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QUANTIFICATION AND MAPPING OF SURFACE RESIDUE  
COVER FOR MAIZE AND SOYBEAN FIELDS  

IN SOUTH CENTRAL NEBRASKA 

V. Sharma,  S. Irmak,  A. Kilic,  V. Sharma,  J. E. Gilley,  G. E. Meyer,  S. Z. Knezevic,  D. Marx 

ABSTRACT. The area cultivated under conservation tillage practices such as no-till and minimal tillage has recently in-
creased in Midwestern states, including Nebraska. This increase, consequently, resulted in changes in some of the impacts 
of cropping systems on soil, such as enhancing soil and water quality, improving soil structure and infiltration, increasing 
water use efficiency, and promoting carbon sequestration. However, there are no methods currently available to quantify 
the percent crop residue cover (CRC) and the area under conservation tillage for maize and soybean at large scales on a 
continuous basis. This research used Landsat-7 (ETM+) and Landsat-8 (OLI) satellite data to evaluate six tillage indices 
[normalized difference tillage index (NDTI), normalized difference index 7 (NDI7), normalized difference index 5 (NDI5), 
normalized difference senescent vegetative index (NDSVI), modified CRC (ModCRC), and simple tillage index (STI)] to 
map CRC in eight counties in south central Nebraska. A linear regression CRC model showed that NDTI performed well 
in differentiating the CRC for different tillage practices at large scales, with a coefficient of determination (R2) of 0.62, 
0.68, 0.78, and 0.07 for 25 March, 18 April, 28 May, and 6 June 2013 Landsat images, respectively. A minimum NDTI 
method was then used to spatially map the CRC on a regional scale by considering the timing of planting and tillage im-
plementation. The measured CRC data were divided into training (calibration) and testing (validation) datasets. A CRC 
model was developed using the training dataset between minimum NDTI and measured CRC with an R2 of 0.89 (RMSD = 
10.63%). A 3 × 3 matrix showed an overall accuracy of 0.90 with a kappa coefficient of 0.89. About 26% of the maize ar-
ea and 15% of the soybean area had more than 70% CRC in south central Nebraska. This research and the procedures 
presented illustrate that multi-spectral Landsat images can be used to estimate and map CRC (error within 10.6%) on a 
regional scale and continuous basis using locally developed tillage practice versus crop residue algorithms. Further re-
search is needed to incorporate soil and residue moisture content into the CRC versus tillage index to enhance the accu-
racy of the models for estimating CRC. 

Keywords. Crop residue cover, Landsat, Maize, Soybean, Tillage, Tillage index. 

he expansion of the crop production area under 
conservation tillage practices such as no-till (NT) 
and minimal tillage may result in changes in soil 
and water and in the cropping systems’ behavior. 

Such practices have been adopted as best management 

practices (BMP) in cropping systems in the U.S. and other 
parts of the world. By definition, conservation tillage in-
cludes those practices that leave more than 30% crop resi-
due cover (CRC) over the soil surface, compared to con-
ventional tillage practices that greatly disturb the soil sur-
face and leave crop surface residue of less than 30% 
(Gebhardt et al., 1985; CTIC, 2004) (fig. 1). Diverse crop-
ping systems that support NT practices can dramatically 
affect hydrological properties, leading to benefits that in-
clude increased soil organic matter, improved soil structure, 
and enhanced water use efficiency (Sullivan et al., 2007); 
reduction in soil erosion (Ribeiro et al., 2007); water quali-
ty improvements (Dalzell et al., 2004); increased soil or-
ganic carbon (SOC) and sequestering of carbon (C) from 
the atmosphere (Ogle et al., 2012; Lal et al., 1998); and 
improved economics for farming (Soane et al., 2012). Ket-
cheson and Stonehouse (1983) found that a 15% corn resi-
due cover can reduce erosion by 75% in comparison to bare 
soil. Sullivan et al. (2007) reported that adoption of conser-
vation tillage practices can potentially reduce the statewide 
irrigation water requirement by 10% in Georgia. Other 
studies conducted by Dick and Van Doren (1985), Edwards 
et al. (1988), Halvorson et al. (1999, 2002), Hussain et al. 
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(1999), Nyakatawa et al. (2000), Beyaert et al. (2002), Dam 
et al. (2005), and Tarkalson et al. (2006) reported increases 
or no change in crop yield with the adoption of NT practic-
es; however, no-till cropping systems are more profitable in 
terms of labor, farm equipment, and fuel and irrigation 
costs. Logan and Adams (1981) reported that adoption of 
conservation tillage practices can reduce soil and phospho-
rous losses by 89%, as compared to conventional tillage 
methods, because conservation tillage retains the crop resi-
due after the crop is planted. CRC estimation can also be a 
critical parameter in assessing soil carbon and in modeling 
and monitoring the improvements in carbon sequestration 

that follow from adjustments in land management ap-
proaches and in various soil erosion models. Furthermore, 
information about tillage practices and CRC can be helpful 
in implementing policies and programs in BMPs (Pacheco 
and McNairn, 2010). Considering the impact of conserva-
tion tillage practices at field, watershed, and regional 
scales, it is therefore important to develop methodologies 
for continuous monitoring of CRC to meet the needs of 
policy and land management decision-makers. 

Traditional methods of collecting tillage data (e.g., line 
transect methods; Morrison et al., 1993) and roadside sur-
veys conducted by the USDA Natural Resources Conserva-

 
(a) 

 
(b) 

Figure 1. Photographs of agricultural fields: (a) conservation tillage (no-till, CRC > 90%) and (b) conventional tilled (disk tilled, CRC < 30%) 
near Holdrege, Nebraska, as part of the Nebraska Water and Energy Flux Measurement, Modeling, and Research Network (NEBFLUX;
Irmak, 2010). 
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tion Service and the Conservation Technology Information 
Center (CTIC) over large regions are time-consuming, ex-
pensive (Sudheer et al., 2010), and are often unable to 
characterize the variability of CRC across an agricultural 
field. These surveys rely solely on the respondents’ best 
qualitative judgment and estimates of the existing tillage 
practices and residue cover. Currently, no scientifically 
based, reliable, robust, and continuous conservation tillage 
database exists. CTIC provides estimates and assessment of 
conservation tillage by aggregating information on farm-
scale tillage practices at county, state, and regional scales. 
However, these datasets can be biased, lack spatial and 
temporal variability (once every three to five years or long-
er), and may be prone to operator judgment error (South et 
al., 2004). For example, the latest no-till acreage map for 
the state of Nebraska was produced by NRCS in 2008. 
However, this dataset was survey-based and provided NT 
acreage at the county scale, which cannot reveal field-scale 
details or within-field variation of CRC. These spatial and 
temporal gaps in tillage datasets confine users’ ability to 
study the impacts of conservation practices on crop man-
agement and their effect on water quality and carbon se-
questration to regional scales. 

