
The 2018 Hanabi competition
Joseph Walton-Rivers

School of Computer Science and Electronic Engineering
University of Essex, Colchester

CO4 3SQ, UK
jwalto@essex.ac.uk

Piers R. Williams
School of Computer Science and Electronic Engineering

University of Essex, Colchester
CO4 3SQ, UK

prwilliams@gmail.com

Richard Bartle
School of Computer Science and Electronic Engineering

University of Essex, Colchester
CO4 3SQ, UK

rabartle@essex.ac.uk

Abstract—This paper outlines the Hanabi competition, first
run at CIG 2018, and returning for COG 2019. Hanabi presents
a useful domain for game agents which must function in a co-
operative environment. The paper presents the results of the two
tracks which formed the 2018 competition and introduces the
learning track, a new track for 2019 which allows the agents to
collect statistics across multiple games.

I. INTRODUCTION

Hanabi is a co-operative, partially observable card game
designed by Antoine Bauza[1] and first published in 2010.
The card game won the prestigious 2013 Spiel des Jahres1

award and has received recent interest from academics as a
domain for games research.

The Hanabi AI competition was held at CIG 2018. The
competition consisted of two tracks: the mirror track where
all agents were following the same strategy, and the mixed
track where the agents did not know the identities of the other
agents they are paired with. This second track has interesting
implications for co-operative team-based games, where players
are expected to form teams on an ad-hoc basis.

There are several properties which make the game an
interesting domain for game AI research:

Firstly, the game is turn-based, so a generous limit on the
time available to make a move can easily be arranged.

Secondly, the game features partial observability — a char-
acteristic present in many games. The nature of Hanabi’s
partial observability also introduces a requirement for the
agents to co-operate, as they cannot make informed decisions
about their actions without the co-operation of the other
agents.

Thirdly, the means for co-operation is explicit and well-
defined as part of the game mechanics. The rules of the
game restrict out-of-band communication and therefore save
agents from having to understand complex communications
and researchers from having to invent an agent-specific com-
munication mechanism.

1https://www.spiel-des-jahres.com/en

Lastly, the game’s rules are fairly simple and well-
documented, which means that researchers can focus on
creating better co-operative agents rather than on creating
general agents capable of dealing with complex game features
or unknown domains. Furthermore, the rules are particularly
conducive to creating agents that possess a theory of mind.

A. Knowledge

Hanabi is a co-operative game in which players do not have
full information about the game state. They can see what cards
are in the hands of other players but do not know what cards
are in their own hand; nor do they know the order of the cards
remaining in the deck. The players gain limited knowledge
of what the unknown cards are through the communication
actions undertaken by other players.

Such partial observability is a property of many games.
Algorithms that can cope with gaps in knowledge are therefore
required for the creation of better game-playing agents.

B. Believable Agents

Hanabi players focus on why other players take the actions
they take. This modelling of other players’ intentions is an
important feature of play, and one of the reasons human
players rate the game so highly (it won the prestigious Spiele
des Jahres award in 2013). As most Hanabi strategies focus
on understanding how the other players will interpret what we
tell them, an understanding of how our actions are perceived
is important for the creation of Hanabi playing agents. The
authors hope that the techniques developed for Hanabi playing
agents, therefore, might be generalisable to other domains that
feature this requirement.

From an AI perspective, the game requires that the agents
(players) model the effects of a given action on the other
players. This is a common feature of co-operative domains, but
is not typically a strong component of game AI; in particular,
the agents involved are often criticised for lacking social
believability [2]. Eger et al. found that players who played
a 2 player online variant of Hanabi preferred to play with
agents that exhibited intentional behaviour [3].

Agents within Hanabi must collaborate in order to complete
their common objective. The work presented in [4] performs
well when a model of the other agents is available, but models
of the other agents might not be available. This could be
because another agent’s decision-making processes are opaque
(as with human players), or because the agent’s identity is
unknown (as with networked bot players), or because the
other agent’s decision-making processes are known but are
too computationally-expensive to be practical (as with Monte
Carlo Tree Search (MCTS)).

