN) is most susceptible 

(40 %). The selection of highly susceptible SRN includes road segments with no known history 

of failure in addition to previously identified landslide prone corridors, such as the A82, A83, 

A85 and A9 (Figure 4.10). The good agreement between the new model results and these 

previous assessments is a useful comparison as these were based on desktop geographical 

information system analysis in addition to detailed on-site surveying and geotechnical 

investigations (Winter et al. 2005). Similar results (e.g. susceptible road segments) were also 

obtained in a comparison to the BGS GeoSure susceptibility model. GeoSure was developed 

independent of this study and using a different methodology: however, the landslide database 

used by this study is a subset of the database used to develop GeoSure.  

The model results highlight the hillslopes that feature combinations of slope angle, Melton 

ratio, aspect and soil texture associated with historic landslide activity: changing the number 

and value of these factors leads to an increase or decrease in the modelled susceptibility. For 

hillslopes, the values of these variables are unlikely to vary significantly on time scales of 

several years to decades making them suitable indicators of the present day and near future 

landslide potential (Guzzetti et al. 2005). This does not however mean that a landslide is certain 

to occur on a susceptible hillslope and the model does not provide any information to the size, 

pathway or likelihood of a landslide hazard. Landslides are usually initiated by medium to short 

term changes in the slope system such as, the weakening of slope soil materials by weathering 

or periods of intense rainfall, seasonal vegetation change, or due to the undercutting of a slope 
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by lateral fluvial erosion or by human activity. These factors are not accounted for in the new 

model. This is primarily due to the transient nature of these variables and the heterogeneity of 

conditions that lead to landslide occurrence. In the longer term, it is also unknown how several 

factors, including vegetation cover and superficial material strength, will respond to repeat 

seasonal cycles as climate changes (Dijkstra & Dixon 2010; Gibson et al. 2013). Thus by 

limiting the input variables to those that are relatively fixed, the developed model is applicable 

to a wide range of potential landslide locations and at a broad spatial scale (Meyer et al. 2014).  

The practical applications and socio-economic value of the new model are in its potential to 

improve and increase the efficiency of highway hazard management. Hillslopes that are found 

to have heightened susceptibility may be prioritised for more costly and detailed desktop and 

on-site geotechnical investigations, aiding highway authorities in targeting limited 

management resources. The model may also feed into land planning and management strategy, 

highlighting the areas where future development and alterations to land use require a 

consideration of their effects to the landslide hazard. The method is applicable to other linear 

infrastructures such as, rail or power networks, and may also be adapted to consider other slope 

failure mechanisms including shrink swell or compressible ground by adjusting the input 

variables and training data sets.  

A high susceptibility value indicates that any future changes in the hillslope condition, such as 

by intense rainfall or vegetation change, is likely to increase the possibility of landslide 

occurrence. Recently, several studies couple terrain susceptibility assessments with higher 

temporal and spatial resolution analysis of for example, vegetation change using NDVI 

(Shahabi & Hashim 2015; Chen et al. 2017) and rainfall initiation thresholds (Meyer et al. 

2015; Segoni et al. 2015a). These represent the current state-of-the-art in regional to national 

scale landslide hazard assessment and warning systems. They are made possible by the 

increasing availability and now multi-decadal historic record of high resolution remotely 

sensed data. In sections 4.3 and 4.4, a set of new rainfall thresholds are developed for landslides 

in Scotland and a prototype hazard assessment system is demonstrated.  
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Chapter 5 Indirect Impact of Landslides on a Road Network 

 

5.1 Introduction 

In Chapter 4, a susceptibility model was developed and used to identify the strategic road 

network segments that are most susceptible to landslides in Scotland. In chapter 5, the 

susceptible road segments are used to form an event set of potential landslide disruptions and 

the impact of each event is calculated using a dynamic user equilibrium traffic simulation 

model. The traffic simulation is developed using comprehensive UK census data of for the 

annual average number of weekday commuter trips, an open source suite of micro-simulation 

software and the simulation is validated using a 12-year record of traffic flows at 36 different 

network locations. For each event in the event set, the simulation calculates the additional travel 

time. The economic losses of each event are derived by multiplying the additional travel time 

with a national value of user generalised-cost. The losses due to each event are examined at the 

national scale and in footprints of impact that reveal how populations are affected according to 

the zones where people live. The model is used to analyse several historic events and the results 

are compared to those reported in previous investigations. The rationale, method, results and 

conclusions of this study are also published in the journal Environmental Research Letters 

(Postance et al. 2017b). 

5.2 A traffic simulation of Scotland’s major road network 

A user equilibrium simulation of traffic on Scotland’s major road network is created. The 

model captures a single period of undisrupted peak traffic flow, representative of the weekday 

morning rush hour 03:00 to 10:00 am. The simulation calculates the routes taken by 1.37M 

commuter vehicles (1.50M people including passengers), or 81 % of the total weekday 

commuter traffic made on roads in Scotland (Chapter 3.4.4). The simulation is the result of 

combining the 2011 census commuter origin-destination trip matrix (OD, i.e. traffic demand), 

empirical traffic count data, and a model of route choice behaviours in an iterative procedure 

to determine the least cost route (i.e. shortest travel time) of each trip. A user equilibrium state 

is achieved when the routes can no longer be adjusted to reduce their travel cost. Practically, 

user equilibrium is quantified by the standard deviation of the trip travel times across each of 

the previous simulation iterations and the procedure is terminated when this value reaches < 0. 

1 minutes (i.e. user equilibrium). All the simulations conducted for this study reached a user 

equilibrium condition and were terminated after 12 or less iterations.  

The results of the traffic simulations are aggregated and presented according to 1,212 origin-

destination zones: these are intermediate zones used in the 2011 UK census. For the 

undisrupted network (i.e. when no landslides have occurred), Figure 5.1A shows the average 

travel time of trips according to their origin zone. Travel times are short in urban areas (< 20 

minutes) whereas the darker shading in the north and northwest regions indicates that average 

travel times are in the order of 40 to 80 minutes. Figure 5.1B displays the demand ratio of each 

zone. The demand ratio is given by the number of trips originating in a zone divided by the 

number of trips that end (destination) in a zone. The white shaded zones indicate demand sinks 

where there is a higher proportion of inwardly moving traffic (e.g. places of work), the darker 

shaded zones are sources of traffic (e.g. residential areas).  



 

129 

 

The undisrupted simulation is calibrated using traffic count data obtained at 35 different 

automatic traffic counting (ATC) locations on the strategic road network at 15-minute intervals 

for the period January 2004 to December 2015. The calibration computes the normalised Root 

Mean Square Error (𝑛𝑅𝑀𝑆𝐸) between the ATC observations and the modelled traffic counts 

on road segments: the routine is described in section 3.4.6. Figure 5.1C and Figure 5.1D show 

the location of the ATC sites and a bar plot of the calibration results. For all road segments and 

ATC sites, the undisrupted simulation 𝑛𝑅𝑀𝑆𝐸 is 0.12, within the recommended 0.02 – 0.25 

range (Smilowitz et al. 1999; Brockfeld et al. 2003; Ortuzar & Willumsen 2011). For each 

individual road segment and ATC site, the mean 𝑛𝑅𝑀𝑆𝐸 = 0.09 and only one road segment 

exceeds the recommended range (ATC03118 𝑛𝑅𝑀𝑆𝐸 = 0.30). As most of the model 𝑛𝑅𝑀𝑆𝐸 

are within the range of acceptable values, the calibration procedure was not applied to re-assign 

routes.  

To evaluate the sensitivity of the undisrupted simulation, a sensitivity test was conducted by 

sequentially closing 30 roads with zero levels of traffic flow and re-running the simulation. The 

test calculates the error (i.e. standard deviation) of the trip travel times for each zone. The zones 

have an average error of± minutes with a maximum value of ± minutes. Across the 

entire study area, the sum zone error is ± 1,802 minutes, or ± 8 seconds per trip. The minimum 

impact values are reported. 

 

  

Figure 5.1. A) The average travel time of trips per origin zone for the undisrupted simulation. 

B) A map showing the demand ratio of each zone. C) a map showing the locations of 35 

automatic traffic counting sites on the strategic road network. D) a bar plot showing the 

normalised root mean squared error between the observed, empirical traffic counts and those 

generated by the undisrupted simulation.  
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5.3 Event sets  

A network disruption event is a hypothetical or historical event representing a conceivable 

manifestation of a landslide hazard disrupting the road network. An event set is comprised of 

multiple individual events. For this study, each event represents the closure of an individual 

road segment (i.e. between junction nodes) and assumes complete closure of the segment in all 

directions and for the duration of the simulation. Each simulation represents the annual average 

weekday morning commute 03:00 to 10:00 am. Events are only created on Scotland’s 4,300 

km strategic road network. Events are not created on junctions (i.e. intersection or slip roads) 

or on primary and secondary roads to constrain the scope and complexity of the study (Jenelius 

2009; Nyberg & Johansson 2013; Demirel et al. 2015; Meyer et al. 2015) and to align with 

national government management of the strategic road network.  

Two landslide event sets have been created. The first event set is comprised of the road 

segments identified as susceptible to landslides using the new hillslope logistic regression 

model developed by this study in section 4.17. The second uses the susceptible roads selected 

using the British Geological Survey GeoSure model described in section 4.18. The event sets 

are referred to as the ‘Hillslope’ and the ‘GeoSure’ event sets, respectively. 

5.4 Nationwide indirect impact of landslide events 

A traffic simulation is run to calculate the nationwide impact (𝑁𝐼) of each landslide event in 

the Hillslope and GeoSure event sets. For each event, the 𝑁𝐼 is the product of the total 

additional travel time in minutes, the monetary value of user generalised cost (£ per minute per 

person) and the vehicle occupancy rate (average number of persons per vehicle). The event 𝑁𝐼 

values indicate the criticality (e.g. importance) of each road segment to the overall performance 

of the road transportation system. Higher 𝑁𝐼 values signify increasing travel costs and reduced 

network efficiency. Thus, 𝑁𝐼 is used to rank the relative impact of each event and importance 

of each road segment: rank 1 is the event with the greatest nationwide impact.  

The 𝑁𝐼 values for all the Hillslope (𝑛 = 161) and GeoSure (𝑛 = 152) events are summarised in 

the maps and histograms displayed in Figure 5.2A and Figure 5.2B: the road segments are 

colour shaded according to their impact severity and these correspond to the histogram colours. 

The Hillslope and GeoSure event impacts follow an asymmetrical distribution with an average 

impact (𝑁𝐼) of £64 k and £62 k per day of disruption (or $84 k USD and €72 k as of June 

2017). The 𝑁𝐼 distributions are positively skewed by several events that incur relatively 

extreme impacts (𝑁𝐼 > NI + 2). Eight extreme events were found in the Hillslope event set 

and six extreme events were found in the GeoSure event set (annotated in Figure 5.2A1 and 

Figure 5.2B1). These road segments have the highest criticality. Most of the extreme events in 

each event set are the same road segments except for Hillslope events 5, 6 and 7 and GeoSure 

event 3. 
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Figure 5.2. A map showing the location and net economic impact of susceptible road segments 

‘events’ for the Hillslope (A1) and GeoSure (B1) event sets. The road segments are shaded 

according to their nationwide impact and the colours correspond to those in the histograms of 

nationwide impact in plots A2 and B2, respectively for the Hillslope and GeoSure event sets. 

Annotations highlight the location of extreme events. The non-susceptible strategic road network 

is the thick grey line, the thin grey lines are primary roads, and the other roads are not shown due 

to the scale and size of the map. 
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5.5 Extended hazard impact footprints 

The spatial distribution of event impacts is examined through extended hazard impact 

footprints (Figure 5.3). These footprints illustrate how road users are effected according to 

where they live (i.e. origin zones), with darker shading indicating increased travel delay and 

cost.  

Figure 5.3 displays the extended hazard impact footprints for the eight most extreme events 

(i.e. 𝑁𝐼1 to 𝑁𝐼8) within the Hillslope event set: several of these events are the same extreme 

events in the GeoSure (𝑁𝐼’s 1, 2, 4, 5 and 6) event set. The footprints show that the impacts 

are generally distributed within the zone(s) that contain or are in proximity to the disrupted 

road segment. For several events, the footprints also highlight impacted zones and communities 

that are positioned far from the landslide location.  

A notable, albeit qualitative, inference is that these impact footprints may be either spatially 

dispersed or spatially acute. For events 𝑁𝐼2, 𝑁𝐼4, 𝑁𝐼5 and 𝑁𝐼6, the maximum impact to any 

origin zone is < £5 k and the footprint of impacts is relatively dispersed across many zones 

covering a large area and proportion of the population (Figure 5.3). The zones where the 

impacts are concentrated (grey shading) have an average increase in travel time of 1 to 4 

minutes per trip depending on the zones population: smaller zones have higher population 

densities and so the average increase is lower. In contrast, the other extreme events feature a 

more focussed, acute impact footprint where the increase in travel time and cost is distributed 

to within just a few zones. The events 𝑁𝐼1, 𝑁𝐼3, 𝑁𝐼7 and 𝑁𝐼8 have zones with impacts of £5 

k – £50 k, equivalent to an average increase in travel time of between 35 and 65 minutes per 

trip in the darkest shaded zones (Figure 5.3).  
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Figure 5.3. Extended hazard impact footprints for events 𝑁𝐼 1 – 𝑁𝐼 8 in the Hillslope event set.  
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Figure 5.4A displays a severity footprint, this is constructed by taking the sum of the impact 

footprints for each of the 161 events in the Hillslope event set. The severity footprint is not 

probabilistic, rather it shows the origin zones where impacts are aggregated for all the roads 

that were identified as being susceptible to landslides. The severity footprint indicates that the 

impact due to landslides is disproportionality focused to the central and north-west regions of 

Scotland, particularly around Fort William, and away from most major urban centres, including 

Glasgow and Edinburgh.  