In recent years, with the access to numerous space 
(Landsat, MODIS, etc.) and airborne data collection sys-
tems at different spatial, temporal, radiometric, and spectral 
resolutions, remote sensing techniques have emerged as a 
tool to evaluate and map tillage practices and residue cover 
over larger areas (Daughtry et al., 1996, 2004; Biard and 
Baret, 1997; Bannari et al., 2000, 2006; Daughtry, 2001; 
Sullivan et al., 2006; Serbin et al., 2009a; Zheng at al., 
2012). Most of these techniques require development and 
validation of spectral indices to quantify green vegetation, 
CRC, soil characteristics, etc. These spectral indices are 
calculated by converting the digital number (DN) of the 
satellite images to top-of-atmosphere radiance and reflec-
tance values using the modified methodology of Chander 
and Markham (2003) and Chander et al. (2007). Various 
spectral indices, such as normalized difference indices, 
spectral angle methods, and reflectance band height indi-
ces, are designed to map CRC specific to space and air-
borne sensors and classification techniques (linear spectral 
un-mixing analysis) when compared with measured values 
of CRC. 

Normalized indices, such as normalized difference till-
age index (NDTI) (van Deventer et al., 1997), NDI5 and 
NDI7 (McNairn and Protz, 1993), normalized difference 
senescent vegetation index (NDSVI) (Qi et al., 2002), mod-
ified CRC (ModCRC) (Sullivan et al., 2006), etc., are used 
with Landsat Thematic Mapper (TM) imagery. The spectral 
angle method includes the crop residue index multiband 
(CRIM) (Biard and Baret, 1997), which involves a combi-
nation of two or more spectral bands. Reflectance band 
height indices include cellulose absorption index (CAI) 
(Daughtry et al., 1996) and lignin cellulose absorption 
(LCA) (Daughtry et al., 2005) with their absorption fea-
tured near 2100 nm. Daughtry et al. (2006) used Landsat-
TM and EO-1 Hyperion imaging spectrometer data to eval-
uate several spectral indices for measuring CRC and to 
categorize tillage intensity in agricultural fields in central 

Iowa. Their results showed that CAI and LCA performed 
best and had a linear relationship with CRC, with R2 of 
0.85 for May and 0.77 for June 2004, and an overall accu-
racy of 80% to 82% when using Hyperion data. CAI and 
LCA, with their absorption featured near 2100, nm can 
only be acquired from: EO-1 Hyperion (which suffers from 
bad detector lines); Advanced Space-borne Thermal Emis-
sion and Reflection (ASTER) platforms, which are past 
their planned operation lifetime (USGS, 2007); and Digital 
Globe WorkView-3 satellite platform (eight visible and 
near-infrared bands and eight shortwave infrared bands), 
which was not available for purchase at the time of analy-
sis. Pacheco and McNairn (2010) evaluated the accuracy of 
spectral un-mixing classification to map and monitor CRC 
using multi-spectral Landsat and SPOT data and reported a 
root-mean squared difference (RMSD) between 17.3% and 
20.7%. Their model performed best when estimating corn 
and small grain residues. However, higher error was ob-
served in soybean fields due to lower spectral contrast be-
tween soil and soybean residue. On the other hand, high 
spatial and temporal resolution datasets, e.g., IKONOS, and 
SPOT, are expensive and inconvenient at regional scale due 
to their small swaths (Watts et al., 2011). Contrary to that, 
Landsat products [Landsat-7 Enhanced Thematic Mapper 
Plus (ETM+) and the newly launched Landsat-8 Operation-
al Land Imager (OLI)] are preferred due to their high spa-
tial (30 m) and temporal (8-day) resolution, with a total 
swath of 185 km per scene. Thus, some studies have evalu-
ated Landsat-5 TM and Landsat-7 (ETM+) for mapping 
CRC and tillage practices using different Landsat-based 
tillage indices (van Deventer et al., 1997; Daughtry et al., 
2006; Gowda et al., 2008; Serbin et al., 2009b). 

The aforementioned studies do not account for the tim-
ing of image acquisitions during the planting season. For 
example, in Nebraska, planting and tillage operations in 
maize and soybean fields generally vary from the last week 
of April to the last week of May. Thus, if images were ac-
quired before the fields were tilled, using one Landsat im-
age would interpret tilled fields as NT. Therefore, it is im-
portant to consider a high temporal resolution dataset for 
accurate mapping of CRC and tillage practices (Watts et 
al., 2011; Zheng et al., 2012, 2013). Watts et al. (2011) 
illustrated the importance of temporal sampling for captur-
ing the tillage disturbance signature using the Random For-
est Classification Model with high temporal MODIS (250 
and 500 m) and Landsat (30 m) reflectance values and ob-
tained an overall accuracy of 94%. Similar results were 
obtained by Zheng et al. (2012) using NDTI, who found 
that multi-temporal NDTI values can constantly capture 
surface disturbance by tillage or planting. They used linear 
regression between CRC and minimum NDTI (minNDTI) 
with an R2 of 0.89 and reported an overall classification 
accuracy of 90%. However, the results of the aforemen-
tioned studies also indicated that the accuracy of different 
models can vary substantially for the same crop. Thus, the 
accuracy, robustness, and overall performance of various 
models should be validated on large scales under different 
soil, climatic, and crop management conditions. The objec-
tives of this research were to: (1) evaluate the performance 
of different Landsat-based tillage indices for estimating 
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CRC using extensive field observations of tillage practices 
and measurements of residue cover data, and (2) develop 
maps of CRC in south central Nebraska using multi-
temporal Landsat imagery. 