The remainder of this paper will be structured as follows:
Firstly, section II will provide a background of both research
on Hanabi and other relevant co-operative games competi-
tions. Next, section III will outline the game rules. This will
be followed by a description of the competition (section IV)
and a description of the submitted agents by entrants (section
V) and the scores they obtained (VII). The paper will then
outline the changes made for the 2019 competition (VIII).
Finally, section IX will provide conclusions and future work.

II. RECENT RESEARCH

A. Hanabi

There have been many research papers published on Hanabi
as a game and agents for playing the game. Some mathemati-
cal analysis of the game has been conducted, and the game has
been shown to be NP-Complete by Baffier, Chiu, Diez, et al.
[5], this is also the case if all hidden information is removed.

There have been multiple attempts to create rule-based
agents. Osawa created a set of agents for the two-player variant
of the game, including agents that include an agent that only
considers their internal state, an agent that includes what the
other agent knows to avoid providing duplicate information
and an agent that attempts to figure out information about the
game state based on previous moves made by the other player.
The work by Bergh, Hommelberg, Kosters, et al. [7] explores
a set of rules to create agents. They perform experiments on
the 3 player variant of Hanabi and analysed the effectiveness
of their created rules. They found that taking some risks when
playing cards had better results than playing cautiously.

Cox, De Silva, Deorsey, et al. created agents that used
a ‘hat-guessing’ strategy to play Hanabi near perfectly. The
agents can achieve consistently high scores, but this strategy
assumes that all players are playing the same strategy. This
is limiting for co-operative games research, and especially
problematic when human players are involved. The strategy
only works with 5 player games due to the encoding system
used. Bouzy [9] relaxed the rules to allow players to point
out a lack of cards of a given colour or rank. This allowed an
improvement in the scores obtained by Cox, De Silva, Deorsey,
et al. They also combined the hat guessing agent with a tree
search technique to further improve the scores.

There has also been research into using Hanabi playing
agents with human players. Eger, Martens, and Córdoba [3]
used a rule-based agent based on the work of Osawa to
create an intentional agent that attempts to provide intelligent
hints based on information that will be useful to their human

counterpart. They found that humans preferred to play with
agents that exhibited intentional behaviour.

More recently, Bard, Foerster, Chandar, et al. has proposed
the use of Hanabi as a domain for agents based on machine
learning techniques [10]. They reference some of the same
reasons outlined in the motivation section (creating agents
that possess a theory of mind). Their research cites not only
the existing agents from academic literature but also rule-
based techniques sourced from public source code repositories.
Within the field of machine learning algorithms, Foerster,
Song, Hughes, et al. has created a reinforcement learning tech-
nique that is capable of dealing with multi-agent environments
that feature communication and has applied it to hanabi [11].

B. Co-operative Competitions

The General Video Game AI (GVG-AI) competition [12]
recently introduced a two-player track [13]. This features a mix
of both co-operative and competitive two-player games, but
most of them are competitive games. Within this competition
each agent is paired with another, unknown, agent and must
play a series of games (some of which are co-operative and
some of which are competitive); the aim is to obtain the
highest possible score across all agents. The agents must,
therefore, be competent both at competitive and at co-operative
games. The agents must also be able to function across a range
of unknown games; they can evaluate the effects of an action
on a given state by simulating the action using a forward
model. The agents do not know if the game they are playing
is cooperative or competitive and as a majority of the games
are competitive, it is better to attempt to minimise opponent’s
scores rather than maximise them. The framework is also
based on simultaneous move games in which the controllers
are expected to return a move within 40ms. While general
game playing agents are useful, the competition’s focus is
not on creating agents that are meant to co-operate with each
other. The focus on Hanabi allows for rule-based agents that
take domain knowledge into account as well as knowledge of
existing strategies into the agent’s design.

