12,876 research outputs found

    Modelling interdependencies between the electricity and information infrastructures

    Full text link
    The aim of this paper is to provide qualitative models characterizing interdependencies related failures of two critical infrastructures: the electricity infrastructure and the associated information infrastructure. The interdependencies of these two infrastructures are increasing due to a growing connection of the power grid networks to the global information infrastructure, as a consequence of market deregulation and opening. These interdependencies increase the risk of failures. We focus on cascading, escalating and common-cause failures, which correspond to the main causes of failures due to interdependencies. We address failures in the electricity infrastructure, in combination with accidental failures in the information infrastructure, then we show briefly how malicious attacks in the information infrastructure can be addressed

    Mathematics and the Internet: A Source of Enormous Confusion and Great Potential

    Get PDF
    Graph theory models the Internet mathematically, and a number of plausible mathematically intersecting network models for the Internet have been developed and studied. Simultaneously, Internet researchers have developed methodology to use real data to validate, or invalidate, proposed Internet models. The authors look at these parallel developments, particularly as they apply to scale-free network models of the preferential attachment type

    Coping with Extreme Events: Institutional Flocking

    Get PDF
    Recent measurements in the North Atlantic confirm that the thermohaline circulation driving the Gulf Stream has come to a stand. Oceanographic monitoring over the last 50 years already showed that the circulation was weakening. Under the influence of the large inflow of melting water in Northern Atlantic waters during last summer, it has now virtually stopped. Consequently, the KNMI and the RIVM estimate the average . In this essay we will explore how such a new risk profile affects the distribution of risks among societal groups, and the way in which governing institutions need to adapt in order to be prepared for situations of rapid but unknown change. The next section will first introduce an analytical perspective, building upon the Risk Society thesis and a proposed model of ‘institutional flocking’.temperature to decrease by 3°C in the next 15 years

    Safe-To-Fail Infrastructure for Resilient Cities under Non-Stationary Climate

    Get PDF
    abstract: Motivated by the need for cities to prepare and be resilient to unpredictable future weather conditions, this dissertation advances a novel infrastructure development theory of “safe-to-fail” to increase the adaptive capacity of cities to climate change. Current infrastructure development is primarily reliant on identifying probable risks to engineered systems and making infrastructure reliable to maintain its function up to a designed system capacity. However, alterations happening in the earth system (e.g., atmosphere, oceans, land, and ice) and in human systems (e.g., greenhouse gas emission, population, land-use, technology, and natural resource use) are increasing the uncertainties in weather predictions and risk calculations and making it difficult for engineered infrastructure to maintain intended design thresholds in non-stationary future. This dissertation presents a new way to develop safe-to-fail infrastructure that departs from the current practice of risk calculation and is able to manage failure consequences when unpredicted risks overwhelm engineered systems. This dissertation 1) defines infrastructure failure, refines existing safe-to-fail theory, and compares decision considerations for safe-to-fail vs. fail-safe infrastructure development under non-stationary climate; 2) suggests an approach to integrate the estimation of infrastructure failure impacts with extreme weather risks; 3) provides a decision tool to implement resilience strategies into safe-to-fail infrastructure development; and, 4) recognizes diverse perspectives for adopting safe-to-fail theory into practice in various decision contexts. Overall, this dissertation advances safe-to-fail theory to help guide climate adaptation decisions that consider infrastructure failure and their consequences. The results of this dissertation demonstrate an emerging need for stakeholders, including policy makers, planners, engineers, and community members, to understand an impending “infrastructure trolley problem”, where the adaptive capacity of some regions is improved at the expense of others. Safe-to-fail further engages stakeholders to bring their knowledge into the prioritization of various failure costs based on their institutional, regional, financial, and social capacity to withstand failures. This approach connects to sustainability, where city practitioners deliberately think of and include the future cost of social, environmental and economic attributes in planning and decision-making.Dissertation/ThesisDoctoral Dissertation Sustainability 201

    Computational environment for modeling and enhancing community resilience: Introducing the center for risk-based community resilience planning

    Get PDF
    The resilience of a community is defined as its ability to prepare for, withstand, recover from and adapt to the effects of natural or human-caused disasters, and depends on the performance of the built environment and on supporting social, economic and public institutions that are essential for immediate response and long-term recovery and adaptation. The performance of the built environment generally is governed by codes, standards, and regulations, which are applicable to individual facilities and residences, are based on different performance criteria, and do not account for the interdependence of buildings, transportation, utilities and other infrastructure sectors. The National Institute of Standards and Technology recently awarded a new Center of Excellence (NIST-CoE) for Risk-Based Community Resilience Planning, which is headquartered at Colorado State University and involves nine additional universities. Research in this Center is focusing on three major research thrusts: (1) developing the NIST-Community Resilience Modeling Environment known as NIST-CORE, thereby enabling alternative strategies to enhance community resilience to be measured quantitatively; (2) developing a standardized data ontology, robust data architecture and data management tools in support of NIST-CORE; and (3) performing a comprehensive set of hindcasts on disasters to validate the data architecture and NIST-CORE

    Editorial. The crux in bridge and transport network resilience - advancements and future-proof solutions

    Get PDF
    Bridges and critical transport infrastructure (CTI) are primary infrastructure assets and systems that underpin human mobility and activities. Loss of the functionality of bridges has consequences on the entire transport network, which is also interconnected with other networks, therefore cascading events are expected in the entire system of systems, leading to significant economic losses, business, and societal disruption. Recent natural disasters revealed the vulnerabilities of bridges and CTI to diverse hazards (e.g. floods, blasts, earthquakes), some of which are exacerbated due to climate change. Therefore, the assessment of bridge and network vulnerabilities by quantifying their capacity and functionality loss and adaptation to new requirements and stressors is of paramount importance. In this paper, we try to understand what are the main compound hazards, stressors and threats that influence bridges with short- and long-term impacts on their structural capacity and functionality and the impact of bridge closures on the network operability. We also prioritise the main drivers of bridge restoration and reinstatement, e.g. its importance, structural, resources, organisational factors. The loss of performance, driven by the redundancy and robustness of the bridge, is the first step to be considered in the overall process of resilience quantification. Resourcefulness is the other main component of resilience here analysed

    Questions for Resilience Assessment

    Get PDF
    This report was produced on behalf of University College London(UCL) for the National Infrastructure Commission (NIC). It was commissioned by the NIC as part of a special study on infrastructure resilience. The following report addresses the need to provide a refined set of hypotheses and questions to enable resilience assessment. A number of stages were followed, centred on expert appraisal, which culminated in a set of categorised questions and a revised list of hypotheses. The stages are described in the following sections: 1. Preparation, 2. Expert review, 3. Analysis and categorisatio
    • 

    corecore