Figure 5.4B shows the distribution of landslides per zone that are recorded in the landslide 

database used to construct the susceptibility models (Chapter 4.1). Visually, there is a general 

association between the zones that feature high impact to traffic and high numbers of 

landslides. For example, in each figure there is a similar proportion of the population that 

resides within the shaded areas of 3.5 % (high impact NI > £20 k Figure 5.4A) and 2.5 % 

(Landslides > 1 Figure 5.4B). The contrast between these figures, such as shaded and non-

shaded or lighter and darker zones, exposes some of the complex interactions that take place 

between landslide occurrence, the modelled susceptibility (i.e. location of events) and the 

impact to traffic in the road transportation system. For instance, in some areas there are high 

numbers of landslides and low impacts to traffic and in other areas this pattern is reversed. The 

association between zones with landslide occurrence, susceptibility and impact is non-linear as 

the spatial extent and severity of impact is dependent on a several dynamic traffic factors, such 

as the density and availability of alternative routes in the network and the level of user demand. 

These factors act to concentrate or disperse the event impacts beyond the landslides physical 

location. 

  

Figure 5.4. A) Severity footprint showing the combined impact of 161 landslide events in the 

Hillslope event set. B) Map showing the number of landslides in each zone recorded in the UK 

national landslide database: the black dots show the landslide locations.  
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5.6 Analysis of historic landslide events and comparing different traffic models 

The traffic simulation model is applied to examine the indirect impacts of four historic 

landslide events in Scotland (Table 5.1). Three of the landslides occurred in quick succession 

over a period of 9 days in August 2004 following a series of North Atlantic cyclonic weather 

systems (Winter et al. 2005): many parts of Scotland received 150 to 250 % of the 1971 – 2000 

30-year average August rainfall (Met Office 2017). The fourth landslide occurred on the 28th 

October 2007 following similarly wet conditions. In the context of UK landslide hazards and 

management, these four events are particularly significant as they were both high in magnitude, 

removing and depositing several 100’s of tonnes of material, and high severity, posing a serious 

threat of injury or death and causing major disruption to the strategic road network.  

Details of these four events are summarised in Table 5.1, including the duration of disruption 

to the strategic road network in days. Following the landslides, a detailed assessment of the 

costs of the emergency response (ER £k) and engineered remediation’s (Eng £k) were made 

(Winter et al. 2005). Winter et al (2014) also investigated the indirect impact of these four 

events (i.e. the travel time delay and cost) using the ‘Queues and Delays at Roadworks Model’ 

QUADRO (DFT 2006). Similar to the SUMO model developed in this study, QUADRO 

calculates additional travel time according to the user equilibrium principle and this is 

converted to economic impact using the same user generalised cost values provided by the UK 

department for transport (DFT 2014a). Additionally, QUADRO uses the same automatic traffic 

counting data used in this study to approximate the traffic flow on each link. Crucially, 

however, the QUADRO model differs from the SUMO model in that in QUADRO traffic flow 

is constrained to a limited number prescribed diversionary routes. The diversionary routes are 

typically the new shortest path linking two end nodes of the disrupted road segment (i.e. a local 

scale assessment around the disrupted road segment). In contrast, in SUMO vehicles can utilise 

the entire road network selecting the diversionary route according to the shortest path between 

their origin and destination, and that may now be far from the disrupted segment.   

 A83 RABT 

east (B828 to 

A815) 

A9 Dunkeld 
(B898 to A827) 

A85 Glen Ogle 
(Lochearnhead to 

A827) 

A83 RABT west 
(Arrochar to 

B828) 

Date 09/08/2004 11/08/2004 18/08/2004 28/10/2007 

Duration  2 2 4 15 

ER (£k) £300  £700  £500  £270  

Eng. (£k) - - - £1,156  

 £k 

/day 

£k 

total 

£k 

/day 

£k 

total 

£k /day £k 

total 

£k /day £k 

total 

QUADRO 47 94 150 300 40 160 49 735 

SUMO 

𝑁𝐼 Rank 

61 

87 

122 72 

30 

144 73 

26 

292 89 

11 

1,335 

 
Table 5.1. A comparison of the indirect economic impacts of four historic landslide events 

calculated using QUADRO and SUMO traffic models. The impacts are reported per day of 

disruption (£ / day) and for the duration of the road closure (£k total). The date of failure, 

duration in days, cost of emergency response (ER £k) and cost of engineered remediation (Eng. 

£k) are reported from (Winter et al. 2005). ‘𝑁𝐼 Rank’ is the rank impact of the event in relation 

to the 161 other events examined in the Hillslope event set compiled in this study.  
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In comparison to the QUADRO model, the SUMO model calculates that three of the landslide 

events have greater indirect economic impacts: A83 RABT west by + 29 %, A85 Glen Ogle + 

83 % and A83 RABT east + 63 %. The A9 Dunkeld event saw a decrease (- 52 %) and this is 

believed to be the result of the prescribed diversionary routes. Although the diversions are not 

provided in Winter et al (2014), external reports note that the A9 diversions were established 

along a 132 km route via Aberdeen (BBC 2004). In contrast, the SUMO model would enable 

trips to take shorter routes via the local primary and secondary roads of 25 – 80 km. 

 

5.7 Discussion 

In this this study, a national scale simulation of commuter traffic was developed and used to 

assess the indirect impact of potential landslide hazards in Scotland: here, indirect impacts are 

defined as the economic losses accrued by road user’s due to increasing travel distance and 

time. An event set of plausible landslide occurrences was created using the hillslope 

susceptibility and GeoSure models described in section 4.1. The work therefore demonstrates 

a novel coupled network-hazard model framework that can be used to assess the indirect impact 

of landslides to road transport. As far as this author is aware, this is the first application of 

traffic simulation, developed using national origin-destination matrix and traffic count data, to 

calculate landslide hazard impacts on a national-scale road transport network. The main 

advantages of this approach are that the data used to drive the open-source traffic model are 

readily available in most developed and developing nations worldwide (e.g. Eurostat, US 

census bureau, the department of statistics Malaysia, and the Australian bureau of transport 

statistics) and that the basic framework is applicable to the study of other hazards. It is however 

highlighted that in recent years similar frameworks have been demonstrated, but these use 

different network models, are at smaller regional to urban scales and are for different hazards, 

such as flooding, wind storms and earthworks (Jenelius et al. 2006b; Nyberg & Johansson 

2013; Khademi et al. 2015; Meyer et al. 2015; Pregnolato et al. 2016). The study therefore 

provides a landslides specific contribution to the rapidly growing body of network-hazard 

literature.  

The event sets are comprised of the road segments on the strategic road network (i.e. the trunk 

road network of motorways and arterial roads) that were found to have a heightened level of 

susceptibility to landslides. Although the method used to create the event sets is universally 

applicable to other road networks and other linear infrastructure (e.g. rail or pipelines), in this 

first application to Scotland the event sets omitted slip roads, junctions and lower priority 

primary and secondary roads to constrain the scope and complexity of the analysis. However, 

these roads are still present in the traffic simulation and their susceptibility was evaluated 

(Figure 4.9). Future studies may therefore use these data to evaluate the potential for indirect 

impacts and the relative criticality of these road segments.  

A vital consideration for this study, and any other network-hazard study, is producing event 

sets that accurately reflect all the likely manifestations of a hazard (Murray et al. 2008). Due 

to the computational requirements of the traffic simulation, here the events were limited to 

individual landslide occurrences that caused the complete closure of the road segment for the 

duration of the modelled peak traffic flow period. This makes number of events 

computationally tractable in a national scale study. For landslide hazards, these criteria are a 

reasonable set of assumptions given that the occurrence of a landslide often leads to the 
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complete closure of a road segment lasting several days as the landslide debris is cleared and 

the stability of the failed slope is re-evaluated. In reality, and for the study of other hazards 

such as flooding, different criteria may be more suitable as the condition of the network during 

an event may be more varied, including, partial road closures and traffic control systems, area 

covering disruptions (e.g. snow), and wider speed restrictions caused by other factors, 

including heavy rain and strong winds.  

Another source of event set limitations is the data and methods used in the hazard models 

(Chapter 4.1). Murray et al (2008) suggested using a variety of models to improve the quality 

of event sets in a multi-methodological approach (Mingers & Brocklesby 1997). In Scotland, 

detailed records of landslide activity are limited to within the most recent decades and to the 

slopes adjacent to the road network (Foster et al. 2008). To minimise this bias, the hillslope 

susceptibility model and event set were developed using only the slopes and landslides 

recorded on the road network. In addition, the susceptibility of the road network and another 

event set was created using the GeoSure susceptibility model: GeoSure was developed 

independent of this study using all landslide records in the UK (Walsby 2008). The two event 

sets were found to contain of a similar selection of road segments (Chapter 4.1.8) and each 

contains the same events with the most extreme indirect impacts (Figure 5.2).  

In the traffic simulations, the commuter trips are calculated to user equilibrium condition where 

routes are chosen to minimise travel time and cost. Consequently, user equilibrium is analogous 

of a best-case user response whereas in reality there is often a degree of uncertainty for the best 

routes during a sudden network disruption event (Taylor & D’Este 2007; Knoop et al. 2008; 

Peeta et al. 2015): user equilibrium is often cited as being analogous to using modern 

navigation systems with live traffic updates. The results of the validation procedure indicate 

that the undisrupted simulation provides an accurate representation of the long-term traffic 

flows recorded by automatic traffic counters at 35 locations across the road network (Chapter 

4.2.2). Attempts to validate the disruption event simulations using this data were unsuccessful 

due to: i) scarcity and missing traffic count data, ii) the short duration of captured disruption 

events, and iii) as many unknown additional factors are likely to have affected the traffic flows, 

such as roadworks, severe rainfall and flooding, that are not accounted for in the model. This 

may be feasible for other networks (e.g. urban networks with dense monitoring sensors) and as 

rich data sources such as telematics and intelligent infrastructure systems become more 

prevalent.  

Comparing the results of different models offers a means of qualitative model validation 

(Mingers & Brocklesby 1997; Murray et al. 2008; Lucia et al. 2014). To validate the disruption 

simulations, a comparison was made to previous assessments made using a different traffic 

simulation (Winter et al. 2014). Where comparisons are available, the impacts are found to be 

29 – 83 % greater than previous estimates (Table 5.1). For future assessments, these 

comparisons demonstrate the importance of methodological considerations for the choice of 

the network model used in relation to expected spatial distribution of the hazards impact. 

The origin-destination matrix contains the trips made by 81 % of the daily commuter trips made 

by cars and their passengers in Scotland. Other trips made by other modes and vehicles, 

including public transport and cycles, were not included due to limitations in the SUMO 

software. In addition, there are no comparable scale origin-destination datasets available to 

include other road users, such as trips made for industry and for seasonal tourism. Given the 
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concentration of impacts to within Scotland’s Highlands, the inclusion of seasonal tourism 

represents a significant improvement to the model. Analysis of the ATC data showed a marked 

increase the volume of traffic on weekdays in the peak tourism-season summer months (May 

to August) than in winter (November to February). Due to computational limitations the current 

model represents the annual average weekday traffic distribution obtained from ATC data. A 

suggested improvement to the model is therefore to derive and use separate seasonal weekday 

traffic distributions to better account for the seasonal variation in traffic flow. Though most 

landslides occur in winter, the increased volume of traffic during summer is likely to generate 

higher severity impact events that are not currently captured.  

The economic impact of events is derived by multiplying the additional travel time and a 

national average value of road user generalised cost. The user generalised cost value accounts 

for the costs attributed to operating and maintaining a vehicle and values of work and none-

work time set out by the UK department for transport’s transport appraisal guidance (DFT 

2014a). The landslide event indirect impacts should therefore be interpreted as minimum 

estimates and the full extent of indirect impacts is likely to be considerably higher. Nonetheless, 

the landslide events are shown to cause significant indirect impacts (Figure 5.2) and for several 

historic events these far exceed the cost of the emergency response and engineered solutions 

(Table 5.1). Consequently, the losses accrued by traffic disruption represent a significant 

proportion of the total impact of landslide hazards, contributing to increased landslide risk, yet 

these are not routinely considered in state of the art hazard risk assessment. This is in part due 

to the difficulty in approximating indirect impacts governed by non-linear processes, including, 

location of disruption, network topology, temporally and spatially varying levels of user 

demand. The method and results of this study may therefore be applied to conduct more 

complete landslide risk assessments and it is expected that these will be of interest to 

infrastructure operators who must evaluate and justify hazard mitigation expenditure on a cost 

benefit basis (Galbraith et al. 2005).  

The results show the indirect impact of each landslide event expressed in terms of nationwide 

economic impact (Figure 5.2). Using this information, it is possible to identify those events 

that have the potential to cause high levels of disruption and may be considered critical road 

segments for sustaining network serviceability (Murray et al. 2008; Mattsson & Jenelius 2015). 