Other game domains that look at co-operative game AI
include the geometry friends competition [14], in which two
agents with asymmetric action sets attempt to solve physics-
based puzzles together. The agents that compete in this domain
must be able to cope with both co-operation and real-time
physics. The competition organises a separate single player
track were agents focus on attempting to solve the physics-
based puzzles without the complexity of dealing with co-
operative actions. This results in efforts being split between
creating agents that can correctly function in the physics-based
environment and focusing on co-operative gameplay strategies.
The turn-based nature of Hanabi allows the agents to focus
more on the interaction between agents rather than the game
rules themselves.

The Ms. Pac-Man vs Ghost Team competition [15] pits
a single controller (Ms. Pac-Man) against a team of four
possibly non-identical ghost-controllers. The agents have lim-
ited visibility of the game world centred on their location

Fig. 1. A mid-game Hanabi state. We can see the other players cards but not
our own. The life tokens are located in a stack on the left of the image, the
information tokens on the right. The centre shows that a red 1 and a white 1
have been played

and as a result, must coordinate with each other in order
to track and trap Ms. Pac-Man. The ghosts can make use
of a communication channel, which allows them to exchange
location information about Ms. Pac-Man (with a delay). The
ghost agents are submitted as a team, which means the ghosts
only need to work as a fixed team of agents and do not need
to work with unknown agents.

III. DOMAIN DESCRIPTION

Hanabi is a co-operative card game that can be played by
2-5 players. The game consists of a deck of cards containing
5 coloured suits (red, yellow, green, blue and white), each suit
contains (three 1s, two 2s, two 3s, two 4s and one 5). The
game also contains two types of tokens: information tokens
(maximum of 8) and life tokens (maximum of 3). The players
always start with the maximum number of both tokens.

The objective of the game is for the players to form sets of
cards of each suit, in rank order from the lowest value (1) to
the highest value (5). For completing a suit, the players also
get an additional information token (if they have less than the
maximum 8 tokens).

Each player has a hand consisting of a set of cards. The
player cannot observe their cards, but the cards in other
player’s hands are visible to them. The number of cards in
each player’s hand depends on the number of players, for 2
and 3 player games each player has 5 cards, for 4 and 5 player
cards, they have 4 cards each.

The game is played in turns, with each player performing a
single action during their turn. Three types of action that can
be performed:

• Tell Information: Spend an information token to tell
another player about cards in that player’s hand (pointing
out all cards of a given rank or suit). A tell action must
always be complete (players must identify all cards or a
given rank or value in that player’s hand, not a subset
of them) and the information must be accurate (players

cannot lie to another player about their cards). The player
must also be able to point to at least 1 card (pointing out
’you have no red cards’ is not permitted).

• Discard a card: Remove a card from their hand, placing
it in the discard pile and gaining one information token
(up to the maximum of 8). The player then draws a
replacement card from the deck. If the team already has
8 information tokens, discards are not permitted.

• Play a card: Play a card from their hand, if the card is
the next in sequence for that suit (based on the current
card of that suit on the table), the card is placed on the
table. Otherwise, the players lose a life token, and the
card is placed in the discard pile. The player then draws
a replacement card from the deck.

When the deck runs out of cards, each player gets 1 last
action. The score is then calculated. The game also ends if
the players run out of life tokens or the maximum score of
has been reached. As every action either causes a card to be
drawn from the deck or spends an information token (of which
there are a finite amount) the game is guaranteed to end.

A. Scoring

The game ends when one of the following conditions are
met:

• the players have completed every suit (thus obtaining a
perfect score of 25)

• If the players are unable to do this, the game ends when
either they run out of cards (as described above)

• the team runs out of life tokens2

The score obtained is the total of the top cards of each
suit on the table (i.e. the highest value of each suit that was
correctly played). For example, if the table at the end of the
game had the following cards displayed:

Red Yellow Green Blue White
5 3 1 4 2

Then the final score obtained would be 15 (5+3+1+4+2).

