327 research outputs found

    Quantification and Mapping of Surface Residue Cover for Maize and Soybean Fields in South Central Nebraska

    Get PDF
    The area cultivated under conservation tillage practices such as no-till and minimal tillage has recently increased in Midwestern states, including Nebraska. This increase, consequently, resulted in changes in some of the impacts of cropping systems on soil, such as enhancing soil and water quality, improving soil structure and infiltration, increasing water use efficiency, and promoting carbon sequestration. However, there are no methods currently available to quantify the percent crop residue cover (CRC) and the area under conservation tillage for maize and soybean at large scales on a continuous basis. This research used Landsat-7 (ETM+) and Landsat-8 (OLI) satellite data to evaluate six tillage indices [normalized difference tillage index (NDTI), normalized difference index 7 (NDI7), normalized difference index 5 (NDI5), normalized difference senescent vegetative index (NDSVI), modified CRC (ModCRC), and simple tillage index (STI)] to map CRC in eight counties in south central Nebraska. A linear regression CRC model showed that NDTI performed well in differentiating the CRC for different tillage practices at large scales, with a coefficient of determination (R2) of 0.62, 0.68, 0.78, and 0.07 for 25 March, 18 April, 28 May, and 6 June 2013 Landsat images, respectively. A minimum NDTI method was then used to spatially map the CRC on a regional scale by considering the timing of planting and tillage implementation. The measured CRC data were divided into training (calibration) and testing (validation) datasets. A CRC model was developed using the training dataset between minimum NDTI and measured CRC with an R2 of 0.89 (RMSD = 10.63%). A 3 Ă— 3 matrix showed an overall accuracy of 0.90 with a kappa coefficient of 0.89. About 26% of the maize area and 15% of the soybean area had more than 70% CRC in south central Nebraska. This research and the procedures presented illustrate that multi-spectral Landsat images can be used to estimate and map CRC (error within 10.6%) on a regional scale and continuous basis using locally developed tillage practice versus crop residue algorithms. Further research is needed to incorporate soil and residue moisture content into the CRC versus tillage index to enhance the accuracy of the models for estimating CRC

    Manifold learning based spectral unmixing of hyperspectral remote sensing data

    Get PDF
    Nonlinear mixing effects inherent in hyperspectral data are not properly represented in linear spectral unmixing models. Although direct nonlinear unmixing models provide capability to capture nonlinear phenomena, they are difficult to formulate and the results are not always generalizable. Manifold learning based spectral unmixing accommodates nonlinearity in the data in the feature extraction stage followed by linear mixing, thereby incorporating some characteristics of nonlinearity while retaining advantages of linear unmixing approaches. Since endmember selection is critical to successful spectral unmixing, it is important to select proper endmembers from the manifold space. However, excessive computational burden hinders development of manifolds for large-scale remote sensing datasets. This dissertation addresses issues related to high computational overhead requirements of manifold learning for developing representative manifolds for the spectral unmixing task. Manifold approximations using landmarks are popular for mitigating the computational complexity of manifold learning. A new computationally effective landmark selection method that exploits spatial redundancy in the imagery is proposed. A robust, less costly landmark set with low spectral and spatial redundancy is successfully incorporated with a hybrid manifold which shares properties of both global and local manifolds. While landmark methods reduce computational demand, the resulting manifolds may not represent subtle features of the manifold adequately. Active learning heuristics are introduced to increase the number of landmarks, with the goal of developing more representative manifolds for spectral unmixing. By communicating between the landmark set and the query criteria relative to spectral unmixing, more representative and stable manifolds with less spectrally and spatially redundant landmarks are developed. A new ranking method based on the pixels with locally high spectral variability within image subsets and convex-geometry finds a solution more quickly and precisely. Experiments were conducted to evaluate the proposed methods using the AVIRIS Cuprite hyperspectral reference dataset. A case study of manifold learning based spectral unmixing in agricultural areas is included in the dissertation.Remotely sensed data collected by airborne or spaceborne sensors are utilized to quantify crop residue cover over an extensive area. Although remote sensing indices are popular for characterizing residue amounts, they are not effective with noisy Hyperion data because the effect of residual striping artifacts is amplified in ratios involving band differences. In this case study, spectral unmixing techniques are investigated for estimating crop residue as an alternative approach to empirical models developed using band based indices. The spectral unmixing techniques, and especially the manifold learning approaches, provide more robust, lower RMSE estimates for crop residue cover than the hyperspectral index based method for Hyperion data