MATERIALS AND METHODS 
STUDY AREA AND FIELD MEASUREMENTS 

The research focuses on CRC mapping in south central 
Nebraska, located between 40° 21′ 38.97″ N and 40° 31′ 
5.22″ N and between 99° 38′ 40.73″ W and 96° 54′ 40.86″ 
W, for the years 2013 and 2014 (fig. 2). The research site is 
in a transition zone between subhumid and semiarid re-
gions, and the average annual and seasonal precipitation of 
the region is 623 mm and 395 mm, respectively. About 
70% of the land is under agricultural production with the 
main crops including irrigated and rainfed maize, soybean, 
sorghum, winter wheat, alfalfa, etc. Typical soil associa-
tions in the study region include Shell (deep, nearly level, 
well-drained, silty soils formed in alluvium on bottom-
lands), Muir (deep, nearly level, well-drained, silty soils 
formed in alluvium and loess on stream terraces), and 
Hobbs (deep, nearly level, well-drained, silty soils formed 
in alluvium on bottomlands) (Elder, 1969). 

The tillage practices used by each producer significantly 
influence the amount of residue cover in the fields, which 
mainly depends on the previous years’ crop type, type of 
tillage applied, and density of the plant material. Farmers 

use a variety of tillage practices, including moldboard 
plow, chisel, and disks. Ridge till, strip till, and NT are also 
practiced extensively, resulting in a considerable variation 
in CRC across the research area. For example, figures 1a 
and 1b show NT and disk-tilled fields in Phelps County, 
Nebraska, that are approximately 1 km apart and have a 
considerable difference in CRC. For this research, CRC 
ground measurements were acquired from 52 maize and 
soybean fields during 10 to 15 May 2013 and from 
90 fields during the same period in 2014 (fig. 2). The dis-
tribution of fields under maize and soybean is presented in 
table 1. To further check the accuracy of measured crop 
type, crop data layers from the previous year were super-
imposed over the measured points (USDA-NASS, 2013). 
Figure 3 shows the distribution of crops across the study 
area for the years 2012 and 2013. On average, about 77% 
and 76% of the total land area was planted with maize and 
soybean in 2012 and 2013, respectively. 

Gregory (1982) and Daughtry et al. (2006) reported that 
the average CRC after harvest was 98% for maize fields 
and 56% for soybean fields. However, CRC on the soil 
surface was reduced with time due to prolonged exposure 
to weather, resulting in decomposition, and due to various 
field operations. Al-Kaisi and Hanna (2009) reported 30% 
to 50% reduction in CRC when tilled by plows, and reduc-
tions of about 5% to 10% were estimated in NT field with 
the use of runner openers and staggered double disk open-
ers. They estimated the change in CRC based on factors 

 

Figure 2. Locations of measured CRC sampling sites in south central Nebraska. Color represents elevation gradient across the study area. 
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such as the total amount of residue, plant characteristics, 
degree of residue composition when disturbed, exposure to 
weather, and the action of field machinery. A similar ob-
servation was made in the present study, with measured 
values of CRC ranging from 6% to 94% for maize and 
from 5% to 80% for soybean before planting. Therefore, it 
is important to identify the actual variability in CRC from 
field to field and within fields within a relatively homoge-
neous agricultural region of south central Nebraska. For 
this study, CRC measurements were taken at four random 
locations within each field, >100 m from the edge of the 
field and from each other. Four random locations in each 
field were chosen to consider the within-field variation of 
CRC. At each location, four digital photographs were taken 

vertically downward from approximately 2 m height, and 
the coordinates were recorded using an eTrex Summit GPS 
unit (Garmin International, Inc.). Initial estimation of till-
age management within each field included a visual exami-
nation of each field for CRC, crop residue type, soil dis-
turbance, and residue position. For example, in many cases, 
it was observed that the residue in NT fields was relatively 
upright, while some reduced tillage fields were identified 
that had high levels of surface residue. To calculate the 
final CRC percentage, a digital grid of 10 × 10 points was 
superimposed on each digital photograph (fig. 4). The 
number of grid intersections overlapping a piece of crop 
residue was visually counted, and percent residue cover 
was calculated by summing the number of grid intersec-
tions falling on a piece of residue divided by the total num-
ber of intersections multiplied by 100. The estimates of 
ground residue cover from the four photos were then aver-
aged to provide a single residue cover estimate per sam-
pling site, following the procedures outlined by Pacheco 
and McNairn (2010). 

REMOTE SENSING DATA 
Significant variation in planting dates usually existed 

over the study area. Table 2 represents the Nebraska crop 
progress report for the years 2013 and 2014 (USDA-NASS, 
2014). Warm temperatures and optimum moisture condi-
tions in 2014 allowed producers to plant earlier, as com-
pared to the 2013 crop growing season; however, for both 
years, about 95% of the maize and soybean area was plant-
ed by 25 May and 8 June, respectively. In normal condi-
tions (in the absence of heavy precipitation and within-field 
runoff) after the field was planted, its CRC should remain 
stable for several weeks as the crop emerges and begins to 
grow (Daughtry et al., 2006). Therefore, using a single sat-
ellite image to assess the CRC cannot provide a good repre-
sentation of the actual field conditions, as tillage and plant-
ing can happen any time from the last week of April to the 
first week of June in south central Nebraska. For example, 
in the present study, the measured values of CRC were ob-
served between 10 to 15 May, and the fields that were tilled 
or planted before these dates could provide the correct sta-
tus and representation of the tillage practice and CRC. 
However, fields that were tilled after the observation dates 
could misrepresent the actual CRC that existed in the field. 
It is important to account for the multi-temporal Landsat 
imagery to determine the correct CRC measurements of 
any given field. Therefore, a total of two images [17 May 
and 2 June (ETM+)] in 2013 and four images [25 March 
(OLI), 18 April (ETM+), 28 May (OLI), and 13 June 
(OLI)] in 2014 were used in the analysis. All the Landsat-7 
(ETM+) and Landsat-8 (OLI) cloud-free and geo-rectified 
systematic terrain-corrected images for the overpass (path 
29, row 32) were obtained from the USGS Earth Resources 
Observation and Science Center (EROS).  

Table 3 shows the spectral bands of Landsat-7 and 
Landsat-8 in the visible near-infrared (VNI) and thermal 
infrared (TI) regions used for tillage index application. The 
Model Maker tool of ERDAS Imagine processing software 
(Leica Geosystems Geospatial Imaging, LLC) was used to 
model the spectral indices from raw digital numbers. Top- 

Table 1. Crop residue cover (CRC) classification before planting from
randomly selected fields for ground truth data of south central
Nebraska during the 2013 and 2014 growing seasons. 