IV. THE 2018 COMPETITION

The competition is built using the Hanabi implementation
presented in [4]. The framework is written in Java and de-
signed around a client-server model to allow for network play
and greater isolation between agents. The ‘server’ scores a
fully-observable copy of the game, during its turn, an agent
is queried for its move, and then the effects of that move are
sent to all of the agents. Events that should not be observed
by a particular agent (for example, telling the current player
what card they drew) are not transmitted to that agent.

The framework has been made publicly available (under
the GNU General Public Licence version 3) and is available
(along with source code) from Maven Central. For each game
played, the total score obtained, the number of lives remaining

2In our framework, we have interpreted losing all of lives to count as the
score obtained so far, it has been suggested that this should award a score of
zero. For consistency with last year’s competition, we have left this rule in
place

at the end of the game and the total number of turns taken are
recorded.

As the deck order can affect the maximum possible score, it
is important that agents are evaluated using the same random-
number seeds. The seeds for each run of the agents are fixed
ahead of time. Note that many seeds can correspond to the
same deck ordering, although this is extremely rare, we filtered
the seeds to remove duplicate deck orderings.

Note also that deck orderings can be different but similar, for
example, the red and blue cards in one deck could be the blue
and red cards in another. Such similarities could be detected
and removed, but because agent strategies can legitimately
privilege one suit over another (preferentially telling about
red cards for example), we do not check for similar deck-
orderings.

Agents can be time-limited using a configurable time limit
present in the framework. For the competition, agents are
expected to return a move within 40 milliseconds; failing
to do so results in agent disqualification (no further moves
are permitted) and the agents obtain the score that they have
obtained up until that point. For network play, this restriction
is relaxed to prevent agents from being disqualified due to
network lag. For our experiments, we run the agents within
the same JVM and so can avoid potential network-latency
problems.

A. Competition Tracks

The 2018 competition consisted of two tracks. In both,
the agents play 250 different deck orderings, determined by
random seeds. For each deck ordering the agents play the 2, 3,
4 and 5 player variants of the game. Agents were re-initialised
before each game.

• Mixed In the mixed track, the evaluated agent is paired
with N − 1 copies of each strategy listed in section VI.
The position of the evaluated agent is determined by the
random seed and will be consistent for a given set of
parameters (paired agent, deck ordering and the number
of players). Each agent played 7,000 games in total (7
paired agents, 4 different number of players, 250 deck
orderings).

• Mirror In the mirror track the agents are paired with
copies of themselves. Each agent played 1,000 games in
total for this track (250 deck orderings, 4 different number
of players)

The agents for the mixed track are drawn from both the
agents that are published with the framework and new agents
created specifically for the competition. The exact agents that
were used were not made public during the competition.

As the agents for the mirror track are all sharing the same
strategy, it is important that the agents do not share any global
state. This was stated in the competition rules but it is difficult
to enforce pragmatically if all agents are in the same JVM.

B. Competition Framework

The agents are written in Java and must implement the
Agent interface (fig. 2). This consists of a single compulsory

package com . f o s s g a l a x y . games . f i r e w o r k s . a i ;

@ F u n c t i o n a l I n t e r f a c e
p u b l i c i n t e r f a c e Agent {

/ * *
* S t a n d a r d i s e d i n t e r f a c e f o r game−p l a y i n g a g e n t s .
*
* @param agen t ID t h e ID of t h i s a g e n t
* @param s t a t e t h e c u r r e n t s t a t e o f t h e game
* @return t h e move t h i s a g e n t would l i k e t o make
* /
Ac t i on doMove (i n t agent ID , GameState s t a t e) ;

}

Fig. 2. The agent interface

method, doMove which must return the action the agent wishes
to execute this turn. The agent is provided with a partially
observable copy of the game state and the current agent ID as
arguments to this method.