    QUANTIFYING GRASSLAND NON-PHOTOSYNTHETIC VEGETATION BIOMASS USING REMOTE SENSING DATA

    Get PDF
    Non-photosynthetic vegetation (NPV) refers to vegetation that cannot perform a photosynthetic function. NPV, including standing dead vegetation and surface plant litter, plays a vital role in maintaining ecosystem function through controlling carbon, water and nutrient uptake as well as natural fire frequency and intensity in diverse ecosystems such as forest, savannah, wetland, cropland, and grassland. Due to its ecological importance, NPV has been selected as an indicator of grassland ecosystem health by the Alberta Public Lands Administration in Canada. The ecological importance of NPV has driven considerable research on quantifying NPV biomass with remote sensing approaches in various ecosystems. Although remote images, especially hyperspectral images, have demonstrated potential for use in NPV estimation, there has not been a way to quantify NPV biomass in semiarid grasslands where NPV biomass is affected by green vegetation (PV), bare soil and biological soil crust (BSC). The purpose of this research is to find a solution to quantitatively estimate NPV biomass with remote sensing approaches in semiarid mixed grasslands. Research was conducted in Grasslands National Park (GNP), a parcel of semiarid mixed prairie grassland in southern Saskatchewan, Canada. Multispectral images, including newly operational Landsat 8 Operational Land Imager (OLI) and Sentinel-2A Multi-spectral Instrument (MSIs) images and fine Quad-pol Radarsat-2 images were used for estimating NPV biomass in early, middle, and peak growing seasons via a simple linear regression approach. The results indicate that multispectral Landsat 8 OLI and Sentinel-2A MSIs have potential to quantify NPV biomass in peak and early senescence growing seasons. Radarsat-2 can also provide a solution for NPV biomass estimation. However, the performance of Radarsat-2 images is greatly affected by incidence angle of the image acquisition. This research filled a critical gap in applying remote sensing approaches to quantify NPV biomass in grassland ecosystems. NPV biomass estimates and approaches for estimating NPV biomass will contribute to grassland ecosystem health assessment (EHA) and natural resource (i.e. land, soil, water, plant, and animal) management

    Spatial variability mapping of crop residue using hyperion (EO-1) hyperspectral data

    Get PDF
    Sherpa Romeo green journal; open accessSoil management practices that maintain crop residue cover and reduce tillage improve soil structure, increase organic matter content in the soil, positively influence water infiltration, evaporation and soil temperature, and play an important role in fixing CO2 in the soil. Consequently, good residue management practices on agricultural land have many positive impacts on soil quality, crop production quality and decrease the rate of soil erosion. Several studies have been undertaken to develop and test methods to derive information on crop residue cover and soil tillage using empirical and semi-empirical methods in combination with remote sensing data. However, these methods are generally not sufficiently rigorous and accurate for characterizing the spatial variability of crop residue cover in agricultural fields. The goal of this research is to investigate the potential of hyperspectral Hyperion (Earth Observing-1, EO-1) data and constrained linear spectral mixture analysis (CLSMA) for percent crop residue cover estimation and mapping. Hyperion data were acquired together with ground-reference measurements for validation purposes at the beginning of the agricultural season (prior to spring crop planting) in Saskatchewan (Canada). At this time, only bare soil and crop residue were present with no crop cover development. In order to extract the crop residue fraction, the images were preprocessed, and then unmixed considering the entire spectral range (427 nm–2355 nm) and the pure spectra (endmember). The results showed that the correlation between ground-reference measurements and extracted fractions from the Hyperion data using CLMSA showed that the model was overall a very good predictor for crop residue percent cover (index of agreement (D) of 0.94, coefficient of determination (R2) of 0.73 and root mean square error (RMSE) of 8.7%) and soil percent cover (D of 0.91, R2 of 0.68 and RMSE of 10.3%). This performance of Hyperion is mainly due to the spectral band characteristics, especially the availability of contiguous narrow bands in the short-wave infrared (SWIR) region, which is sensitive to the residue (lignin and cellulose absorption features).Ye

    Remote Sensing of Ecology, Biodiversity and Conservation: A Review from the Perspective of Remote Sensing Specialists

    Get PDF
    Remote sensing, the science of obtaining information via noncontact recording, has swept the fields of ecology, biodiversity and conservation (EBC). Several quality review papers have contributed to this field. However, these papers often discuss the issues from the standpoint of an ecologist or a biodiversity specialist. This review focuses on the spaceborne remote sensing of EBC from the perspective of remote sensing specialists, i.e., it is organized in the context of state-of-the-art remote sensing technology, including instruments and techniques. Herein, the instruments to be discussed consist of high spatial resolution, hyperspectral, thermal infrared, small-satellite constellation, and LIDAR sensors; and the techniques refer to image classification, vegetation index (VI), inversion algorithm, data fusion, and the integration of remote sensing (RS) and geographic information system (GIS)