Growing 
Season CRC Maize Soybean 

Maize/ 
Soybean Total 

2013 <30% 14 5 0 19 
 30% to 70% 9 7 4 20 
 ≥70% 12 1 0 13 

Total 35 13 4 52 
2014 <30% 16 23 3 42 

 30% to 70% 11 3 8 22 
 ≥70% 19 3 4 26 

Total 46 29 15 90 
 
 

Figure 3. Cropland data layer from the USDA for 2012 and 2013
across the study area (USDA-NASS, 2013). 

 

2013 

2012 
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of-atmosphere (TOA) reflectance data were used to calcu-
late various Landsat-based tillage indices because NASA 
has not yet released Landsat-8 (OLI) atmospherically cor-
rected surface reflectance data. A case study presented by 
Exelis (2009) showed that in the absence of atmospherical-
ly corrected surface reflectance data, TOA reflectance 
could provide acceptable accuracy. Images acquired on 
18 April 2014 were partially covered by clouds and cloud 
shadows; therefore, only cloud-free measured data points 
were used in the analysis. The scan line correction for the 
Landsat-7, band 5 dataset was carried out using the neigh-
borhood function with a 5 × 5 pixel majority function. For 
path 29, row 32 images, neighborhood gap filling did not 
affect the pixels surrounding the measured data points, as 
there were no missing pixels. It is important to note that 
precipitation prior to the image acquisition date decreases 
the brightness of the maize residue and subsequently its 
reflectance and causes an underestimation of CRC 
(Pacheco and McNairn, 2010). Serbin et al. (2009a, 2009b) 
also reported that rain could encourage plant canopy 
growth in some cases, and the increase in total water con-
tent can also adversely affect Landsat band 5 and 7 reflec-
tance. For this study, no large precipitation events occurred 
immediately prior to the image acquisition date; hence, the 
effect of the water content of the soil and crop residue was 
implicitly included in the analysis. 

TILLAGE INDICES 
Six previously established Landsat-based tillage indices 

were used to estimate the CRC in this research: NDTI (van 
Deventer et al., 1997), NDI5 and NDI7 (McNairn and 
Protz, 1993), NDSVI (Qi et al., 2002), ModCRC (Sullivan 
et al., 2006), and STI (van Deventer et al., 1997), which are 
defined as: 

 
75

75NDTI
ρ+ρ
ρ−ρ=  (1) 

 
54

54NDI5
ρ+ρ
ρ−ρ=  (2) 

 
74

74NDI7
ρ+ρ
ρ−ρ=  (3) 

 
35

35NDSVI
ρ+ρ
ρ−ρ=  (4) 

(a) 

(b) 

Figure 4. Digital 1 cm × 1 cm transect grid superimposed over (a) no-
till field image (CRC = 96%) and (b) disk-tilled field image (CRC =
13%) to calculate the CRC percentage. Red circles in (a) are locations
where no residue was observed, and yellow circles in (b) are locations
where residue was observed. 

Table 2. Nebraska crop progress report for 2013 and 2014 maize and soybean growing season (USDA-NASS, 2014). 

Date 

2013 

 

2014 
Maize 

 
Soybean Maize 

 
Soybean 

% Planted % Emerged % Planted % Emerged % Planted % Emerged % Planted % Emerged 
13 April 0 0  0 0  1 0  0 0 
20 April 0 0  0 0  4 0  0 0 
27 April 3 0  0 0  20 2  6 0 
4 May 14 0  1 0  44 7  11 0 

11 May 43 2  7 0  77 18  36 0 
18 May 84 26  33 2  91 43  65 13 
25 May 96 61  63 17  97 74  88 42 
1 June 99 84  81 47  100 90  96 72 
8 June 100 90  94 71  100 98  100 92 

15 June 100 100  100 90  100 100  100 97 
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25

25ModCRC
ρ+ρ
ρ−ρ=  (5) 

 
7

5STI
ρ
ρ=  (6) 

where ρ2, ρ4, ρ5, and ρ7 are the reflectances of thematic 
bands 2, 4, 5, and 7 for Landsat-7 (ETM+) and bands 3, 5, 
6, and 7 for Landsat-8 (OLI). The widths of each band for 
Landsat-7 (ETM+) and Landsat-8 (OLI) is presented in 
table 2. To avoid the interference of green vegetation, pixel 
values with normalized difference vegetation index (NDVI) 
values were calculated as: 

 
34

34NDVI
ρ+ρ
ρ−ρ=  (7) 

where ρ3 and ρ4 are the reflectances of thematic bands 3 
and 4 for Landsat-7 (ETM+) and bands 4 and 5 for Land-
sat-8 (OLI), respectively. For CRC mapping, NDVI values 
greater than 0.30 were considered green vegetation and 
excluded from the analysis (Daughtry et al., 2005; Serbin et 
al., 2008). Linear models were developed to evaluate the 
performance of each tillage index using the coefficient of 
determination (R2). 

TRAINING AND TESTING DATASETS 
The measured data were randomly divided into training 

(calibration) (67% of the total data) and testing (validation) 
(33% of the total data) datasets. Regression equations were 
developed using the training dataset, which were then ap-
plied to the testing dataset to predict the CRC. The root 
mean squared difference (RMSD) between the predicted 
and measured CRC for 2013 was used to evaluate the pre-
diction performance: 

 ( )21
RMSD yx

n
−=  (8) 

where n is the number of observed CRC data points, and x 
and y are the observed and predicted CRC, respectively. 
Further evaluation was conducted by calculating the per-
cent classification accuracy. Error matrixes were developed 

 
for each tillage index between tillage classes as: CRC < 
30% (conventional tillage), 30% < CRC < 70%, and CRC ≥ 
70% (conservation tillage). For this study, fields with 30% 
< CRC < 70% were considered ridge tilled and/or strip 
tilled, and fields with CRC ≥ 70% were assumed to be 
managed as NT. The classification accuracy of the 3 × 3 
matrix (<30%, 30% to 70%, and ≥70%), (estimation accu-
racy of tillage index relative to measured CRC data) was 
assessed using percent overall accuracy (correct sam-
ple/total number of test samples) and the kappa coefficient 
(Carletta, 1996). Even though other statistics such as 
RMSD were used in this study, these calculations provide a 
measure of agreement but do not take into account the 
agreement that would be expected purely by chance. If the 
observed and model-estimated CRC agree purely by 
chance, they are not really agreeing; only agreement be-
yond that expected by chance can be considered “true” 
agreement. The kappa coefficient (κ) is a measure of “true” 
agreement. It indicates the proportion of agreement beyond 
that expected by chance, that is, the achieved beyond-
chance agreement as a proportion of the possible beyond-
chance agreement (Sim and Wright, 2005). The kappa coef-
ficient (κ) measures the pairwise agreement among a set of 
variables making category judgments and correcting for 
expected chance agreement: 

 
( ) ( )

( )EP

EPAP

−
−=κ

1
 (9) 

where P(A) is the proportion of times that the variables 
(estimated vs. observed CRC; observed agreement) agree, 
and P(E) is the proportion of times that estimated and ob-
served CRC are expected to agree by chance (chance 
agreement), calculated along the lines of the intuitive ar-
gument presented above (Carletta, 1996). When there is no 
agreement between the estimated and observed CRC (other 
than that which would be expected by chance), κ = 0; when 
there is total agreement, κ = 1.0. 