The game state provides access to information about the
game state: such as the discarded cards, the current cards on
the table, the number of information tokens currently available,
the number of live tokens remaining, the cards the player can
currently observe and the information each player has been
told about their cards. The state can be copied and modified to
allow the agent to reason about possible states. The framework
also provides utility methods to find the legal actions for a
given state and allows applying of actions to states that have
been modified to be fully observable. The agent cannot easily
tell the cards that are in their hand from the cards in the deck.
The deck will therefore also contain cards that are located
within the player’s hand.

The GameState object provides successors for properties of
the game, such as:

• the cards contained in the discard pile
• the information about each player’s hand, including:

– the order in which the cards were drawn
– what the agent has been told about the cards
– (for other agents) the cards contained in their hand

• the cards remaining in the deck
• the current information tokens
• the current lives remaining
• the value of each suit on the table
• the ability to detect if the game is over
• the ability to create a copy of the state
• the ability to modify the copy of the state, allowing the

agent to make the state fully observable
• the ability to access the previous moves made, and the

effects of these actions (from our perspective).

Agents can query if an action is legal in a given state
by using the action’s isLegal method. A full list of possible
actions (and of the subset comprised of those actions which
are legal) can be obtained via a utility method. If an agent
attempts to make an invalid move, that agent will be allowed
to reattempt a move before being disqualified by the game

runner; the exact number of reattempts allowed is configurable,
but the default is zero.

Disqualification results in the game engine reporting the
current score obtained, but it will note that the agent was
disqualified. For the competition, the score obtained until that
point is used; this means that agents which are disqualified
will tend to obtain lower scores.

C. Online Evaluation

As well as providing the ability to evaluate the agents offline
using the framework, the competition provided a web service
which allowed the evaluation of the agents under the same
conditions as the final ranking. This allowed the participants
to test their agents worked correctly.

The agents used for the online evaluation were fixed but
different from those used for the final results. Every half
an hour new seeds were generated and the agents evaluated
against them. The average score was displayed on the web
page for the agent.

D. Rule-based framework

Our Hanabi framework includes a range of controllers
distributed with it. These are drawn from existing literature
and our own experience.

This allows the creation of policies which consist of a
sequence of rules, which will be evaluated in order until the
condition for the rule matches. For a given state the rule
will always report the same result when querying if it will
execute for a given state. The effects of the rule may be
non-deterministic (for example, choosing a random card to
discard). A web-based agent creator [16] can be used to build
agents using the rules present in the framework. This allows
easy creation of strategies for testing.

V. COMPETITION AGENTS

A. MonteCarloNN

The MonteCarloNN[17] agent is a modified version of IS-
MCTS [18]. To decrease the execution time required per
evaluation, the agent incorporates a learned evaluation func-
tion which is used to evaluate the game state. A variant of
this agent, MonteCarloOppNN, includes a Bayesian opponent
model based on policies published with the framework which
attempts to detect the paired agent based on the current agent’s
observations.

B. NYUGameLab

NYUGameLab agent, created by Canaan, Shen, Torrado,
et al. [19]. The agent is a combination of the rule-based
agent framework supplied with the framework combined with
a genetic algorithm. The genetic algorithm is used to evolve
a fixed policy that was used for the competition. They also
added new rules as part of their agent.

C. thunder

The thunder agent is a renamed version of the random con-
troller. This has been left in the analysis to allow comparisons
with random play.

VI. PAIRED CONTROLLERS

For the ‘mixed’ games, the controllers were paired with a
set of unknown controllers. These were drawn from the set of
controllers which are distrusted with the framework as well as
new unknown agents. The agents that were used for the mixed
track are:

A. Internal

The internal agent, originally proposed by [6]. This agent
represents a reasonable but limited strategy.

1) PlaySafeCard
2) OsawaDiscard
3) TellPlayableCard
4) TellRandomly
5) DiscardRandomly
The OsawaDiscard rule implements the discard rule de-

scribed in [6]. Namely, discard cards that are no longer
required. This can occur either because the card is a duplicate
of one that has already been played or because it is no
longer possible to play the card (for example, a red 4 of both
red 3s have been discarded). This rule describes a relatively
intelligent discard strategy and so the rule is used for most of
the rule-based agents.