In the UK climate change risk assessment report (Krebs 2017), such assessments were 

identified as an urgent strategic requirement following the occurrence of several high impact 

events, including the closure of the M1 motorway at the Ulley reservoir following heavy 

rainfall in June 2007 and the storm surge that closed the South West rail main line in February 

2014. In the case of the hillslope model landslide event set created for Scotland, eight events 

were found to have a relatively extreme level of national impact (i.e. 𝑁𝐼 1 – 8 in Figure 5.2A 

and Figure 5.2A1) and this includes road segments that have been disrupted by landslides in 

the last decade (Winter et al. 2005) in addition to road segments with no prior history of failure.  

The new dataset of event impacts may be used by the national highway authority in Scotland 

to target more detailed landslide hazard assessments (e.g. site surveys), and if required, to 

prioritise resources for hazard mitigation on these critical road segments. To illustrate its 

potential usage, in preparing this thesis a small landslide closed the A9 road south from 

Helmsdale, the first known recorded incident on this section of road. The road segment was 

identified as susceptible in both event sets and was found to have a high indirect impact (£90 

k per day, 𝑁𝐼 rank 9). Fortunately no widespread traffic disruption was reported as the landslide 
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was relatively small, occurred in the evening and was cleared overnight (Transport Scotland 

2016a). This example highlights the complexities of pre-determining the impact of landslide 

hazards (i.e. due to varying hazard magnitude and timing) and demonstrates the value of 

considering the indirect impact and road segment criticality in managing transport networks.  

To be of most value to highway owners and operators the new dataset of event impacts can be 

combined with assessments for the potential likelihood of a landslide hazard on each road 

segment, or indeed any other potential hazard phenomena capable of closing the roads. 

Pragmatically, this is may be done by combining the three levels of road segment susceptibility 

outlined in Figure 4.10 and the three levels of nationwide impact displayed in Figure 5.2. The 

result is a 3×3 risk matrix and mapping of the roads according to their susceptibility to 

landslides and level of indirect impact to traffic flows (shown in Figure 5.5). The matrix and 

accompanying map enable the rapid identification of the road segments with low susceptibility 

low impact and those with high susceptibility high impact. For simplicity, the risk matrix is 

constructed using the three susceptibility and impact levels already provided in this study. To 

produce a more effective risk assessment, and for operational systems, these levels would be 

chosen to reflect the interests and concerns of a wider variety stakeholders (Wachinger et al. 

2013; UNISDR 2015), including the different road user groups, the local communities, the 

network operators and other stakeholders. 
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Figure 5.5. A map and 3×3 risk matrix combining three levels of road segment landslide 

susceptibility and three levels of nationwide impact. The road segment colours correspond to 

the colours of the cells in the matrix. 
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The extended hazard impact footprints show how road users may be affected by landslides 

based on where they live. The combined severity footprint indicates that the Central and North-

West regions of Scotland are the most exposed to traffic disruption by landslides on the 

strategic road network Figure 5.4. For a selection of the most extreme events, Figure 5.3 

illustrates that the spatial distribution of impacts may be acute and focussed to a small number 

of zones, or dispersed and the zones are unexpectedly situated at great distances to the disrupted 

road segment. The acute impacts are explained by network topological characteristics, 

primarily the lack of equivalent length alternative routes so that the local population is the one 

most severely impacted (Jenelius 2010). The dispersed impact footprints reveal previously 

unidentified impacted communities and that comprise a significant part of the national impact. 

The dispersal of impacts is attributed to long distance trips adopting new circuitous routes to 

avoid the road segments. This can lead to a cascading and widespread effect of re-routing traffic 

onto alternative routes, increasing the travel time on other roads and further displacing traffic.  

The impact footprints highlight several interesting issues that may be of great interest to hazard 

managers, politicians and the general public, particularly if the frequency of landslide 

occurrence were to increase given the projected scenarios of future climatic change (Dijkstra 

et al. 2016a). First, the impact footprints indicate the zones where the potential for traffic 

disruption is greatest. In the long term, this may lead to secondary landslide impacts such as 

decreasing levels of business investment, tourism and a gradual reduction in property prices in 

the most heavily disrupted zones (Winter et al. 2014). Second, there is the potential for political 

ramifications. Whereas the dispersed impact footprints indicate a landslide that affects a large 

number of people by a relatively small amount, an acute impact footprint represents a landslide 

event that disproportionately affects a certain community: typically, in rural communities. Such 

events are likely to gather a high level of public attention and with the potential for knock-on 

implications to the highway management authority, in this instance the Scottish parliament. 

This might include growing negative sentiment and reduction in community or business 

support to regional representatives and governing parties.   
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Chapter 6 Landslide Rain Initiation Thresholds 
 

6.1 Introduction 

Chapter 4 examined the spatial probability and attempts to answer ‘where’ landslides are most 

likely to occur in Scotland by analysing landslide records and information on the 

geomorphological and geotechnical characteristics of hillslopes on a road network. In Chapter 

6, landslide rain initiation thresholds are developed to examine the temporal probability and 

‘when’ landslides are most likely to occur. The results of this chapter are published in the 

journal Earth Surface Processes and Landforms (Postance et al. 2017a). 

The study uses the same database of 75 shallow translational and debris flow landslides as used 

in the susceptibility analysis (Chapter 4). The timing of these landslides is analysed in relation 

to a site-specific-rain record (SSR) at each landslide location. The SSR are time series of 

rainfall variables derived from a high resolution (5 km2 at 15 minutes) weather radar system 

for the period March 2004 to August 2016. The rain variables are calculated over ten antecedent 

periods of 1, 2, 3, 6, 12, 18, 24, 30, 50 and 60 days (𝑛, e.g. 12-day normalised accumulation = 

𝑁𝑉12). The variables include:  

• Rain accumulation in mm (𝑉𝑛). 

• Normalised rain accumulation (𝑁𝑉𝑛) as multiples of the monthly rainy-day-normal 

accumulation (𝑅𝐷𝑁). 𝑅𝐷𝑁 is the monthly mean rain accumulation for days with rain. 

The 𝑅𝐷𝑁 is calculated for each radar cell in Scotland to account for spatial rainfall 

variations, such as by elevation and orographic influence.  

• Maximum rainfall intensity in mm h-1 (𝐼𝑚𝑎𝑥𝑛). 

• Rain duration in h-1 (𝑅𝐷𝑛). Rain duration is measured as the period of rainfall that 

exceeds the monthly rainy-day-normal-intensity (𝑅𝐷𝑁𝐼). 𝑅𝐷𝑁𝐼 is analogous to 𝑅𝐷𝑁 

but measures the monthly mean rainfall intensity, it is used to indicate periods of above 

average intensity rainfall. The 𝑅𝐷𝑁𝐼 is also calculated for each radar cell in Scotland. 

For each variable, 250 candidate thresholds are created between their minimum and maximum 

observed values. For each of the 250 candidate threshold values, a binary classification 

procedure is applied to calculate contingency tables (i.e. counting the true positives, true 

negatives, false positives and false negatives of each threshold). Then, a receiver operating 

characteristic (ROC) analysis is used to measure the predictive performance of each rain 

variable using the area under the ROC curve (AUC). ROC analysis is also used to select two 

thresholds: the ‘threat score’ (TS) threshold offers the greatest level of predictive accuracy and 

minimizes false results (Staley et al. 2013), the ‘optimal point’ (OP) threshold provides the 

highest rate of landslide detection (true positives) for the lowest number of false results and is 

yet to be applied to landslides. The results include: the threshold values, and Bayesian 

probabilities that indicate the likelihood of threshold exceedance and the conditional 

probability of landslide occurrence given threshold exceedance (Chleborad et al. 2008; Berti 

et al. 2012). For each threshold, the effect of varying the SSR record length is systematically 

evaluated using 10 different record lengths representative of those implemented in past studies: 

these are daily SSR time series of 10, 20, 30, 45, 90, 180, 365, and 730 days before each 

landslide event, all days before (‘Prior’) and all (‘All’) that includes all data either side of 

landslide occurrence. The entire process is applied to determine thresholds for each rain 

variable and for pairs of variables found to be statistically independent by correlation analysis. 
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6.2 Normalised rain variables 

Figure 6.1A and Figure 6.1B illustrate the RDN values for June and December, the driest and 

wettest months. Figure 6.1C shows a box whisker plot of the RDN and RDNI values for each 

month. One of the novel elements of this study is that thresholds are sought using spatially 

coherent radar rainfall data and monthly RDN and RDNI normalised variables. The variables 

and their landslide initiation thresholds are therefore normalised both spatially (i.e. to account 

for orographic influences in the West Highlands) and temporally (i.e. to account for seasonal 

variation) as illustrated in the Figure 6.1. Previous studies have used annual RDN normalisation 

(Wilson & Jayko 1997; Guzzetti et al. 2007) and these are shown for comparison in Figure 

6.1C by the horizontal line connecting the black (annual RDN) and blue dots (annual RDNI). 

The plot illustrates how the annual values may overestimate the typical rainfall conditions in 

summer and underestimate conditions in winter, thus producing poorer quality thresholds. 

Please turn over. 
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Figure 6.1. A and B show the spatial distribution of the rainy day normal (RDN) accumulation 

for June and December, respectively. C) A box whisker plot of the monthly RDN (black boxes) 

and rainy day normal intensity values (RDNI blue boxes). The boxplots are median centred 

and range from first to third quartiles with whiskers to minimum and maximum values. The x-

axis labels indicate the number of landslides recorded in each month. The points and horizontal 

lines show the average annual RDN (black) and RDNI (blue). 
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6.3 Landslide thresholds for individual variables 

Table 6.1 displays the threshold results for a selection of the highest performing rain variables: 

𝐼𝑚𝑎𝑥1 and 𝐼𝑚𝑎𝑥2 are the thresholds for the maximum intensity of rainfall (mm h-1) observed 

in the days preceding landslide occurrence; 𝑅𝐷1 and 𝑅𝐷2 are the thresholds for the duration 

(hours) of above average intensity rainfall; and 𝑁𝑉1, 𝑁𝑉2 and 𝑁𝑉12 show the RDN normalised 

accumulation thresholds. The 𝑁𝑉 thresholds are multiples of a locations RDN. For instance, 

by adjusting the 𝑁𝑉1 thresholds to the pixel RDN values the thresholds translate to critical 

accumulations of approximately 11.0 to 36.5 mm in June, the driest month, and 19.6 to 65.0 

mm in the wettest month December depending on location (Figure 6.1). 

In Table 6.1, the average AUC value across the ten rain records indicates the overall predictive 

performance of each rain variable, with higher AUC for variables better able to distinguish 

landslide and non-landslide rain conditions. The optimal point (OP) and threat score (TS) 

thresholds are averaged over each of the different rain record lengths and the values in brackets 

show the range of threshold values between the shortest and longest rain records (‘10-day’ - 

‘All’). In comparison to the TS thresholds, the OP thresholds have lower values and lower 

probabilities but capture a greater number of the landslides (𝑇𝑃). The coefficient of variance 

(𝐶𝑉 %) measures the change in the threshold value across the ten different rain record lengths, 

a higher 𝐶𝑉 % indicates greater threshold variance. The TS thresholds have higher variance of 

14 – 44 % whereas the OP thresholds are relatively stable 7 – 20 %. The 𝑝(𝑇𝐻) is the probability 

of the threshold and 𝑝(𝐿𝑆|𝑇𝐻) is the Bayesian conditional probability of landslide occurrence 

given threshold exceedance, again the values in brackets show the range of probability values 

between the shortest and longest rain records (‘10-day’ - ‘All’). The OP thresholds have higher 

probability of occurrence and lower conditional probability of initiating a landslide. 

Conversely, TS thresholds have lower probability of occurrence and higher conditional 

probability of initiating a landslide. The statistical significance of the thresholds, their 

probabilities and the observed number of landslides (𝑇𝑃) is evaluated using the binomial 

distribution. All the reported thresholds are significant to the 95 % confidence interval and 

thresholds with p-values above the critical value are discarded (α > 0.05). For example, Figure 

6.2 shows the result of the Bernoulli trial for 𝐼𝑚𝑎𝑥1 TS threshold: the observed number of 

landslides (𝑇𝑃 − black arrow) exceeds the number of landslides expected to co-occur with 

threshold exceedance by random chance at the common critical values (vertical grey lines).  