RESULTS AND DISCUSSION 
MODEL PERFORMANCE 

Simple linear regression models and associated coeffi-

Table 3. Band type, pixel resolution (m), and band width (μm) for Landsat-7 Enhanced Thematic Mapper (ETM+) and Landsat-8 Operational 
Land Imager/Thermal Infrared Sensor (OLI/TIRS). 

Band 
Number 

Landsat-7 (ETM+) 

 

Landsat-8 (OLI/TIRS) 

Band Type[a] 
Pixel 

Resolution (m) 
Band Width 

(μm) Band Type[a] 
Pixel 

Resolution (m) 
Band Width 

(μm) 
1 Blue 30 0.45 to 0.52  Coastal aerosol 30 0.43 to 0.45 
2 Green 30 0.52 to 0.60  Blue 30 0.45 to 0.51 
3 Red 30 0.63 to 0.69  Green 30 0.53 to 0.59 
4 Near infrared 30 0.77 to 0.90  Red 30 0.64 to 0.67 
5 SWIR 1 30 1.55 to 1.75  Near infrared 30 0.85 to 0.88 
6 Thermal infrared 60 (30)[b] 10.40 to 12.50  SWIR 1 30 1.57 to 1.65 
7 SWIR 2 30 2.09 to 2.35  SWIR 1 30 2.11 to 2.29 
8 Panchromatic 15 0.52 to 0.90  Pan chromatic 15 0.50 to 0.68 
9 - - -  Cirrus 30 1.36 to 1.38 
10 - - -  Band 10 - TIRS 1 100 (30)[b] 10.60 to 11.19 
11 - - -  Band 11 - TIRS 2 100 (30)[b] 11.50 to 12.51 

[a] SWIR = shortwave infrared. 
[b] ETM+ band 6 and TIRS bands 10 and 11 were acquired at 60 m or 100 m resolution but resampled to 30 m in final delivered data product. 
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cients of determination (R2) were developed from measured 
CRC using each tillage index from the training dataset for 
each sampling date in 2013 and 2014 (table 4). Positive cor-
relations were observed for NDI5, NDI7, NDTI, and STI. 
However, an inverse relationship was observed with CRC for 
ModCRC and NDSVI. For both years, maximum variation 
in CRC was explained by NDTI followed by STI and NDI7. 
However, on 6 June 2014, a low R2 of 0.07 was observed 
between NDTI and measured CRC. In contrast, NDTI ex-
plained about 62% of the variation in CRC in 2013. This can 
be explained by the fact that only 84% of maize and 47% of 
soybean were emerged by that time in 2013, as compared to 
90% and 72% emergence for maize and soybean, respective-
ly, in 2014 (table 2 and fig. 6). To further evaluate the varia-
tion in CRC with different tillage indices, comparisons of 
CRC versus tillage index values with acquisition dates are 
presented in figure 5. Among all the dates, the maximum 
deviation in CRC was observed for the June images. Figures 
5b, 5c, 5e, and 5f show that the slope of the regression line is 
almost parallel to the x-axis for all indices, except NDSVI 
and ModCRC, representing the dependence of tillage indices 
on acquisition date. Similar results were reported by Galloza 
et al. (2013), who observed a linear relationship between 
residue cover and Landsat-TM based NDTI with R2 values 
of 0.73, 0.93, and 0.71 for fall 2008, spring 2009, and fall 
2010 images, respectively, in central Indiana. Serbin et al. 
(2009a) developed a new index, the shortwave infrared nor-
malized difference residue index (SINDRI), using ASTER 
bands 6 and 7, and compared the performance of the new 
index with the existing CAI, LCA, and NDTI tillage indices 
in Indiana, Illinois, Iowa, and Maryland. They observed that 
NDTI is highly affected by the image acquisition date, with a 
maximum R2 of 0.64 (RMSD = 11%) observed on 19 May 
2009 at Ames, Iowa, using NDTI. They calculated NDTI by 
averaging ASTER bands 5 to 8 into an equivalent Landsat-
TM band 7. However, NDTI did not perform well at other 
locations. Daughtry et al. (2006) observed weak correlation 
with NDTI, NDI5, and NDTI, with R2 of 0.11, 0.14, and 
0.14, respectively. The low R2 can be attributed to the fact 

that they used a Landsat image that was acquired on 12 June 
2004, when 100% of maize and soybean had already 
emerged in central Iowa. 

To evaluate the overall accuracy of each CRC model, 
regression equations were developed using the training 
dataset and then applied to the testing dataset. The R2 and 
RMSD values between observed and measured CRC were 
evaluated. Considerable variation was observed between 
measured and predicted CRC, as well as between model 
performances, with R2 ranging from 0.01 to 0.81 (table 5). 
The maximum R2 was obtained for NDTI on 17 May 2013 
(R2 = 0.78 and RMSD = 19%) and 25 May 2014 (R2 = 0.81 
and RMSD = 10.5%). However, the minimum variation in 
CRC was observed for the June image, when most of the 
crops had emerged across the study area and confounded 
the tillage index signal. The performance of the 3 × 3 clas-
sification matrices for three CRC categories (<30%, 30% to 
70% and ≥70%) was evaluated using the overall accuracy 
and kappa coefficient for each model. This process showed 
that the performance of NDTI was much better than the 
other indices in predicting CRC. The maximum accuracy 
with ground observation was observed for the 28 May 2014 
image, with percent overall accuracy of 0.79 (κ = 0.78). 
However, for the June image, all indices did not classify 
tillage practices over the study area. The 2 × 2 classifica-
tions (i.e., conventional and conservation tillage) improved 
the overall accuracy for all the indices (data not shown). 
Among all models evaluated, the NDTI tillage index per-
formed well and can be used as a practical tool to identify 
tillage practices. Therefore, NDTI was used or further eval-
uated to map CRC across the study region. Furthermore, 
Zheng et al. (2012) and Watts et al. (2011) reported that in 
the presence of multi-temporal Landsat images, it is better 
to evaluate the performance by calculating the minimum 
NDTI values, which represent the closest status of the field 
surface immediately after tillage or planting and which vary 
greatly from field to field over a homogeneous agricultural 
region. Therefore, in the next section, the minimum NDTI 
data were quantified and evaluated. 