    Remote sensing for crop residue cover recognition: A review

    Get PDF
    Nowadays, using of conservation tillage instead of conventional tillage has been changing attitudes from conventional agriculture to sustainable agriculture. The tillage method affects directly soil and water quality. Actions relative to optimized agricultural management such as conservation tillage methods has adopted at recent years by agronomists and agricultures, due to agricultural and environment advantages. These advantages consist of soil and water quality improving, wind and water erosion prevention, evaporation reduction, soil surface temperature reduction, greenhouse gases reduction, fuel consumption reduction, and etc. In conversation tillage, more than 30% agricultural production residues remain on the ground. For evaluation of residues cover in the fields, information of crop residue obtain from line-transect method. This method has great accuracy, but it is very time consuming and costly for large areas. Remote sensing using satellite information processing can help the researchers to gather the data from the field and the extraction the information. Tillage indices and textural features are two most applicable approach in remote sensing crop residue cover assessment. The aim of this paper was to study of conservation tillage advantages and remote sensing methods to residue cover crop measurement at vast regions through satellite imagery.

    Assessing The Biophysical Naturalness Of Grassland In Eastern North Dakota With Hyperspectral Imagery

    Get PDF
    Over the past two decades, non-native species within grassland communities have quickly developed due to human migration and commerce. Invasive species like Smooth Brome grass (Bromus inermis) and Kentucky Blue Grass (Poa pratensis), seriously threaten conservation of native grasslands. This study aims to discriminate between native grasslands and planted hayfields and conservation areas dominated by introduced grasses using hyperspectral imagery. Hyperspectral imageries from the Hyperion sensor on EO-1 were acquired in late spring and late summer on 2009 and 2010. Field spectra for widely distributed species as well as smooth brome grass and Kentucky blue grass were collected from the study sites throughout the growing season. Imagery was processed with an unmixing algorithm to estimate fractional cover of green and dry vegetation and bare soil. As the spectrum is significantly different through growing season, spectral libraries for the most common species are then built for both the early growing season and late growing season. After testing multiple methods, the Adaptive Coherence Estimator (ACE) was used for spectral matching analysis between the imagery and spectral libraries. Due in part to spectral similarity among key species, the results of spectral matching analysis were not definitive. Additional indexes, Level of Dominance and Band variance , were calculated to measure the predominance of spectral signatures in any area. A Texture co-occurrence analysis was also performed on both Level of Dominance and Band variance indexes to extract spatial characteristics. The results suggest that compared with disturbed area, native prairie tend to have generally lower Level of Dominance and Band variance as well as lower spatial dissimilarity. A final decision tree model was created to predict presence of native or introduced grassland. The model was more effective for identification of Mixed Native Grassland than for grassland dominated by a single species. The discrimination of native and introduced grassland was limited by the similarity of spectral signatures between forb-dominated native grasslands and brome-grass stands. However, saline native grasslands were distinguishable from brome grass

    EVALUATION OF A REMOTE SENSING BASED METHOD FOR THE ASSESSMENT OF AGRICULTURAL CROP RESIDUES ON THE SOIL SURFACE

    Get PDF
    Increased agricultural mechanization in the recent past and susceptibility of certain soils to degradation generate widespread concern among experts on the overall environmental sustainability of some of the current agricultural practices in Europe. A number of solutions could be adopted to better preserve soil resources, some of which are already supported by the Common Agricultural Policy (CAP). Researchers demonstrated that erosion and reduction in soil organic matter are among the most acute degradation issues in Europe and that the release of crop residues on the soil surface after harvesting can greatly reduce their incidence. The use of a permanent soil cover (e.g. by use of crop residues) is one of the three fundamental principles of Conservation Agriculture. Quantifying the amount of crop residues on the ground is important for soil and water protection, modelling of erosion processes and legislation enforcement purposes. However, common monitoring methods based on ground sampling are expensive and likely to be impracticable on vast surfaces. Remote sensing can offer a valid alternative for monitoring. The present research intends to contribute to the efforts towards the establishments of methods for the assessment and monitoring, through remote sensing, of the effects of conservation agriculture practices on the environment, with focus on soil resources. In this respect, the research specific objective is the evaluation of a remote sensing based method for the quantification of crop residue cover in a conservation agriculture farm in Northern Italy by use of hyperspectral satellite imagery. Results achieved show that not only crop residues percent cover is linearly related to certain remote sensing-based indices, therefore making possible to estimate how well soil is preserved from weathering, but also that spaceborne hyperspectral sensors such as Hyperion appear to have great potentiality towards monitoring of other environmental targets due to their very high spectral and spatial resolution. The research was deeply inspired by the outcomes of a European project (\u201cSustainable Agriculture and Soil Conservation through simplified cultivation techniques\u201d - SoCo) aimed at improving protection of soil resources in the European agriculture sector through a stock taking and promotion of soil-friendly agriculture practices and systems, in particular simplified cultivation techniques, within the current legislative framework
    • …
    corecore