  

Figure 6.2. A plot showing the results of the 

Bernoulli trial test of statistical significance for 

the 𝐼𝑚𝑎𝑥1 TS threshold. The x-axis is the number 

of landslides expected to co-occur with threshold 

exceedance by random chance, the y-axis is one 

minus the binomial cumulative density function 

(1–CDF). The black arrow indicates the actual 

number of landslides observed given 𝐼𝑚𝑎𝑥1, and 

the grey lines indicate the critical number of 

landslides observed for different confidence 

intervals. 
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Individual variables Optimal Point Threat Score 

Variable AUC Threshold 𝐶𝑉 % 𝑝(𝑇𝐻) 𝑝(𝐿𝑆|𝑇𝐻) TP Threshold 𝐶𝑉 % 𝑝(𝑇𝐻) 𝑝(𝐿𝑆|𝑇𝐻) TP 

𝐼𝑚𝑎𝑥1 0.83 
4.7 

(5.6 - 4.4) 
10 

0.25 

(0.36 - 0.18) 

0.05 

(0.18 - 9.6× 10−4) 

59 

(53 - 60) 

12.4 

(5.6 - 14.1) 
23 

0.05 

(0.35 - 0.07) 

0.11 

(0.18 - 5.2× 10−3) 

19 

(53 - 12) 

𝐼𝑚𝑎𝑥2 0.80 
5.5 

(6.6 - 4.8) 
15 

0.29 

(0.36 - 0.25) 

0.04 

(0.16 - 7.3× 10−4) 

59 

(50 - 63) 

13 

(8.7 - 14.2) 
14 

0.05 

(0.22 - 0.01) 

0.09 

(0.19 - 3.0× 10−3) 

18 

(35 - 13) 

𝑅𝐷1 0.86 
4.0 

(5.5 - 3.5) 
20 

0.22 

(0.29 - 0.19) 

0.06 

(0.22 - 1.0× 10−3) 

63 

(55 - 65) 

14.4 

(8.3 - 20.3) 
37 

0.04 

(0.14 - 0.1×
10−2) 

0.21 

(0.33 - 3.3× 10−2) 

20 

(39 - 6) 

𝑅𝐷2 0.85 
7.9 

(9.4 - 6.4) 
11 

0.22 

(0.33 - 0.21 

0.06 

(0.20 - 9.1× 10−4) 

60 

(55 - 64) 

22.6 

(16.2 - 30.7) 
31 

0.03 

(0.11 - 0.1×
10−2) 

0.18 

(0.35 - 2.1× 10−2) 

19 

(31 -7) 

𝑁𝑉1 0.88 
1.9 

(2.6 - 1.9) 
13 

0.18 

(0.25 - 0.13) 

0.07 

(0.26 - 1.3× 10−3) 

59 

(54 - 59) 

6.3 

(3.6 - 9.1) 
27 

0.03 

(0.14 - 0.1×
10−2) 

0.22 

(0.37 - 1.7× 10−2) 

21 

(41 - 7) 

𝑁𝑉2 0.87 
3.7 

(4.4 - 3.5) 
07 

0.18 

(0.25 - 0.14) 

0.07 

(0.26 - 1.3× 10−3) 

60 

(55 - 61) 

9.6 

(7.0 - 20.7) 
44 

0.03 

(0.10 - 0.1×
10−3) 

0.22 

(0.43 - 3.2× 10−2) 

25 

(37 - 11) 

𝑁𝑉12 0.81 
15.0 

(19.7 - 13.7) 
12 

0.26  

(0.26 - 0.21) 

0.05 

(0.20 - 8.7× 10−4) 

59 

(44 - 62) 

28.4 

(22.8 - 46.8) 
34 

0.06  

(0.12 - 0.2×
10−3) 

0.105 

(0.34 - 1.8× 10−2) 

24 

(34 - 11) 

 

Table 6.1. Rain initiation thresholds for landslides in Scotland. Variable: rain variable used and antecedence period. Threshold: the mean threshold value 

across ten different rain records, brackets show the threshold values for (10-day - ‘All’) rain records. 𝐶𝑉%: the threshold coefficient of variance across ten 

different rain records. 𝑝(𝑇𝐻) and 𝑝(𝐿𝑆|𝑇𝐻): the threshold probability and the Bayes conditional probability of landslide occurrence for threshold 

exceedance, brackets show the range of probabilities for the ‘10-day’ to ‘All’ rain records. 𝑇𝑃: true positives are the number of landslides that co-occurred 

on days with threshold exceedance, the brackets show the range of values for the ‘10-day’ to ‘All’ rain records. 
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6.4 Landslide thresholds for pairs of variables 

Thresholds that are based on pairs of rain variables may produce more robust indicators of 

landslide occurrence as they are able to consider both the short-term rainfall conditions at the 

onset of landslide initiation in addition to longer term antecedent rainfall. The most suitable 

pairs of variables will be those that combine the high performing rain variables (i.e. high 

individual AUC) and that are statistically independent of one another. Spearman’s rank order 

correlation coefficient (𝑅) is used to test for independence and out of the 595 possible pairs, 

the mean 𝑅 = 0.52 with range 𝑅 = 0.17 - 0.99.  

The criterion, mean AUC > 0.85 and 𝑅 < 0.50 is applied to select suitable pairs of variables: 

previous studies used higher values 𝑅 < 0.8 (Søren et al. 2014). Listed in Table 6.2, nineteen 

pairs of variables were identified using these criteria for different combinations of rain duration 

(𝑅𝐷1, 𝑅𝐷2 and 𝑅𝐷12), normalized rain accumulation (𝑁𝑉1, 𝑁𝑉2, 𝑁𝑉12and 𝑁𝑉18) and maximum 

rain intensity (𝐼𝑚𝑎𝑥1 and 𝐼𝑚𝑎𝑥2). Most pairs are for combinations of different variables, 

although several suitable pairs were found for combinations of normalised rain accumulation 

at short (i.e. 1 – 2 days) and long (i.e. 12 – 18) antecedence periods. 

  

 Rain record AUC  

Pair Variable 1 Variable 2 R p-value 10 All Average AUC 

1 RD1 RD12 0.39 < 0.001 0.83 0.93 0.90 

2 RD1 NV12 0.37 < 0.001 0.85 0.93 0.91 

3 RD1 NV18 0.31 < 0.001 0.85 0.95 0.92 

4 RD2 NV12 0.48 < 0.001 0.83 0.92 0.89 

5 RD2 NV18 0.39 < 0.001 0.83 0.94 0.91 

6 RD2 NV18 0.45 < 0.001 0.81 0.93 0.90 

7 NV1 RD12 0.37 < 0.001 0.85 0.93 0.91 

8 NV2 RD12 0.46 < 0.001 0.84 0.92 0.90 

9 Imax1 RD12 0.39 < 0.001 0.80 0.92 0.89 

10 Imax2 RD12 0.46 < 0.001 0.79 0.91 0.87 

11 NV1 NV12 0.37 < 0.001 0.85 0.93 0.91 

12 NV1 NV18 0.31 < 0.001 0.86 0.95 0.92 

13 NV2 NV12 0.48 < 0.001 0.84 0.91 0.89 

14 NV2 NV18 0.39 < 0.001 0.85 0.94 0.92 

15 NV3 NV18 0.46 < 0.001 0.83 0.93 0.90 

16 Imax1 NV12 0.36 < 0.001 0.82 0.92 0.89 

17 Imax2 NV12 0.43 < 0.001 0.80 0.91 0.88 

18 Imax1 NV18 0.30 < 0.001 0.81 0.94 0.90 

19 Imax2 NV18 0.36 < 0.001 0.80 0.93 0.89 

 
Table 6.2. Nineteen pairs of rain variables. R: the Spearman rank correlation coefficient. p-value: 

statistical significance of the correlation. Rain record AUC: the AUC the scores for the 10-day 

and ‘All’ rain record. Average AUC; the average AUC score of the ten rain records.  
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Pairs of variables Optimal Point Threat Score 

Variables AUC R Threshold 
𝐶𝑉 
% 

𝑝(𝑇𝐻) 𝑝(𝐿𝑆|𝑇𝐻) TP Threshold 
𝐶𝑉 
% 

𝑝(𝑇𝐻) 𝑝(𝐿𝑆|𝑇𝐻) TP 

* 𝐼𝑚𝑎𝑥1 
+ 𝑅𝐷12 

0.89 0.39 

4.7_32.1 
* (5.0 - 6.0) 

+ (39.0 - 21.6) 

* 28 
+ 28 

0.16 

(0.27 - 0.10) 

0.08 

(0.26 - 1.7× 10−3) 

42 

(38 - 40) 

12.0_49.2 

(13.0 - 13.0) 

(28.6 - 96.4) 

29 

62 

0.01 

(0.05 – 6.8× 10−4) 

0.32 

(0.6 - 8.6× 10−2) 

9 

(12 - 2) 

𝐼𝑚𝑎𝑥1 

𝑁𝑉12 
0.89 0.36 

2.4_19.0 

(4.0 - 2.0) 

(22.6 - 13.0) 

35 

17 

0.12 

(0.23 - 0.09) 

0.11 

(0.38 - 2.1× 10−3) 

40 

(34 - 48) 

11.9_19.5 

(2.0 - 13.0) 

(25.0 - 25.0) 

29 

25 

0.02 

(0.13 - 0.7× 10−2) 

0.30 

(0.45 - 3.2× 10−2) 

12 

(21 - 8) 

𝑅𝐷1 

𝑁𝑉12 
0.91 0.37 

3.5_17.4 

(3.5 - 3.5) 

(22.0 - 15.0) 

0 

15 

0.11 

(0.17 - 0.08) 

0.11 

(0.38 - 2.3× 10−3) 

45 

(33 - 52) 

12.1_18.6 

(3.5 - 20.3) 

(24.0 - 18.0) 

28 

43 

0.01 

(0.10 - 0.3× 10−2) 

0.41 

(0.75 - 5.5× 10−2) 

8 

(23 - 6) 

 

Table 6.3. Paired variable rain initiation thresholds for landslides in Scotland. Variables: rain variables used and antecedence period, the * and + are used 

to indicate the values of each variable. Threshold: the mean threshold value across ten different rain records, pairs are separated using “_” and brackets 

show the threshold values for (10-day - ‘All’) rain records. 𝐶𝑉%: the threshold coefficient of variance across ten different rain records. 𝑝(𝑇𝐻) and 

𝑝(𝐿𝑆|𝑇𝐻): the threshold probability and the Bayes conditional probability of landslide occurrence for threshold exceedance, brackets show the range of 

probabilities for the ‘10-day’ to ‘All’ rain records. 𝑇𝑃: true positives are the number of landslides that co-occurred on days with threshold exceedance, the 

brackets show the range of values for the ‘10-day’ to ‘All’ rain records. 
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Table 6.3 shows the threshold values, their probabilities and other scores for a selection of pairs 

with the best performance. As for the individual variables, the OP thresholds have lower values, 

variances and conditional probabilities and are more likely to occur than the TS thresholds. 

This is also illustrated in Figure 6.3A that shows a panel plot of the OP and TS thresholds for 

each of the different rain record lengths: the plots show the number of days with landslides 

(black dots) and the number days without landslides (grey dots) captured by each threshold 

(i.e. above and to the right of the threshold lines). The OP thresholds (dashed lines) are 

relatively stable with low CV, and these capture most landslide occurrences. In contrast, the 

TS thresholds adjust with respect to increasing rain record length to minimise the number of 

days where landslides did not occur. Figure 6.3B shows the reduction in the threshold 

conditional probability of landslide occurrence for increasing rain record length. 

Figure 6.3. (A) Panel plot showing the OP (dashed line) and TS (solid line) thresholds for the 

combination of RD1 and NV12 and for 10 different rain records. Black dots are the days with 

landslide occurrence whilst grey dots are the days with no landslides. (B) A plot of the 

conditional probability of landslide occurrence given OP or TS threshold exceedance for each 

rain record. 



 

149 

 

6.5 Comparing thresholds from other studies 

Most landslide initiation thresholds are for critical rain accumulations and durations at certain 

intensities. Figure 6.4 compares the new RDN normalised rain accumulation and maximum 

intensity landslide thresholds to those published for other temperate regions and thresholds 

developed using: different threshold selection techniques; analyses using rainfall events; 

analyses using gauge rain data; absolute and normalized rain variables; and outputs for lower, 

middle and upper limit thresholds. Several of the intensity thresholds may be inaccurate (± 1 - 

2 mm h-1) due to the nature in which the thresholds are reported, for instance using mean or 

maximum values and results given in graphics.  

In Figure 6.4, some of the most relevant thresholds to this study are those for the analysis of 

16 landslide rain-events in Scotland (Winter et al. 2010) and 502 events in Norway (Meyer et 

al. 2012). For Scotland, the previous rain accumulation thresholds for 1 and 2 days antecedence 

(blue dots) correspond well with the OP thresholds of this study (red dots). Winter et al (2010) 

also noted the importance of 12-day antecedent accumulation as a contributory factor in 

landslide initiation, however, the new thresholds suggest that these may be lower 12-day 

accumulations. A similar pattern is observed for the 1-day Scottish rain intensity thresholds in 

Figure 6.4B. These differences are likely attributed to the fact that a greater number of 

landslides were analysed in this most recent study, thus greater variety of initiation conditions. 

In addition, the new rain accumulation values are normalised using RDN and so the thresholds 

will be higher or lower depending the on their location: the accumulation values in Figure 6.4 

represent the mean RDN value across Scotland. For the Norwegian thresholds, rain intensities 

are within the range of the OP and TS thresholds found for Scotland. The Norwegian rain 

accumulation thresholds are higher but these also the include contributions of water supplied 

by melting ice and snow.  

Thresholds from other regions and countries world-wide have different, higher values, but this 

is likely attributed to different physical constraints and methodology of analysis (Figure 6.4). 