B. Piers

Piers is a modified version of IGGI which was presented
in [4]. The agent obtained the highest score for a rule-based
agent in the original paper.

1) IfRule (lives > 1 ∧ ¬deck.hasCardsLeft) Then
(PlayProbablySafeCard(0.0))

2) PlaySafeCard
3) IfRule (lives > 1) Then (PlayProbablySafeCard(0.6))
4) TellAnyoneAboutUsefulCard
5) IfRule (information < 4) Then (TellDispensable)
6) OsawaDiscard
7) DiscardOldestFirst
8) TellRandomly
9) DiscardRandomly
The value passed to the PlayProbablySafeCard rule deter-

mines what the rule considers an acceptable risk. The risk is
calculated by taking all possible cards that could occupy a
given position and calculating the subset of these which are
playable. This is then represented as a value between 0 and
1 (playable cards divided by possible cards). If this value is
greater than or equal to the threshold, the card is played.

C. VDB-paper

This our agent is our implementation of the best rule-based
agent described in [7].

1) IfRule (lives > 1) Then (PlayProbablySafeCard(.6)) Else
(PlaySafeCard)

2) DiscardProbablyUselessCard(1.0)
3) TellAnyoneAboutUsefulCard
4) TellAnyoneAboutUselessCard
5) TellMostInformation

6) DiscardProbablyUselessCard(0.0)
The DiscardProbablyUselessCard rule works under the same

principle as PlayProbablySafeCard, but rather than calculating
the playable cards, instead it calculates the cards that can be
safely discarded.

D. Flawed

Flawed represents a player who has a ‘flawed’ strategy,
the agent will play the most useful card even if this card is
unlikely to be playable in the current situation. Another agent
can prevent flawed losing lives by informing it of cards which
are playable, so it prefers to play these cards.

1) PlaySafeCard
2) PlayProbablySafeCard(0.25)
3) TellRandomly
4) OsawaDiscard
5) DiscardOldestFirst
6) DiscardRandomly

E. IGGI

The IGGI agent represents a competent known player. This
strategy is provided with the framework and was previously
described in [4].

1) PlayIfCertain
2) PlaySafeCard
3) TellAnyoneAboutUsefulCard
4) OsawaDiscard
5) DiscardOldestFirst

F. Handcrafted Agent

This agent is a previously unknown agent created using
the web interface[16]. The agent is a rule-based agent that
consisted of the following rules:

1) Tell Fives
2) Tell Playable Card Outer
3) Play Finesse
4) Discard Probably Useless Card (0.7)
5) Discard Oldest No Info First
6) Discard Randomly
7) Tell Randomly
The agent is designed to represent a relatively competent

strategy but has a flaw; the play rule used is designed to be
used as part of a ‘Finesse’ move (as described in [20]. This
agent was designed to represent an extreme case and scores
very poorly in mirror games.

G. Evolved Agent

This agent was a previously unknown agent that was created
by performing evolution on the rule-set provided with the
engine. This agent is meant to represent a competent but un-
known strategy. The agent is built using existing rules from the
framework and prioritises playing useful cards, and discarding
cards which it knows are no longer needed, followed by telling
players about useful cards.

VII. 2018 COMPETITION RESULTS & ANALYSIS

The results for the competition will be presented using
overall mean scores (rounded to two decimal places) and then
present the results broken down by the number of players per
game. For the mixed track, the performance per paired agent
is also shown.

A. Mirror Track

TABLE I
OVERALL RESULTS (MIRROR GAMES)

Agent Score
MonteCarloNN 20.57
NYUGameLab 17.52

thunder 1.27

TABLE II
TABLE TYPE STYLES (MIRROR GAMES)

Number of Players
2 3 4 5

MonteCarloNN 20.63 20.98 20.89 19.79
NYUGameLab 18.50 17.89 17.40 16.31

thunder 1.18 1.28 1.32 1.28

The results from the mirror track show a fairly large overall
difference between the two best performing agents (table I).
When the results are split by the number of players (table II
in the game, MonteCarloNN performs relatively consistently,
regardless of the number of players, with a minor drop-
off towards a higher number of players. The NYUGameLab
agent shows a more significant drop in performance in larger
games. This is consistent with the results presented in their
competition paper [19].

