69 research outputs found

    The Hanabi Challenge: A New Frontier for AI Research

    Full text link
    From the early days of computing, games have been important testbeds for studying how well machines can do sophisticated decision making. In recent years, machine learning has made dramatic advances with artificial agents reaching superhuman performance in challenge domains like Go, Atari, and some variants of poker. As with their predecessors of chess, checkers, and backgammon, these game domains have driven research by providing sophisticated yet well-defined challenges for artificial intelligence practitioners. We continue this tradition by proposing the game of Hanabi as a new challenge domain with novel problems that arise from its combination of purely cooperative gameplay with two to five players and imperfect information. In particular, we argue that Hanabi elevates reasoning about the beliefs and intentions of other agents to the foreground. We believe developing novel techniques for such theory of mind reasoning will not only be crucial for success in Hanabi, but also in broader collaborative efforts, especially those with human partners. To facilitate future research, we introduce the open-source Hanabi Learning Environment, propose an experimental framework for the research community to evaluate algorithmic advances, and assess the performance of current state-of-the-art techniques.Comment: 32 pages, 5 figures, In Press (Artificial Intelligence

    Generating and Adapting to Diverse Ad-Hoc Cooperation Agents in Hanabi

    Full text link
    Hanabi is a cooperative game that brings the problem of modeling other players to the forefront. In this game, coordinated groups of players can leverage pre-established conventions to great effect, but playing in an ad-hoc setting requires agents to adapt to its partner's strategies with no previous coordination. Evaluating an agent in this setting requires a diverse population of potential partners, but so far, the behavioral diversity of agents has not been considered in a systematic way. This paper proposes Quality Diversity algorithms as a promising class of algorithms to generate diverse populations for this purpose, and generates a population of diverse Hanabi agents using MAP-Elites. We also postulate that agents can benefit from a diverse population during training and implement a simple "meta-strategy" for adapting to an agent's perceived behavioral niche. We show this meta-strategy can work better than generalist strategies even outside the population it was trained with if its partner's behavioral niche can be correctly inferred, but in practice a partner's behavior depends and interferes with the meta-agent's own behavior, suggesting an avenue for future research in characterizing another agent's behavior during gameplay.Comment: arXiv admin note: text overlap with arXiv:1907.0384

    Hanabi is NP-complete, even for cheaters who look at their cards

    Get PDF
    This paper studies a cooperative card game called Hanabi from an algorithmic combinatorial game theory viewpoint. The aim of the game is to play cards from 1 to n in increasing order (this has to be done independently in c different colors). Cards are drawn from a deck one by one. Drawn cards are either immediately played, discarded or stored for future use (overall each player can store up to h cards). The main feature of the game is that players know the cards their partners hold (but not theirs. This information must be shared through hints). We introduce a simplified mathematical model of a single-player version of the game, and show several complexity results: the game is intractable in a general setting even if we forego with the hidden information aspect of the game. On the positive side, the game can be solved in linear time for some interesting restricted cases (i.e., for small values of h and c)

    Continuous coordination as a realistic scenario for lifelong learning

    Full text link
    Les algorithmes actuels d'apprentissage profond par renforcement (RL) sont encore très spécifiques à leur tâche et n'ont pas la capacité de généraliser à de nouveaux environnements. L'apprentissage tout au long de la vie (LLL), cependant, vise à résoudre plusieurs tâches de manière séquentielle en transférant et en utilisant efficacement les connaissances entre les tâches. Malgré un regain d'intérêt pour le RL tout au long de la vie ces dernières années, l'absence d'un banc de test réaliste rend difficile une évaluation robuste des algorithmes d'apprentissage tout au long de la vie. Le RL multi-agents (MARL), d'autre part, peut être considérée comme un scénario naturel pour le RL tout au long de la vie en raison de sa non-stationnarité inhérente, puisque les politiques des agents changent avec le temps. Dans cette thèse, nous présentons un banc de test multi-agents d'apprentissage tout au long de la vie qui prend en charge un paramétrage à la fois zéro et quelques-coups. Notre configuration est basée sur Hanabi - un jeu multi-agents partiellement observable et entièrement coopératif qui s'est avéré difficile pour la coordination zéro coup. Son vaste espace stratégique en fait un environnement souhaitable pour les tâches RL tout au long de la vie. Nous évaluons plusieurs méthodes MARL récentes et comparons des algorithmes d'apprentissage tout au long de la vie de pointe dans des régimes de mémoire et de calcul limités pour faire la lumière sur leurs forces et leurs faiblesses. Ce paradigme d'apprentissage continu nous fournit également une manière pragmatique d'aller au-delà de la formation centralisée qui est le protocole de formation le plus couramment utilisé dans MARL. Nous montrons empiriquement que les agents entraînés dans notre environnement sont capables de bien se coordonner avec des agents inconnus, sans aucune hypothèse supplémentaire faite par des travaux précédents. Mots-clés: le RL multi-agents, l'apprentissage tout au long de la vie.Current deep reinforcement learning (RL) algorithms are still highly task-specific and lack the ability to generalize to new environments. Lifelong learning (LLL), however, aims at solving multiple tasks sequentially by efficiently transferring and using knowledge between tasks. Despite a surge of interest in lifelong RL in recent years, the lack of a realistic testbed makes robust evaluation of lifelong learning algorithms difficult. Multi-agent RL (MARL), on the other hand, can be seen as a natural scenario for lifelong RL due to its inherent non-stationarity, since the agents' policies change over time. In this thesis, we introduce a multi-agent lifelong learning testbed that supports both zero-shot and few-shot settings. Our setup is based on Hanabi --- a partially-observable, fully cooperative multi-agent game that has been shown to be challenging for zero-shot coordination. Its large strategy space makes it a desirable environment for lifelong RL tasks. We evaluate several recent MARL methods, and benchmark state-of-the-art lifelong learning algorithms in limited memory and computation regimes to shed light on their strengths and weaknesses. This continual learning paradigm also provides us with a pragmatic way of going beyond centralized training which is the most commonly used training protocol in MARL. We empirically show that the agents trained in our setup are able to coordinate well with unknown agents, without any additional assumptions made by previous works. Key words: multi-agent reinforcement learning, lifelong learning

    Evaluating and modelling Hanabi-playing agents

    Get PDF
    Agent modelling involves considering how other agents will behave, in order to influence your own actions. In this paper, we explore the use of agent modelling in the hidden-information, collaborative card game Hanabi. We implement a number of rule-based agents, both from the literature and of our own devising, in addition to an Information Set-Monte Carlo Tree Search (IS-MCTS) agent. We observe poor results from IS-MCTS, so construct a new, predictor version that uses a model of the agents with which it is paired. We observe a significant improvement in game-playing strength from this agent in comparison to IS-MCTS, resulting from its consideration of what the other agents in a game would do. In addition, we create a flawed rule-based agent to highlight the predictor's capabilities with such an agent

    The 2018 Hanabi competition

    Get PDF
    This paper outlines the Hanabi competition, first run at CIG 2018, and returning for COG 2019. Hanabi presents a useful domain for game agents which must function in a cooperative environment. The paper presents the results of the two tracks which formed the 2018 competition and introduces the learning track, a new track for 2019 which allows the agents to collect statistics across multiple games
    • …
    corecore