For instance, the 𝐼𝑚𝑎𝑥1 OP thresholds are lower than much of the rest, but when looking at 

the range of intensities (OP - TS) these seem to correspond well with those reported for similar 

landslide mechanisms and climates (Figure 6.4C). This review indicates that it is important to 

regionally constrain comparisons. 
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Figure 6.4. A comparison of new thresholds for Scotland (red dots and lines) and thresholds 

published in other temperate climates. (A) Shows rain accumulation thresholds from 0 - 17 

days, and (B) rain intensity thresholds 0 - 48 h. Stacked symbols indicate studies reporting 

lower, middle and upper thresholds. Blue pentagons: Scotland (Winter et al. 2010). Green 

squares: Norway (Meyer et al. 2012). Cross: Southern California (Cannon et al. 2008). X: 

Southern California (Staley et al. 2013). Triangle: Southern Italy (Gariano et al. 2015). Star: 

Central Italy (Peruccacci et al. 2012). Inverted triangle: Seattle (Chleborad et al. 2008). Dash: 

Global (Guzzetti et al. 2007). (C) is a box whisker plot to show the range of 0.1 - 24 h maximum 

intensity thresholds for 25 different territories, including, Italy, Switzerland, Austria, Spain, 

North and South America, Indonesia, South East Asia and Japan (Guzzetti et al. 2007). The 

box is median centered and extends 1st to 3rd quartiles and whiskers 10 to 90%. Three thresholds 

are not shown at ~120 (2) and 180 (1) mm h-1. 
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6.6 Discussion 

The study evaluates the effect of varying the rainfall record length, the primary data input, on 

two different receiver operating characteristic (ROC) techniques used to define landslide rain 

initiation thresholds: these are the optimal point (OP) and threat score (TS) thresholds. One of 

the main inferences to be gained from this investigation is that the TS thresholds are more 

sensitive to changes in the rain record length and these have mean coefficient of variance 28 % 

across all the rain variables and pairs examined. Conversely, the OP thresholds proved 

relatively consistent and have lower variances (mean 11 %) with respect to changes in the rain 

record length. The length of the rain record is ultimately limited by data availability. For this 

study in Scotland a relatively unique 13 year radar precipitation record was used but most other 

investigations use rain gauge data and these are usually for longer periods of several decades. 

The method implemented here shows that changes to rain record length are shown to influence 

the OP and TS thresholds differently. This therefore constitutes a simple yet important 

consideration for past and future investigations and as the literature review identified a diversity 

of different strategies, including, using a number of days of the rain record prior to each 

landslide occurrence ranging 10 to 180 days, or using rain events defined between minimum 

dry periods of 2 – 120 hours.  

The OP thresholds maximise landslide detection by selecting relatively low threshold values 

and this reduces the number of missed landslide alarms. In contrast, the TS thresholds have 

higher values and these are selected to maximise threshold accuracy by limiting the number 

false alarms. The two thresholds can be interpreted as a potential lower (OP) and upper (TS) 

limit range of thresholds that envelope the rain conditions most frequently associated to 

landslide occurrence in Scotland. Establishing such limits is a common objective in landslide 

hazard research as they clearly communicate the rain conditions below and above which 

landslides are least and most likely to occur (Guzzetti et al. 2008). In a first application to 

landslides, the OP thresholds are therefore suggested as suitable method to determine lower 

limit initiation thresholds and these may be beneficial for use in landslide early warning (Reid 

2006; Wachinger et al. 2013; UNISDR 2015). Whilst TS thresholds have been used before by 

Staley et al (2013), these and other previously defined thresholds and limits were established 

irrespective of the rain record length and without consideration for the periods and rain events 

where no landslides are known to have occurred (Caine 1980; Guzzetti et al. 2007; Brunetti et 

al. 2010). The new thresholds for Scotland have been developed using all the available rain 

time series data at each landslide site.  

To assess the value of the new thresholds, and prior to any operational use, the thresholds need 

to be rigorously tested and evaluated using a set of independent landslide records and rainfall 

radar of at least 2 – 4 years. In addition, there are several known limitations and possible 

improvements that may be made to further enhance their performance. First, the thresholds 

only consider water supplied to the slope materials by rainfall but other studies demonstrate 

improved thresholds by including additional sources, such as melting snow and ice pack or 

surface water flow (Meyer et al. 2012; Martelloni et al. 2013; Søren et al. 2014). This might 

also involve using more sophisticated rain variables for effective precipitation by taking 

account of evaporation and evapotranspiration (Dixon & Brook 2007; Dijkstra & Dixon 2010). 

These were not considered here given the time constraints of this study and the limited 

availability of input data of an equivalent period and scale as the radar data. Second, further 

improvements may be achieved by developing a set of independent thresholds for smaller 
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regions and sub-domains in the study area based on the spatial distribution of different slope 

lithologies and landslide characteristics (Segoni et al. 2014). A set of national thresholds were 

developed due to: i) the relatively limited number of landslide records within the study area, 

but also as these are comprised of similar landslide mechanisms and failures materials; and ii) 

as the thresholds are normalised spatially.  

The best performing individual rain variables (Table 6.1) are the variables for the one and two 

day antecedence periods. The optimal point (OP) and threat score (TS) thresholds for 

normalized rain accumulation on the day of landslide occurrence (𝑁𝑉1) range from 1.9 to 6.3 

times the rainy-day-normal (RDN), respectively. For 𝑁𝑉2, the thresholds are greater at 3.7 to 

9.6 times RDN. These thresholds indicate that in Scotland the flux in water supply to slopes 

prior to landslide occurrence is in the order of two to ten days’ worth of the monthly daily 

average rain. For example, the 𝑁𝑉1 thresholds translate to critical rain accumulations of 11.0 

to 36.5 mm in June, the driest month, to 19.6 to 65.0 mm in the wettest month December. This 

demonstrates how the monthly RDN is used to account for seasonal fluctuations of rainfall in 

Scotland. The 𝑁𝑉 thresholds are also normalised for spatial rainfall variation, such as by 

orographic affects, as the RDN is calculated for each pixel in the weather radar data (Figure 

6.1A). The 1 and 2-day antecedence rain duration thresholds indicate that landslides are 

initiated following critical periods of 3.5 to 30 h above average intensity rainfall. As for the 

normalised rain accumulation thresholds, the rain duration thresholds are normalised for the 

seasonal and spatial variability of rain. The new thresholds are consistent with physical 

descriptions of landslides in Scotland namely: that most landslides occur on slopes with an 

impermeable substrata that features a shallow (< 3 m), overlain cover of relatively coarse 

granular matrix material that is highly susceptible to mobilization by both rapid water 

infiltration and saturation (Ballantyne 1986; 2002; Milne et al. 2009). 

Similar threshold values of 4.7 to 5.5 mm h-1 (OP) and 12.4 to 13.0 mm h-1 (TS) are found for 

the 1 and 2-day antecedence period maximum rain intensity thresholds (𝐼𝑚𝑎𝑥). These 

thresholds have lower performance measures relative to equivalent antecedence 𝑁𝑉 and 𝑅𝐷 

ones. Assuming that landslides are initiated at or near the period of maximum intensity rainfall 

the results may indicate that there are lags in water supply to reach critical parts of the slope, 

for instance, due to groundwater flow (Iverson 1997, 2000), vegetation cover, or increased rates 

surface runoff during high intensity rain (Lu & Godt 2013). Alternatively, other studies report 

rainfall intensity thresholds that are far below the peak intensity, however, these are for 

landslides initiated in a different, post-fire environment (Staley et al. 2013). The relatively poor 

performance of 𝐼𝑚𝑎𝑥 is more likely attributed to: i) spatio-temporal rainfall variations as the 

𝐼𝑚𝑎𝑥 is a non-normalized rain variable, and ii) data artefacts, as 22 % of the landslide records 

have > 48 h temporal resolution. 

Thresholds that are formed of pairs of variables were selected using a criterion for high AUC 

and low Spearman’s rank order correlation (Table 6.2). Several of the pairs included 

combinations with the 12 and 18-day rain duration variables. On reflection, these long 

antecedence period rain duration variables are ambiguous and are of limited value as they might 

capture durations of a single prolonged rain event or the cumulative duration of multiple short 

events. Consequently, the pairs with these variables were discarded. For future studies, it is 

recommended that the new 𝑅𝐷 variable is used only to measure rain durations at 1 and 2-day 

antecedence periods. For longer periods, a more appropriate strategy is to calculate the rain 
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duration by counting the number and duration of rain events between the dry periods, as in 

Melillo et al (2015).  

A similar range of 1 and 2-day antecedence 𝑁𝑉, 𝑅𝐷 and 𝐼𝑚𝑎𝑥 thresholds were obtained in the 

pairs combining the 12-day antecedent normalised rain accumulation (𝑁𝑉12). The pairs with 

𝑁𝑉12 also featured the highest performance measures found in this study (Table 6.3). More 

robust thresholds are likely obtained as the 12-day antecedent rain accumulation contributes to 

an increase of the slope material pore water pressure and a reduction of effective stress, so that 

shear strength is reduced and a landslide occurs (Iverson et al. 1997; Wieczorek & Glade 2005; 

Napolitano et al. 2016). Other empirical thresholds developed in Scotland also highlight the 

role of the 12-day antecedent hydrological condition of soils as a precursory factor in 

controlling the rain thresholds that trigger landslides (Winter et al. 2010). The new results also 

support the observation that landslides occur more frequently in the UK during the early 

autumn and winter seasons when sequences or ’clustering’ of multiple cyclonic-storm systems 

is common in periods lasting 5 to 15 days (Mailier et al. 2006; Kendon & McCarthy 2015; 

McCarthy et al. 2016). Lower performance measures were obtained for the pairs combining 

longer antecedent periods (≥ 𝑁𝑉18). This weakening of the threshold signal suggests that 

rainfall of more than 12 days prior to landslide occurrence is a less significant indicator of 

landslide initiation in Scotland. The longer antecedent periods may have a more limited 

influence as the geomorphological and geotechnical characteristics of the slope materials 

support effective drainage and resistance to protracted and evenly distributed rainfall, such as 

their steep slope angles, high permeability and granularity (Ballantyne 1986; Wieczorek 1996; 

Nettleton et al. 2005). Subsequently, it is believed that the 12-day antecedent rainfall is an 

important precursor to landslide occurrence in Scotland whereas the shorter, 1 to 2-day rain 

conditions are a likely indicator of their triggering. 

Figure 6.5 illustrates a three tier, low (yellow), moderate (amber), high (red), landside warning 

system based on the 𝑅𝐷1 and 𝑁𝑉12 pair thresholds obtained in the study area. Rain conditions 

that exceed the OP threshold and are below the TS threshold (‘> OP & < TS’ in Figure 6.5) are 

used to indicate a moderate ’amber’ warning of landslide potential as these capture the rain 

conditions in which most past landslides have occurred (74 %). The TS thresholds and red 

portion of the plot only capture a small proportion of the landslides (6 %). As shown in Figure 

6.3, the TS thresholds only capture a larger number of landslides for the ≤ 180 rain records and 

the TS thresholds are more sensitive to rainfall record length. Tentatively, to complete the 

warning system, a yellow ‘low’ warning may be given below the OP threshold (<OP) and a 

high ‘red’ warning of landslide potential is given for the rain conditions that exceed the TS 

threshold (>TS).  

The yellow shaded area represents rain conditions with a high level of uncertainty for the 

landslide potential. This is because the yellow portion of the plot contains several landslide 

occurrences (20 %) and many days where no landslides were recorded. In addition, several of 

the landslides may have been initiated by other factors not captured in the rainfall variables and 

thresholds used, such as water supplied by snow melt or overland flow, and this may explain 

why several landslides occur in relatively low rainfall conditions. For instance, in the bottom 

left portion of the plot five landslides are shown to have been initiated in conditions of little to 

no 1-day rain duration and only 2 to 10 days’ worth of the monthly rainy day normal rainfall 

in the preceding 12-days. Alternatively, and a more likely scenario, is that these represent 

several records within the landslides database that have poor spatial and temporal resolution or 
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that have been wrongly classified as planar and debris flow type failures – despite the data 

verification and cleaning processes applied for this study described section 3.1.2 Landslide 

database.  One possible solution to improve the data verification process involves using plots 

such as Figure 6.5 to identify and eliminate landslide records with low rainfall profiles (e.g. 

those in the bottom left of Figure 6.5 that are unlikely to be triggered by rainfall). However, 

the author issues caution in adopting this approach as it represents a subjective selection and 

removal of data points to fit a pre-determined opinion on the rainfall conditions that cause 

landslides. More appropriate solutions include: i) to use threshold selection methods that 

provide tolerance to erroneous and outlier data points, such as those adopted here for OP 

thresholds; ii) make further improvements to the processes and accuracy of data collection, 

data cleansing and landslide classification; and iii) introduce additional variables and account 

for other physical processes that are known to initiate landslides, such as snow melt and rock 

fall. 