Table 4. Coefficient of determination (R2) and models developed using simple linear regression for all tillage indices for 2013 and 2014 (N = 67% 
of observed CRC data points). 

Tillage Index N R2 Regression Equation  N R2 Regression Equation 
 17 May 2013  2 June 2013 

ModCRC 34 0.24 y = -812.93x + 418.06  34 0.06 y = -180.05x + 127.6 
NDI5 34 0.28 y = 505.65x + 168.3  34 0.04 y = 209.98x + 86.597 
NDI7 34 0.58 y = 361.82x + 85.945  34 0.43 y = 394.43x + 79.342 

NDSVI 34 0.49 y = -793.8x + 358.53  34 0.15 y = -281.62x + 155.72 
NDTI 34 0.73 y = 781.37x − 62.297  34 0.62 y = 802.74x − 51.203 
STI 34 0.6 y = 254.67x − 290.37  34 0.53 y = 306.87x − 346.13 

 25 March 2014  18 April 2014 
ModCRC 60 0.36 y = -502.73x + 262.41  30 0.34 y = -453.27x + 225.58 

NDI5 60 0.48 y = 348.69x + 95.342  30 0.57 y = 443.67x + 125.66 
NDI7 60 0.55 y = 220.96x + 50.172  30 0.7 y = 264.7x + 56.795 

NDSVI 60 0.45 y = -359.59x + 167.25  30 0.54 y = -412.75x + 180.72 
NDTI 60 0.62 y = 558.73x − 22.535  30 0.68 y = 593.86x − 37.08 
STI 60 0.55 y = 217.19x − 233.12  30 0.57 y = 213.19x − 237.75 

 28 May 2014  6 June 2014 
ModCRC 60 0.57 y = -792.9x + 433.56  60 0.31 y = -565.54x + 323.16 

NDI5 60 0.49 y = 645.98x + 176.19  60 0.05 y = -73.172x + 43.568 
NDI7 60 0.65 y = 415.45x + 87.66  60 0.01 y = -20.05x + 49.909 

NDSVI 60 0.59 y = -615.64x + 306.68  60 0.65 y = -538.42x + 306 
NDTI 60 0.78 y = 858.15x − 41.861  60 0.07 y = 200.06x + 17.468 
STI 60 0.63 y = 308.53x − 334.29  60 0.06 y = 68.605x − 45.638 
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Figure 5. Crop residue cover (CRC, %) as a function of (a) ModCRC, (b) NDI5, (c) NDI7, (d) NDSVI, (e) NDTI, and (f) STI for training dataset 
on 25 March, 18 April, 28 May, and 6 June 2014. 

 
Table 5. Comparison of ModCRC, NDI5, NDI7, NDSVI, NDTI, and STI tillage indices for the 2013 and 2014 maize and soybean planting 
seasons. N is the number of testing data, R2 is the coefficient of determination, and RMSD is the root mean square difference between observed 
(ground truth) and predicted CRC. Classification accuracy of the 3 × 3 matrix (<30%, 30% to 70%, and ≥70%) was assessed using percent 
overall accuracy (correct sample/total number of test samples) and kappa coefficient (κ). 

Tillage Index N R2 
RMSD 

(%) 
Overall 

Accuracy (%) 
Kappa 

Coefficient 
xx

N R2 
RMSD 

(%) 
Overall 

Accuracy (%) 
Kappa 

Coefficient 
 17 May 2013  2 June 2013 

ModCRC 16 0.45 36.2 50 0.39  16 0.11 28.6 29 0.01 
NDI5 16 0.52 31.1 63 0.48  16 0.11 28.6 29 0.01 
NDI7 16 0.57 28.6 63 0.51  16 0.28 27.2 64 0.45 

NDSVI 16 0.51 36.1 56 0.41  16 0.11 27.9 28 0.01 
NDTI 16 0.78 18.7 69 0.64  16 0.38 26.5 57 0.53 
STI 16 0.6 24.5 62 0.43  16 0.35 26.3 57 0.42 

 25 March 2014  18 April 2014 
ModCRC 30 0.61 19.84 53 0.45  18 0.53 21.50 61 0.54 

NDI5 30 0.52 21.98 60 0.53  18 0.64 18.35 56 0.48 
NDI7 30 0.56 21.16 67 0.52  18 0.63 16.05 62 0.59 

NDSVI 30 0.59 20.06 63 0.58  18 0.55 18.09 51 0.51 
NDTI 30 0.63 20.40 68 0.63  18 0.69 15.57 68 0.69 
STI 30 0.61 20.21 60 0.55  18 0.58 15.27 57 0.47 

 28 May 2014  6 June 2014 
ModCRC 30 0.66 18.72 53 0.59  30 0.03 39.92 30 0.17 

NDI5 30 0.47 23.31 47 0.38  30 0.01 34.96 17 0.01 
NDI7 30 0.68 15.95 63 0.69  30 0.02 34.51 17 0.01 

NDSVI 30 0.67 18.35 59 0.47  30 0.24 46.09 53 0.46 
NDTI 30 0.81 10.47 79 0.78  30 0.03 35.20 17 0.01 
STI 30 0.7 14.50 67 0.54  30 0.03 35.13 17 0.01 
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MINIMUM NDTI 
Figure 6 shows the change in NDTI values with time 