 

 

 

 

  

Figure 6.5. The OP (dashed line) and TS (solid line) thresholds for the combination of: hours 

of above average intensity Rain-Duration (𝑅𝐷1) on the day of occurrence, and monthly rainy-

day-normal normalised rain accumulation (𝑁𝑉12) in the preceding 12 days. The thresholds are 

used to form a hypothetical traffic light warning system of landslide potential: uncertain / low 

= yellow, moderate = amber, and high = red.  
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Chapter 7 A Prototype Hazard-Network Catastrophe Model 

 

7.1 Introduction 

In this chapter, a catastrophe (CAT) model is demonstrated that combines the three key 

elements of this thesis: the model of hillslope susceptibility, the landslide initiation thresholds, 

and the traffic simulation of indirect impacts. The CAT model is used to estimate the potential 

losses due to landslide disruptions on the road network in Scotland, a landslide-network CAT 

model. It is stressed that the model developed and its outputs are intended for illustrative 

purposes only. Although the spatial-temporal probabilities (i.e. landslide susceptibility and 

triggering thresholds) and the landslide impacts (i.e. the network model) used in the model 

have been rigorously tested and evaluated in this thesis, several simplifying assumptions were 

made in order to produce a working model. These assumptions show how the CAT model 

framework may be used to evaluate factors that determine the overall level of landslide risk, 

such as the disruption duration. For operational applications this, and other factors (e.g. partial 

closure) require thorough evaluation and thus render the development of an operational 

standard model beyond the scope of this thesis. Nonetheless, as far as the author is aware this 

is the first application of CAT modelling to evaluate hazards in terms of their impact to the 

operation of infrastructure. Therefore, the modelling framework and its components are 

portable to investigations of other hazards in Scotland, such as flooding and severe wind, and 

to the study of other hazards and infrastructures in different regions. 

7.2 Input data to the catastrophe model event set 

The event set is a stochastically generated list of possible landslide events on the strategic road 

network in Scotland. Conceptually, the event set can be construed as 10,000 years’ (number of 

model iterations; 𝑛 = 10,000) worth of random re-realisations of the observed landslide data 

obtained in Scotland for the period 2004 to 2016. The event set is produced by Monte Carlo 

sampling of discrete probability mass functions (PMF) and continuous probability distribution 

functions (PDF) of observed empirical data and the modelled landslide hazard on road 

segments. Figure 7.1 shows the probability functions used in the CAT model: 

• Figure 7.1A shows the PMF of the number of storms per year for the period 2004 to 

2016 (red bars, mean = 11.4, standard deviation = 4.2) and the skewed normal PDF 

for period 1871 to 2016 (black line, mean = 9.1, standard deviation = 3.9). The CAT 

model samples the 2004 to 2016 period PMF to provide consistency with the period 

of landslide and rainfall observations. 

• Figure 7.1B displays the PMF of the calibrated landslide hazard on each road segment 

(red bars). The landslide hazard PDF follows a lognormal distribution (black line) and 

the inset in Figure 7.1B shows a long right tail representing road segments with a 

relatively high hazard concentration. The landslide hazard PMF is sampled without 

replacement to select the road or roads that are disrupted by a landslide in each storm 

event (e.g. each event represents a storm with 0, 1 or more landslides on a road).  

• Once the event set is formed, the number of landslide occurrences per storm is counted 

to produce a PMF of landslides per storm in Figure 7.1C. Thus, this PMF is an output 
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of the CAT model. It illustrates the underlying distribution formed by combining the 

storm and hazard occurrence probabilities (Figure 7.1A and Figure 7.1B).  

• Figure 7.1D shows the distribution of losses for events with one landslide (solid line, 

600 sampled events), two landslides (dashed line, 300 events) and three landslides 

(dotted line, 100 events). 

• Figure 7.1E shows the PMF for the duration of road segment disruptions caused by 

landslides in Scotland for the period 2004 to 2016. Most of the landslides are reported 

to have caused between 0 (< 12 hours) and 4 days of road disruption, and up to 15 

days duration in extreme cases. Acts as a multiplier to the event losses.  

 

  

Figure 7.1. Plots showing the 

probability mass and distribution 

functions used in the CAT model of 

landslide road transport impacts in 

Scotland. In A, B and D the legends 

are in the plot. 
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7.3 Expected losses due to landslides 

Figure 7.2 shows the expected losses due to landslide occurrences and disruptions to the road 

transport network. The AEP (Figure 7.2 A) is the probability that the sum of losses in any given 

year will exceed a certain level. The plot also shows the losses in terms of days of travel delay, 

or the total time lost across all users of the road network. Figure 7.2B shows the same AEP 

information but in the format of the expected losses at different return periods. For example, 

the aggregate expected losses due to landslides for the 1-in-10-year return period are 

approximately £1 M and this corresponds to an AEP of 0.1 (i.e. a 10 % chance each year). 

Figure 7.2 B also more clearly shows the expected losses at the rare and extreme end of the 

AEP distribution such as the 1-in-100-year (AEP = 0.01) and 1-in-250-year (AEP = 0.004) 

return period losses between £5 and £7 M.  

In Figure 7.2 the grey shaded curve and boxes are the CAT model results using the observed 

disruption durations (Figure 7.1E), the dashed line curve and white boxes are the model results 

assuming each event has a disruption duration of 1 day. For the latter, the annual average loss 

(AAL) is approximately £ 0.35M and losses are very unlikely to exceed £ 1M at even the 1-in-

1000-year return period (Figure 7.2 B). When the model is run using the events with different 

disruption durations the AAL = £ 0.50 M and the losses follow an exponential distribution over 

the higher return periods.  

Figure 7.2. The modelled losses due to commuter travel disruption by landslides in Scotland. 

Plots A and B show the Aggregate Exceedance Probability (AEP) and return periods of losses 

for events with fixed1-day durations (dashed line and white boxes) and variable durations 

(solid line and grey boxes). 
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7.4 Discussion 

The results presented above show the loss estimates produced by a catastrophe model of 

landslide disruptions of traffic on Scotland’s strategic road network. The model has produced 

two AEP curves: one for the events with fixed 1-day disruption durations, and one for the 

events with varying disruption durations. The modelled AEP curves quantify and illustrate the 

influence of disruption duration to the expected level of loss. The losses for the model with 

varying event durations, and that were sampled from actual observations in Scotland, are found 

to be significantly higher. For instance, the 1-in-100-year losses were increased from £0.6 M 

to £5 M per year. Therefore, there is approximately a 10 % chance of a £5 M or more loss 

occurring in any ten-year period. To put these loss figures into context, for the decade 2015/16 

to 2025/26 the road maintenance budget is £55 M per year (Transport Scotland 2016b). This is 

a meaningful insight for the hazard managers and network operators that are responsible for 

maintaining the road network. The model results may be used to supplement cost-benefit-

analysis and to evaluate how policies and initiatives aimed at reducing remediation time can 

limit and reduce loss. For example, the AEP results may be considered in the design of road 

maintenance contracts with clauses that specify targets and incentives for limiting disruption 

duration. Such contracts and practices are already industry standard and routinely used for 

responsive maintenance and other scheduled works on the UK’s road and rail infrastructure 

(NAO 2008; Cook 2011; DFT 2014b). These may therefore present a relatively quick to deploy 

mechanism to alleviate the level of landslide hazard risk in Scotland. 

The model results also highlight the difficulty in producing robust AEP curves as the 

uncertainty associated with the disruption duration is quite large. For instance, the modelled 

distribution of event durations is based on a relatively limited sample of landslides (Figure 

7.1E). In reality the duration of a disruption is determined by a number of interacting factors 

that are not presently accounted for in the model, including the availability of local resources, 

ease of access to the hazard location, the hazard magnitude and complexity (Glade et al. 2005; 

Winter et al. 2014). Furthermore, in this illustrative model, not all sources of uncertainty have 

been considered. For example, the model hazard and vulnerability modules may be extended 

to enable the simulation of events that cause partial road closures, and evaluating how this 

interacts with disruption duration, or by introducing information of the landslide defences and 

their failure rates.  

Despite its shortcomings, these does not mean that the model has little or no value. The 

landslide hazard on each road segment has been evaluated by combining robust empirical 

assessments and modelling of the terrain susceptibility and the landslide triggering frequency. 

The landslide hazard was determined by combining the sum susceptibility and the maximum 

triggering frequency on each segment (Guzzetti et al. 2005; Meyer et al. 2015). However, the 

hazard module is intended to be extendable so that one could use and combine other definitions 

of the landslide hazard (e.g. using the mean recurrence interval). In addition, the model 

exposure module may be extended to beyond using the impacts to traffic calculated using the 

calibrated and national scale traffic simulation developed in this thesis. Therefore, although it 

is a challenge to deploy the catastrophe model to accurately predict the occurrence of specific 

threats and hazard scenarios, the model can still be used to assess the relative risk of each road 

segment within the network and to indicate the expected losses in any given year.  
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Chapter 8 Conclusions and Further Work 

 

8.1 Introduction 

The previous chapters of this thesis have provided the rationale, methodology, analysis results 

and discussion of the research. Here the conclusions are presented in relation to the research 

aim and objectives established in section 1.2.  

8.2 Completion of the aim and objectives 

The aim of the thesis was “to develop a method to systematically quantify and evaluate the 

indirect impact of landslide hazards on transportation infrastructure networks”. Achievement 

of the thesis’s aim was directed by several objectives:  

To “understand the present state of knowledge and its limitations with respect to quantifying 

the susceptibility of slopes adjacent to transportation infrastructure networks” a literature 

review was conducted and it was found that the strategically important infrastructure networks 

in the UK are exposed to a variety of different landslide mechanisms and that vary depending 

upon their geographical setting. For the networks in upland and mountainous regions, such as 

in Scotland, most landslides and infrastructure disruption occurs in locations that feature terrain 

characteristics associated with increased landslide susceptibility. In the literature review it was 

found that areas that are of increased (or decreased) landslide susceptibility may be modelled 

using broad coverage spatial data sets, including digital elevation and soil material models, and 

empirical multi-variate techniques.  

To “develop a landslide susceptibility assessment for transportation infrastructure networks” 

a case study was used. The strategic road network in Scotland was chosen as a suitable study 

area given the availability sufficient data of past landslide occurrences and as many of the 

reported landslide incidents are known to have caused substantial damage and disruption to 

national transportation. Guided by the findings of the literature review (Chapter 2.2), a method 

was devised that leverages the available data sets in Scotland and logistic regression to model 

landslide susceptibility (Chapter 3.2). The results (Chapter 4) indicate the terrain characteristics 

that are associated with increased landslide susceptibility and this is used to inform of the 

landslide processes. A primary output of the thesis, several new map products are produced 

that evaluate and portray the relative landslide susceptibility of each segment in the road 

transport network.  

To “understand the present state of knowledge and its limitations with respect to quantifying 

the indirect impact of landslide disruptions on transportation infrastructure networks” a 

literature review was conducted. The literature review found that substantial economic losses 

arise due to the delays and congestion (indirect impacts) caused by landslide disruptions of rail 

and road networks, and that therefore these impacts represent a significant proportion of the 

total hazard risk that is largely unaccounted for in state-of-the-art hazard and risk assessment. 

In the literature, the methods used to quantify these impacts combine techniques from multiple 

disciplines including, traffic simulation and transport economics, complex network analysis, 

and risk assessment. For highway networks, it was established that user equilibrium traffic 

models may be used to calculate the routes and travel time-cost for undisrupted and disrupted 

network conditions.  



 

160 

 

I order to “establish an appropriate traffic simulation model to quantify the indirect impact of 

landslide disruptions on a highway network” the case study of Scotland was again used. Based 

on the knowledge gained from the review of literature in Chapter 2.3, a method was devised 

that combines automatic traffic counting data and UK census commuter origin-destination 

tables in a user equilibrium traffic simulation model described in Chapter 3.4. The model is 

calibrated and used to approximate the undisrupted travel patterns, routes, time and cost of 

commuter trips in Scotland. The traffic model is then applied to calculate the additional travel 

time and costs (indirect impacts) due to a series of hypothetical landslide events. These 

hypothetical landslide events are the selection of strategic road network segments that were 

identified as susceptible to landslides using the landslide susceptibility model developed in 

Chapter 3.2 and results shown in Chapter 4. A primary output of the thesis, in Chapter 5 the 

event impacts are aggregated to inform of the likely distribution of indirect impacts due to 

landslides in Scotland, and this information is used to rank and identify the critical (or most 

important) segments for maintaining road network serviceability.  

To “understand the present state of knowledge and its limitations with respect to the definition 

of landslide initiation thresholds” a literature review was conducted and it was found that due 

to the landslide mechanisms, rainfall thresholds are most suited and far more developed for 

shallow translational landslides and debris flow than for deep seated, rotational and complex 

landslides. To develop thresholds several empirical analysis techniques have been 

demonstrated and each of these adheres to a similar method of analysis: to evaluate the timing 

of landslide occurrences in relation to time series of precipitation variables, such as intensity 

or accumulation and at different antecedence periods. The thresholds are used to inform of the 

landslide processes and to make probabilistic assessments of the threshold landslide recurrence 

intervals. An unresolved issue, and one that generates much threshold uncertainty, is in the lack 

of a coherent approach to evaluate the variance of threshold values and their probabilities to 

changes in the rainfall records used, including investigations that use gauge or remotely sensed 

rain data and the length of these observations.  

To “develop a set of landslide initiation thresholds utilising weather radar data” a database of 

landslide occurrences was obtained for the period 2004 to 2016, and these were analysed in 

relation to rainfall time series from high-resolution radar using the methodology described in 

Chapter 3.3; again, using Scotland as a case study. The thresholds were developed using a 

range of different time series periods and this is used to inform of the threshold variance. A 

primary output of the thesis, In Chapter 6 the new landslide initiation thresholds for are 

presented and used to inform of the landslide processes.  

To “demonstrate a coupled hazard-network catastrophe model to quantify the annual average 

loss caused by travel disruption to commuters due to landslides in Scotland” a brief literature 

review was conducted in Chapter 2.2 to summarise the present state of knowledge for landslide 

hazard and risk assessment, and catastrophe models. In Chapter 3.5 the method to produce a 

prototype catastrophe model is described. The model illustrates several of the key stages of 

catastrophe model development, made possible using the primary outputs of this thesis: a 

landslide susceptibility mode, a network impact model, and landslide initiation thresholds. The 

results of the catastrophe model are presented in Chapter 7 and these indicate the annual 

average loss due to landslides and the losses expected at different return periods.  
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8.3 Synthesis of key discussions 

8.3.1 Landslide susceptibility 

The thesis has developed a landslide susceptibility model of the hillslopes adjacent to the 

strategic road network in Scotland. Based on the findings of the literature review in Chapter 2, 

the susceptibility was model was developed using the well-established logistic regression 

technique that has been shown to outperform other multi-variate approaches in other landslide 

susceptibility investigations (Brenning 2005; Yilmaz 2010). Several high resolution data 

products were used as input to the model including: 5 m2 NEXTmap digital elevation model, 

providing information for the slope elevation, angle, aspect, roughness and curvature; and the 

soil parent material model (Lawley & Smith 2008) for the superficial material soil depth, 

texture and classification. Three models (i.e. models A, B and C) were produced for different 

combinations of these input variables. A novel element of the method developed for this thesis 

was the use of hillslopes as a modelling unit; in contrast to previous studies that model 

susceptibility at the per pixel or per catchment scale. The decision to use hillslope units was 

informed by the results of other investigations that differentiate the hillslopes capable of 

producing translational landslides and debris flow using measures of hillslopes roughness 

(Wilford et al. 2004; Welsh & Davies 2011; Chevalier et al. 2013; Berenguer et al. 2015).  

To determine a suitable hillslope unit scale, the logistic regression models were fitted and 

evaluated using six different hillslope sizes (Chapter 4.2). Pragmatically, the hillslopes created 

using a 1000-cell threshold (minimum area ≥ 0.625 km2, mean area = 0.790 km2) were selected 

based on the model performance measures, but these showed that the model goodness of fit 

and accuracy were only marginally improved for the 1000-cell hillslopes. The lack of a notable 

change in the performance measures of the models using the different sized hillslopes was 

attributed to the national scale of the study and as the optimal hillslope size may differ region 

to region. Nonetheless, the performance and accuracy of each model was found to be in a 

similar or higher range to those obtained in previous studies (Chapter 4.4).  

The results indicated that the most suitable explanatory variables for landslides in Scotland are 

the hillslope median slope angle, the Melton ratio, slope aspect, and soil texture. Increased 

landslide susceptibility was identified for the hillslopes facing the South and West, and 

theoretically this is linked to: increased rates of solar irradiance exacerbating desiccation of the 

slope surface material leading to higher permeability; and increased precipitation and water 

infiltration due to the prevalence of westerly moving frontal systems and rain in the study area. 

In wet conditions, increased rates of water infiltration, and to greater depths, can lead to a 

critical increase of porewater pressure and a  reduction of effective stress, so that shear strength 

is reduced and a landslide occurs (Crozier 1997; Iverson et al. 1997; Iverson 2000; Stoffel et 

al. 2014). Increased landslide susceptibility was also found for variables soil depth of 2 to 5 m 

bgl and for Argillaceous soils (< 0.06 mm diameter). These results are in line with process 

understanding and field observation of landslides in Scotland (Ballantyne 1986, 2002; Winter 

et al. 2005; Milne et al. 2009).  

To account for known reporting bias in the landslide database used, the data use to train and 

test the models is limited to the landslides that occurred on the hillslopes that are adjacent to 

the road network. The hillslope susceptibilities were aggregated according to the road segments 

that they intersect, and this allows the relative susceptibility of each road segment to be 

evaluated. The susceptible road segments were compared to those identified as susceptible 
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using a different GeoSure susceptibility model, a national model developed by the British 

Geological Survey, and those identified using other techniques, such as detailed site and 

geotechnical investigations in Winter et al (2005). There was good agreement between the 

different models (Figure 4.12 in Chapter 4.8). The approach may therefore be used to identify 

the most susceptible road segments to improve the effectiveness of and efficiency of landslide 

hazard management in Scotland, for instance, conducting more on-site investigations on the 

high susceptibility segments. The method is applicable to other the evaluation of landslide 

susceptibility for other linear infrastructures, such as rail or pipelines, and in other landslide 

prone regions globally.   

8.3.2 Landslide impacts 

The study demonstrates an assessment of the indirect impacts of landslide hazards on a national 

road network. A national scale model of traffic in Scotland is developed using a combination 

of automatic traffic counting data, origin-destination data of commuter trips and a dynamic 

user equilibrium simulation model outline in Chapter 3.4. The model was calibrated for 

undisrupted network conditions and then it was used to calculate the additional travel time and 

cost due to different network disruption events. Previously, such assessments were limited to 

the study of travel disruptions in conceptual and in urban road networks, and there was a clearly 

identified need to develop and demonstrate these models at broader to national scales in order 

to address the threats posed by hazards distributed over a large spatial area, such as landslides, 

flooding or wind storms (Murray et al. 2008; Koetse & Rietveld 2009; Dijkstra & Dixon 2010; 

Mattsson & Jenelius 2015; Krebs 2017). 

A series of potential landslide events were selected using the road segments identified as 

susceptible to landslides using a new model developed in Chapter 4. The average nationwide 

economic impact of each of the events was £64 k per day of disruption, and these impacts 

follow a positive skewed distribution representing the road segments where landslide-

disruptions can generate relatively severe losses of up to £130 k per day. This information was 

used to identify the most critical road segments in Scotland (Figure 5.2). In addition, a risk 

matrix and map was produced that clearly identifies the road segments where there is a high 

potential for landslide hazards and that cause high economic impacts (Figure 5.5).  

The hazard impact footprints show how the travel disruption and impacts caused by landslides 

are spatially distributed according to the zones and regions where people live. The analysis of 

the event footprints indicates that residents in the central and west of Scotland are most likely 

to be effected by landslides, and if the occurrence of landslides in the future continues in a 

similar pattern to that of the past, this may lead to further indirect and secondary socio-

economic impacts in these areas, such as longer-term reductions in business investment and 

tourism. 

8.3.3 Landslide thresholds 

This study examined two methods to determine objective landslide thresholds in an assessment 

of shallow translational slides and debris flows in Scotland. Thresholds were produced using 

information for 75 recorded landslide events and radar precipitation data for the period 2004 

to 2016. The results show that thresholds selected using threat score are more sensitive to 

rainfall record length, whereas the optimal point thresholds provide rational lower limit 

thresholds and these are least affected by the length of the rain record used. Changes to the 

rainfall record length is a factor not considered in past studies. The thresholds are developed 
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using several new rain variables that are normalised by the monthly rainy-day-normal. This 

normalisation produces thresholds that are both temporally (i.e. seasonally) and spatially (i.e. 

terrain) adjusted for rainfall variations.  

The normalised variables provide the most robust landslide thresholds and the best performing 

threshold was observed for the threshold combining the duration of high intensity rain on the 

day of failure (𝑅𝐷1 ≥ 3.5 h) and the 12-day normalised rain accumulation (𝑁𝑉12 ≥ 17.4). Other 

investigations in conducted in Scotland have also highlighted the role of the 12-day 

antecedence hydrological condition of soils as a precursory factor in controlling landslides 

triggering (Winter et al. 2010), and tentatively this supports the observation that the landslides 

most frequently occur during the seasons when sequences or ’clustering’ of cyclonic-storm 

systems and fronts is typical and persists for periods of 2 to 15 days (Mailier et al. 2006; 

Kendon & McCarthy 2015; McCarthy et al. 2016). Threshold performance is shown to be 

weakened by the use of longer antecedent period rain variables (≥ 18 days) and this is believed 

to be attributed the geomorphological and geotechnical characteristics of the slope materials, 

namely steep slope angles, high permeability and granularity, that provisions effective drainage 

and resistance to protracted and more evenly distributed periods of rainfall (Ballantyne 1986; 

Wieczorek 1996; Nettleton et al. 2005). Subsequently, it is believed that the 12-day antecedent 

rainfall is an important precursor to landslide occurrence in Scotland whereas the shorter, 1 to 

2-day rain conditions are a likely indicator of their triggering. 

8.3.4 A catastrophe model of landslide losses 

A catastrophe model was developed that is comprised of hazard, exposure, vulnerability and 

loss modules. The modelling framework is based on the logic and is comparable to that used 

by insurers to evaluate catastrophe risk (Foote et al. 2017). The components and results of each 

module were calibrated according to the historical records and hazard modelling results 

obtained in Scotland. The hazard module simulates a hazard event set. The event set is 

generated to represent 10,000 years’ worth of simulated storms during which landslides may 

or may not have occurred. The event set is an list of potential landslides and their likelihood 

created using independent Monte Carlo sampling of: the observed frequency of storms per 

year; and the landslide hazard probability distribution of the road segments. The landslide 

hazard is obtained from the susceptibility and threshold models developed in this thesis. The 

exposure and vulnerability modules assess the level of road network disruption and the loss 

caused by each event, forming an inventory of event losses and their occurrence intervals. 

Lastly, the loss module is used to resample the events and their losses, producing metrics of 

the annual average loss and the aggregate exceedance probability of losses at different return 

periods. The study is the first known application of a catastrophe model to evaluate the risk 

posed by national travel disruption due to landslides. Each of the model components is portable 

to investigations of other hazards and other infrastructures in Scotland, and it is applicable to 

other regions.  

The catastrophe model calculates the annual risk of indirect economic impacts due to travel 

disruption by landslides in Scotland. The model was run twice: once for run for events with 

fixed disruption durations of 1 day; and then for events with varying durations based on the 

historical record. For the latter, the annual average loss was increased £0.3 M to £ 0.5 M and 

the losses were increased significantly at return periods relevant to operational hazard 

management planning. For instance, the 1-in-100-year event losses were increased £0.6 M to 

£5 M per year. The results of this study emphasise the dramatic effect of disruption duration 
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on the loss estimates, and this information may be used to inform network management 

policies.  

The results also highlight the significant effect that data and process uncertainties can have on 

loss estimates, and it is important that the developers and users of such models are aware of the 

data, limitations and assumptions on which they are based. The catastrophe model was 

developed in order to illustrate a framework for evaluating the impact and risk of landslide 

disruptions on transport infrastructure. At present, the hazard events are simulated using a 

calibrated, but simplified, storm driven process combining the annual frequency rainfall 

initiation threshold exceedance and the conditional probability of landslide occurrence. To 

improve the models simulation of hazard events, it is suggested that future investigations are 

concentrated on the application of these thresholds with more sophisticated and higher 

resolution re-analysis and stochastic precipitation series to quantify and reduce the 

uncertainties associated with landslide triggering (e.g.  Jones et al (2009)). Another pertinent 

extension of the model is the evaluation of partial road closure events to examine the losses 

caused by lower magnitude hazards and to evaluate how partial restoration of the road segment 

influences the expected level of loss. 

8.4 Uncertainties and implications for users 

This section highlights the issues of uncertainty in the data, techniques and results of this thesis 

and considers its implications for potential users. 

8.4.1 Landslide susceptibility 

A series of data quality checks and processes were applied to cleanse the British Geological 

Survey national landslide database (NLD) as described in section 3.1.2 Landslide database. 

Despite these steps several uncertainties persist because of the condition of the NLD and the 

analytical techniques used. First, despite cleansing, the landslide data has a known spatial bias 

towards the built environment. The susceptibility analyses are therefore constrained to the areas 

adjacent to infrastructure networks and may not be directly applicable in other areas, such as 

on hillslopes in remote areas.  

Second, the NLD is also known to be biased toward higher magnitude events as these are more 

likely to be reported. The extent that the data captures low magnitude landslides is unknown. 

The inclusion of data for low magnitude landslides might influence the terrain characteristics 

identified as being associated with higher or lower susceptibility in the logistic regression 

models as these smaller landslides may be initiated under different hydro-geological 

conditions. However, as most of the landslides are reported when they have some effect on the 

human or built environment, it might be assumed that the absence of records for lower 

magnitude landslides reflects the fact that these events are too small to incur any significant 

damage and thus irrelevant for evaluating susceptibility on transport networks. 

Third, the landslide data are supplied as point coordinate-pairs at the landslide failure source 

and scarp location. These points are spatially joined to the hillslope units that are used to 

analyse and model the factors associated with increased or decreased landslide susceptibility. 

Landslides may inadvertently be spatially joined to the wrong hillslope given the spatial 

accuracy of the landslide point data and as landslide scarps may be situated on or near to the 

hillslope boundaries. Consequently, these errors may also occur due to the resolution of the 

digital terrain model and the technique used to create the hillslope units. For the latter scenario, 



 

165 

 

this is somewhat accounted for as various hillslope sizes were created and evaluated – selecting 

an appropriate hillslope unit size by maximising classification accuracy across several 

measures. 