over the study region for three CRC categories (<30%, 
30% to 70%, and ≥70%) from March to June 2014. One 
field under each category was selected from the study re-
gion. Reduction in NDTI values from day of year (DOY) 
108 to 145 was due to residue weathering and tillage and 
planting operations implemented in the field. For example, 
a high value of NDTI of 0.12 was observed for the low 
CRC (<30%) early in the season. Field measurements were 
taken between 10 and 15 May (at that time, the field was 
interpreted at CRC of 35%); however, the decline in NDTI 
to 0.05 after DOY 108 indicates the application of tillage in 
that field after data collection, which could mislead the 
correct estimation of CRC. Therefore, it was important to 
use multi-temporal Landsat imagery for correct estimation 
of CRC, as tillage or planting could have occurred anytime 
from the last week of April to the end of May (table 3) in 
the study region. A sharp increase after DOY 145 is due to 
emergence of maize and soybean green vegetation over the 
study area, resulting in high values of NDVI (fig. 6). Thus, 
for further CRC estimations, the minimum NDTI value was 
calculated from the available imagery. Zheng et al. (2013) 
reported that the multi-temporal method for mapping CRC 
was subject to failure with an insufficient number of re-
motely sensed images. For the minimum NDTI analysis, 
only the 2014 data were used, as 2013 had only two cloud-
free images available in May and June, which may not be 
enough imagery to infer the changes in CRC caused by 
planting or tillage. The training dataset was then used to 
develop a simple linear regression model using minimum 
NDTI values and CRC, which was then evaluated with the 
testing dataset. As shown in figure 6, there was no apparent 
impact of precipitation events on NDTI values. 

Figure 7 shows the linear relationship between CRC and 
minimum NDTI for the training dataset, with R2 of 0.86 
 

Figure 7. Observed crop residue cover (CRC, %) as a function of 
minimum NDTI for training dataset (n = 60). 

 

Figure 8. Observed vs. predicted crop residue cover (CRC, %) for the 
testing dataset (n = 30) for 2014. 

 

Figure 9. Observed crop residue cover (CRC, %) as a function of 
minimum NDTI for the pooled dataset (n = 90) for year 2014. 

 
and RMSD of 11%. The relationship was then further ap-
plied to the testing dataset to predict CRC (fig. 8). Consider-
able variation in CRC was observed, with R2 = 0.89 and 
RMSD of 10.6%; however, the slope and intercept did not 
differ significantly (p > 0.05) from one and zero, respective-
ly, at the 5% significance level. Figure 9 shows the relation-
ship between measured CRC with minimum NDTI using the 
pooled dataset (R2 = 0.87; RMSD = 10.9%). Test results 
showed that the model overestimated CRC values for high 
amounts of residue (CRC > 70%), while underestimation 
was observed for data points in the lower residue range 
(CRC < 30% to 40%). Table 6 shows the 3 × 3 classification 
matric for three residue cover categories that resulted from 
the testing and pooled datasets. High overall accuracy of 
90% with κ = 0.89 was observed for the testing dataset. 
Combining the training and testing datasets (pooled data) 
resulted in high overall accuracy of 87% and κ = 0.84. Simi-
lar results were observed by Zheng et al. (2012), who used 
five Landsat images to estimate CRC on a regional scale. 
They found a linear correlation between CRC and minimum 

Figure 6. Time series of (a) NDTI and (b) NDVI values for three clas-
sifications (CRC < 30%, 30% < CRC < 70%, and CRC ≥ 70%). Verti-
cal blue bars represent daily precipitation obtained from the Clay
Center, Nebraska, weather station, which is a part of the High Plain
Regional Climate Center (HPRCC) Automated Weather Data Net-
work. 
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NDTI with R2 of 0.89 and RMSD of 10.5% for the calibra-
tion dataset and R2 of 0.87 (RMSD = 11.5%) for the pooled 
dataset. They further applied the regression equation from 
the calibration dataset to the test dataset, which yielded an R2 
of 0.85 and RMSD of 12.6% when compared with the 
ground measurements, with an overall accuracy of 91% and 
90% for the test and pooled datasets, respectively. To further 
evaluate the performance of the model developed using 
training data, the model equation was applied to the 17 May 
2013 dataset (fig. 10). Overall, a good correlation was ob-
served between measured and predicted CRC, with R2 = 0.84 
(RMSD = 18.5%). However, in most cases, the model over-

estimated CRC, and the overestimations were greater for the 
lower range of CRC (i.e., <60% to 70%). The lower correla-
tion as compared to 2014 might be due to an insufficient 
number of multi-temporal Landsat images in 2013 and the 
differences in CRC and management practices between 
years. An additional dataset is required to test the accuracy of 
the model for different years and locations. 

LARGE-SCALE SPATIAL MAPPING OF CRC 
In order to map the CRC for the study area, two Landsat 

images from 25 March and 28 May 2014 were selected, 
and the training model was then applied. For mapping 
CRC, we divided CRC into three categories: <30%, 30% to 
70%, and ≥70%. Figure 11 shows the spatial variation of 
CRC on 25 March and 28 May 2014 over the study region. 

Table 6. Classification matrix for three CRC categories derived using
linear regression for the testing and pooled datasets. 

<30% 
30% to 

70% ≥70% Total 
Accuracy 

(%) 
Testing dataset      
 <30% 15 1 0 16 94 
 30% to 70% 1 4 0 5 80 
 ≥70% 0 1 8 9 89 
 Total 16 6 8 30 
 Overall accuracy = 0.9    
 Kappa coefficient = 0.89    
Pooled dataset      
 <30% 36 4 0 40 90 
 30% to 70% 4 23 0 27 85 
 ≥70% 0 4 19 23 83 
 Total 40 31 19 90 
 Overall accuracy (%) = 87    
 Kappa coefficient = 0.84    

 

 

Figure 11. Crop residue cover (CRC) classification into four categories (0 < CRC < 30%, 31% to 50%, 51% to 70%, and >71%) using minimum 
NDTI index values from multi-temporal Landsat images for (a) 25 March 2014 and (b) 28 May 2014 in south central Nebraska. Areas A, B, C,
and D were selected for detailed analysis. 

Figure 10. Measured vs. predicted crop residue cover (CRC, %) for 
the testing dataset for 2013. 

(

(
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Non-agricultural fields and developed (urban) areas with 
NDVI > 0.3 were excluded from the image. Red color in 
figure 11 represents areas with very high CRC values. 
Relatively large values of CRC were observed (more red 
color) for the March 2014 image when the residue from the 
last season maize and soybean harvest remained on the soil 

surface and planting and tillage operations had not yet be- 
 

gun. Planting and tillage operations in the fields led to re-
ductions in CRC, which can be clearly seen in the May 
2014 image. To further evaluate the changes that occurred 
between the two dates, four small areas (A, B, C, and D) 
were randomly selected from the study area, as shown in 

 25 March 2014 28 May 2014 

Area A 

   

Area B 

   

Area C 

   

Area D 

Figure 12. Distribution of CRC into four residue cover categories on 25 March 2014 and 28 May 2014 for areas A, B, C, and D in figure 11. 
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figure 12. Close analyses of these areas showed that the 
maximum change in CRC was observed in area C (Hamil-
ton County, Neb.), where 85% of the area showed a reduc-
tion in CRC from the ≥70% category to less than 50% 
CRC, which might be a result of tillage operations across 
area C. The minimum disturbance in CRC was observed in 
area B (Clay County, Neb.), where most of the area was 
undisturbed and had high CRC even after planting. To fur-
ther estimate the area in each CRC category for maize and 
soybean fields, the crop data layer for the 2013 growing 
season from NASS was overlaid on the developed tillage 
map for the 28 May 2014 image. Table 7 shows the percent 
area of maize and soybean cultivated in each CRC category 
across the study area and for each county. 

In 2013, cropland areas across the study area planted to 
maize and soybeans were approximately 598,614 ha and 
278,882 ha, respectively (USDA-NASS, 2013). On aver-
age, a total of 19% of the maize and soybean area (5% of 
maize fields and 14% of soybean fields) were observed 
under 30% residue cover (conventional tillage), and a total 
of 41% (26% of maize fields and 15% of soybean fields) of 
the total maize and soybean area had more than 70% CRC. 
Countywide analysis showed more soybean area having 
less than 30% CRC than maize, which was due to the fact 
that soybean produces less residue mass than maize, and 
there is only a small difference between the soil and soy-
bean residue. This creates a challenge in distinguishing 
these surfaces from each other (Pacheco and McNairn, 
2010; Biard and Baret, 1997), and even a small amount of 
tillage can result in a significant reduction in CRC. These 
results were based on the CRC calculations by minimum 
NDTI using Landsat imagery; however, research by 
Daughtry et al. (2006) and Serbin et al. (2009a, 2009b) 
indicated that more accurate results can be obtained using 
the CAI, LCA and SINDRI tillage indices with hyperspec-
tral remote sensing data. For this study, these datasets were 
not available. Future research on the use of hyperspectral 
data for better identification of CRC at large scales is rec-

ommended. Furthermore, this study did not include the 
sensitivity of NDTI to surface soil and/or residue water 
content, since no large precipitation events occurred during 
the study. Thus, future research evaluating the sensitivity of 
different tillage indices to water content is suggested. 

SUMMARY AND CONCLUSIONS 
Accurate information on tillage practices and crop resi-

due cover (CRC) can aid in the assessment and quantifica-
tion of numerous benefits, including large-scale assess-
ments of the impact of tillage practices on water resources 
and cropping system productivity analyses, policy deci-
sions, etc. Developing accurate and robust methodologies 
to estimate the percent CRC and type of tillage practices 
implemented at large scales is still evolving, and currently 
there is no extremely accurate, robust, and scientifically 
valid method available to quantify and map CRC at a re-
gional scale. In this research, multi-temporal Landsat-7 
(ETM+) and Landsat-8 (OLI/TIRS) satellite data were used 
to evaluate the performance of tillage indices to map CRC 
for maize and soybean fields in south central Nebraska. To 
the best of our knowledge, this study was the first to use 
Landsat-8 satellite data to map the percent CRC at a re-
gional scale. Four satellite images collected on 25 March, 
18 April, 28 May, and 6 June 2014 were used in the analy-
sis. Among all the indices, NDTI performed best for all 
image acquisition dates. The maximum accuracy with 
ground observations of percent CRC was observed for the 
28 May 2014 images, with percent overall accuracy of 0.79 
(κ = 0.78). Minimum NDTI was used to map the percent 
CRC, accounting for the planting date and other changes in 
CRC during the planting season. Total available data were 
divided into training (calibration) and testing (validation) 
subsets. The training dataset was used to develop the mod-
el, and the testing dataset was used to evaluate the perfor-
mance of the training model. Linear regression the CRC 
model showed that NDTI performed well in differentiating 
the CRC for different tillage practices at large scales. The 
minimum NDTI method was then used to spatially map the 
CRC at a regional scale by considering the timing of plant-
ing and tillage implementation. Measured CRC was divided 
into training and testing datasets. A CRC model was devel-
oped using the training dataset between minimum NDTI 
and measured CRC with R2 = 0.89 (RMSD = 10.63%). 

The 3 × 3 classification matrix for three residue cover 
categories resulting from the testing dataset showed a high 
overall accuracy of 90% with κ = 0.89. Mapping of CRC 
showed that, on average, a total of 19% of maize and soy-
bean area (5% of maize fields and 14% of soybean fields) 
were observed under 30% residue cover (conventional till-
age), and 41% (26% of maize fields and 15% of soybean 
fields) of the total maize and soybean area had more than 
70% CRC. This research and the procedures presented il-
lustrate that multi-spectral Landsat images are capable of 
estimating and mapping CRC (error within 10.6%) on a 
regional scale and continual basis using locally developed 
tillage practice versus crop residue algorithms. 

Table 7. Distribution of maize and soybean areas under three CRC
categories for the study area and for eight Nebraska counties (Adams,
Clay, Fillmore, Hamilton, Kearney, Saline, Seward, and York) within
the study area on 28 May 2014. 

Location and Crop 

Total 
Area 
(ha) 

Percentage of Area  
by CRC Category 

<30% 30% to 70% ≥70% 
Study area Corn 598,614 5 69 26 
 Soybean 278,882 14 71 15 
Adams Corn 77,473 3 66 30 
 Soybean 31,320 13 74 14 
Clay Corn 77,725 4 66 30 
 Soybean 29,725 11 68 21 
Fillmore Corn 80,879 1 71 28 
 Soybean 41,226 8 79 13 
Hamilton Corn 85,619 7 79 14 
 Soybean 28,389 25 70 5 
Kearney Corn 68,542 12 57 31 
 Soybean 33,879 19 63 19 
Saline Corn 58,211 1 58 41 
 Soybean 39,699 3 69 28 
Seward Corn 59,829 5 65 30 
 Soybean 40,325 13 72 14 
York Corn 90,298 6 77 16 
 Soybean 34,309 24 69 7 
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