Lastly there are uncertainties due to the absence of several factors in the model that are known 

to influence the occurrence of landslides in the study area.  This includes model inputs for 

seasonal vegetation and land cover change, due to the lack of equivalent resolution and 

geographic coverage data. Indeed, one potential area of future investigation involves evaluating 

how certain types of vegetation cover and sequences of vegetation change coincide with 

varying rates of landslide occurrence. Current techniques involve the use of remotely sensed 

data and vegetation indices such as NDVI and the Leaf Area Index (e.g. Shahabi & Hashim 

2015; Chen et al. 2017). However, several challenges remain for these approaches due to the 

relatively shorting operating periods of state of the art remotely sensed data products. For those 

products with several years and decades of data there remains the trade-off between using data 

with high spatial resolution at long and irregular intervals, versus lower resolutions with higher 

revisit times. In a similar vein, there is a lack of suitable resolution data and methods to account 

for anthropogenic alterations in land cover, land use and slope morphology. For instance, due 

to engineered slope stabilisation work and vegetation restoration schemes. In Scotland, and the 

wider UK, soft and hard engineering remediation and mitigation works are typically conducted 

by private contracting agencies and as such it is generally only the most high-profile sites that 

are widely known and publicised (e.g. the A83 Rest and Be Thankful). An important 

consideration in future models exists in determining where such initiatives are in place. In 

addition to clearly distinguishing the type of work as these can act to either: reduce the landslide 

risk, such as introducing landslide fencing and other hard barriers that act to block or divert 

debris from disrupting the network; and those that reduce the landslide hazard on a slope, such 

as by restoring vegetation and improving hillslope drainage to reduce the overall susceptibility 

of the slope to landslides. 

8.4.2 Landslide impacts 

In addition to ongoing research use, it is envisaged that the model may applied to wider, 

practical challenges in highway management. For this thesis, the road network disruption 

events were chosen using landslide susceptibility model’s and by their combination with 

landslide thresholds to evaluate the landslide hazard on each road segment. Nonetheless, the 

results and the traffic model are applicable to any event (e.g. a flood, fallen tree or road traffic 

incident etc.) that causes a complete closure of a road. The model may therefore be used to 

evaluate the impact of a wide variety of road closure events, combinations of hazards and to 

evaluate specific scenarios. For instance, the modelling results may be used in workshops 

involving key stakeholders and where specific hazards and worst-case scenarios are played out. 

In a similar vein the model may be used to aid cost benefit analysis, for instance, by evaluating 

the impacts to traffic under different remediation time scenarios, analogous to disruption 

duration. Anecdotal evidence and communications with stakeholders in the Scottish Highland 

Council suggests that a prominent issue is the fact that most highway incident resources (e.g. 

traffic incident teams, emergency responders, and heavy lifting equipment etc.) are situated 

near to the urban centres Glasgow and Edinburgh, a minimum 6 hours’ drive away from the 

West Highland roads. In this case the traffic model may be used to evaluate and compare 

impacts under < 6 hr and > 6 hr response time scenarios and to evaluate the benefits of more 

evenly distributed resources. 
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Effective application of the traffic model requires understanding of the model’s design 

limitations and constraints. First, it is important to highlight that the model was designed to 

provide a representation of the annual average weekday morning commute traffic flow only. 

The rationale for this is that the commute period represents the densest regularly-repeating 

period of traffic on Scotland’s roads – and so can be used to capture a large proportion of a 

disruptions impact. In addition, the model is constructed and calibrated with a view to evaluate 

disruptions on the strategic road network (Motorway, A and B roads) and therefore the traffic 

dynamics are simplified in dense urban areas away from most landslide prone regions. The 

absence of other road user groups is a limitation of the model and one that is highly influenced 

by regional traffic characteristics. For instance, in urban areas the traffic dynamics are likely 

to be heavily influenced by public transport (e.g. bus and metro systems). More notable is the 

absence of traffic in the model due to seasonal tourism and industry (Winter et al. 2014). In the 

West Highlands for example, there are several key industries that rely heavily on road haulage, 

such as agriculture and distilling, in addition to an increase in traffic during the spring-summer 

“auto-touring” tourism season. Whilst these trips are evident in the ATC data (i.e. vehicle class 

counts) and from other sources (e.g. depot locations, registered businesses, employment figures 

etc), converting these sparse data to usable origin-destination tables represents a significant 

extension to the current approach (see e.g. Ortuzar & Willumsen 2011). Second, it is important 

to understand the behaviour of the user-equilibrium route assignment procedure. User 

equilibrium can be interpreted as a best-case user response and is analogous to users having 

perfect knowledge of network conditions, therefore minimising impacts. Whilst this is 

increasingly the case due to modern in-car navigation systems there may be scenarios when the 

best alternative route is not known. Strategies to account for these effects include stochastic 

user-equilibrium (see 2.3 Quantifying Impact on Transport Infrastructure Networks). 

8.4.3 Landslide thresholds 

The thresholds are developed using two primary data sources: the NLD, and UK Met Office 

radar rainfall data. The same set of data quality checks and processes were applied to cleanse 

the NLD used for threshold classification. The landslide data is again subject to the same 

location bias with a large proportion of records situated near to the built environment. Use of 

the landslide thresholds developed in this study should therefore be constrained to slopes 

adjacent infrastructure networks only. Again, the NLD contains relatively few records for low 

magnitude landslides. These landslides may be initiated under a different set of conditions and 

at lower rainfall accumulations than is captured in the current thresholds. Therefore, and in a 

similar fashion to the hillslope susceptibility model, the thresholds likely underrepresent the 

potential for low magnitude landslides.  

The thresholds are constructed using combinations of absolute and normalised variables for 

rainfall accumulation, intensity and duration calculated at varying antecedence periods. As 

described in section  3.3.1 Input data, the C-band radar sensor array used to capture these data 

are calibrated for intensities greater than 0.1 mm/hr-1. Therefore, the water supplied by low 

intensity rainfall is likely to be undervalued in the rain variable time series generated at each 

landslide site and used in the threshold classification. Similarly, the radar may underestimate 

the rate of high intensity rainfall, particularly high intensity rainfall caused by localised 

orographic effects such as in mountainous areas. Therefore, the thresholds may also understate 

the water supplied to slopes during periods of high intensity rainfall. This is because the radar 

data value is the spatially averaged rainfall intensity within each radar cell. In addition, there 
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are uncertainties due to the 5.0 km2 spatial resolution of the radar data. Investigations 

comparing UK Met Office radar data and that of similar systems in Italy note that higher 

intensities are observed using higher resolution 0.5 to 2.0 km2 radar data (Cole & Moore 2008; 

Villarini & Krajewski 2008; Marra et al. 2017). However, in Scotland the geographic coverage 

of the higher resolution radar data extends only a short distance beyond the radars location and 

thus fails to capture most landslide observations in the NLD. It is envisaged that future 

investigation may alleviate these issues by using combinations of the different resolution radar 

data, improving radar coverage and in-situ observations from gauge networks.  

8.4.4 A catastrophe model of landslide losses 

A catastrophe model was developed that is based on the structure and logic of models used by 

insurers to evaluate catastrophe risk (Foote et al. 2017). It is stressed that this is purely 

exploratory work, demonstrating fundamental modelling principles and establishing a 

framework for further study only. The results are not recommended for practical application. 

First, the modelled rate of landslide occurrence adheres to the historic experience and 

observations in Scotland whereas future rates of occurrence may change. Estimating the short 

to long term rate of landslide occurrence is subject much uncertainty given the interactions and 

varying rates of weather, climate, land use and vegetation change (Dijkstra et al. 2016a). 

Second, the model does not account for factors that are known to influence the rate of landslide 

occurrence at certain locations. This includes consideration for engineered interventions at 

landslide prone sites, such as the A83 Rest and Be Thankful, and accounting for the conduit 

recharge rate or interval between successive failures on single hillslope.  
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8.5 Further work  

The identified areas of further research fall into two categories: there are tasks related to 

applying the method, results and lessons learned in this research to operational situations, for 

example through collaborative partnerships and engaging stakeholders in hazard and 

infrastructure management; and there are tasks related to improving the techniques and the 

method developed and used in this thesis that could further improve the understanding of 

landslides and their interaction with infrastructure networks. 

A future research and engagement partnership with Transport Scotland, and its road 

management partners including Bear Ltd and the Transport Research Laboratory, could lead to 

translation of the findings of this thesis to provide operational value. For instance, the strategies 

used to improve hazard mitigation, such as soft engineering schemes and responsive site 

investigations, may benefit from the models and maps produced that show the road segments 

with high landslide susceptibility (Figure 4.10) and where the cost and impact of disruption to 

these segments is severe (Figure 5.5). The landslide thresholds may also be applied to establish 

a hazard warning system (Figure 6.5), for example combining the thresholds with forecast 

meteorological data, and to trigger the dispatch of responsive landslide patrols or site 

investigations. The estimates for the annual average loss and aggregated exceedance 

probability of losses (Figure 7.2) may also support Transport Scotland where it is involved in 

budget planning and the assignment of financial resources for hazard and high management.  

The study could also be extended to the evaluate the landslide hazard and risk of other 

infrastructures in Scotland, such as the rail and power distribution networks, and this could be 

achieved relatively rapidly. The methodological framework may also be applied to other 

regions or the whole UK, conducting independent hazard and impact modelling according to 

areas with similar landslide processes, slope materials and hydro-meteorological conditions. 

For instance, Cumbria provides a similar set conditions to those found in Scotland and could 

be used as a comparative case study. Whereas regions in South Wales and Gloucestershire 

feature a different suite hazards and physical processes, including road disruptions due to 

rotational landslides and subsidence by the shrink-swelling of soils, necessitating different 

hazard modelling methods such as physical-process based models. These case studies, and 

investigations of the other hazard phenomena capable of causing disruption to transportation 

such as flooding, would extended the existing methodological framework to one capable of 

examine multi-hazard impact and risk. This could be applied to explore how the severity and 

distribution of impacts varies when considering other hazard phenomena (e.g. flooding and 

severe wind storms), simultaneous network disruptions, and the inclusion of other network 

users and modes of transport. 

Several improvements to the analysis techniques have been identified. Perhaps most 

importantly, the landslide susceptibility model and initiation thresholds could be further 

developed and refined by drawing on a larger body of landslide data, including more detailed 

and more abundant records past and future failures. Detailed site surveys can be used to obtain 

more information on historic failures (e.g. see Ballantyne et al. 2014), though these are costly 

and obtaining accurate timing information remains a challenge. The methods used to obtain 

and record landslide data are continually improving and continued cooperation between 

researchers, land owners, infrastructure operators and government bodies should maintain this 

trend (Pennington et al. 2015). In the landslide database obtained, landslides are represented 

by point data and these do not capture the conditions across the entire landslide footprint. This 
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is clearly a very simplistic representation and likely leads to over-generalisation of geological, 

geomorphological and meteorological characteristics that differ across the landslide source or 

initiation, flow, and deposition zones. To resolve this issue, future investigations may conduct 

detailed digitalisation of the landslide zones using aerial imagery and site survey information 

where this information is available (Pareschi et al. 2000; Guzzetti et al. 2012). This information 

was found to be of limited availability for the landslide records obtained in Scotland, and this 

therefore represents a potential improvement for the UK National Landslide Database.  

For the landslide susceptibility model, the DEMs available were at 5 to 25 m2 resolutions so 

terrain features may be smoothed out. Higher resolution terrain data such as LIDAR exists, but 

this was not made available for this research and there is a lack of geospatial software able 

process these data and at large scales. The geotechnical properties of the landslide slope 

materials were derived from a 1 km2 soil parent material model (Lawley & Smith 2008). More 

detailed geotechnical data at each landslide site would be of benefit to better evaluate the parent 

material data limitations and uncertainties particularly for soil depth and grain size. Looking 

forward, a particular interest to investigate how the spatial distribution of the variables 

identified with increased landslide susceptibility may develop in response to medium and long 

term climatic change.  

For the traffic impact model, the available traffic count and UK census origin-destination data 

enabled the development and calibration of a simulation for road commuters at peak flow 

conditions. To improve the impact assessments the model may therefore be extended to 

include: the other road user groups for which the same origin-destination data are available, 

such as public transport; private and commercial road users and their costs of travel, including 

travel made freight and that has higher cost of delay due to greater business interruption; other 

modes of transportation using the multi-modal simulation procedures in SUMO, such as rail; 

and extending the model period to 24 hours. These developments are largely dependent on the 

availability of suitable data and computational resources to develop and run the models. In the 

coming years, it is envisaged that such data sources will be increasingly available due to the 

rapid development of intelligent transport systems, vehicle telematics and autonomous 

transportation. Lastly, these assessments can be combined with those made using different 

approaches and for other aspects of the hazard impact to provide a more holistic approach, such 

as including the remediation costs due to the landslides direct physical damage. Other novel 

additions might include, assessments of the socio-economic impact of landslides, or the costs 

attributed to the loss of tourism, business investment and depreciating property prices and 

derived macro-economic models (Winter et al. 2014).  

For the landslide initiation thresholds, the results of this study should be compared and 

evaluated to other techniques including, thresholds developed using physical-process based 

models or semi-empirical water balance models (Brooks et al. 2004; Clarke & Smethurst 

2010). In addition, comparing the new thresholds derived using the radar precipitation data to 

those obtained using rain gauge networks, would limit the uncertainties related to the different 

data sampling techniques and provide a clearer picture of the rainfall conditions associated with 

landslide occurrence.  
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