B. Mixed Track

TABLE III
AVERAGE SCORES OVER ALL PLAYED GAMES (MIXED TRACK)

Agent Score
MonteCarloOppNN 13.24

NYUGameLab 12.85
Thunder 5.12

TABLE IV
AVERAGE SCORE SPLIT BY NUMBER OF PLAYERS (MIXED TRACK)

Number of Players
2 3 4 5

MonteCarloOppNN 13.99 14.13 12.83 12.00
NYUGameLab 13.40 13.66 12.58 11.77

thunder 1.79 4.71 6.50 7.45

The results from the mixed track show a much smaller
difference in agent performance, table III shows that although
MonteCarloOppNN performed slightly better, there is less than

TABLE V
AVERAGE SCORE SPLIT BY PAIRED AGENT (MIXED TRACK)

Submitted Agent
MonteCarloOppNN NYUGameLab thunder

Flawed 3.48 3.31 1.71
IGGI 17.15 17.20 7.08

Internal 13.10 13.72 4.52
Evolved 18.71 18.06 7.68

Handcrafted 4.61 3.01 1.00
Piers 18.09 17.57 6.89

VDB-paper 17.54 17.10 6.93

a point between the agents. The thunder performed better on
this track than this mirror track. This is probably due to the
presence of relatively strong agents in the paired set. This is
also indicated by table IV, where the score obtained in 4 and
5 player games for thunder is much higher than the score
obtained in two player games. The two ‘intelligent’ agents
show relatively steady scores across the number of players.

When the results are split by paired agent (table V), the
results show that MonteCarloOppNN performed slightly better
than NYUGameLab with the unseen agents (Handcrafted and
evolved). The hand-crafted agent performs extremely poorly
with both agents, indicating that the agent may not be capable
of effective play. All three of the agents performed poorly
when paired with flawed. The ordering of the other agents
(IGGI, internal, piers and vdb-paper) are consistent with the
ordering present in the earlier research using the framework
[4].

VIII. CHANGES FOR 2019

The 2019 competition features some changes based on
feedback from last year’s entrants and the results presented
in this paper.

A. Sample Agent Selection

The sample agents being used for the 2019 competition are
the rule-based controllers presented in our first Hanabi paper.
These more accurately reflect the range of abilities represented
by the framework rules.

B. The learning track

As well as the two existing tracks, the 2019 competition
features a new track, named the ‘learning’ track. This track
provides the agents with the opportunity to adapt to the paired
agent’s strategies over multiple games. The track is similar
to the mixed track in that agents are paired against other
strategies.

A set of policies are placed into a pool, each policy is
assigned a label (for example, a single letter). There may be
duplicates of the a given policy within the pool, (for example,
both A and C might be IGGI). Before a game starts, the
evaluated agent is told the labels for each agent currently in
the game (for example, player 0 is A, player 1 is D, and so
on). These labels are consistent though-out the experiment.
The pool of agents, their selections and the deck orderings
used will be the same for all evaluated agents.

The strategies for the pool of agents will be sourced from the
framework as well as previously unseen agents. The evaluated
agents will not be re-created between games and therefore will
be able to collect information about agent playing patterns
between games.

This allows the evaluated agent more opportunities to learn
from player behaviours (as the agent will be able to collect
statistics over multiple games). The score for the agent will be
the mean score of all games played. This track is designed to
be similar to how human players learn to play the game (after
playing multiple games with the same individual, you begin to
learn how they play and can adjust your strategy accordingly).

C. Longer decision durations

The 2018 competition used turn durations of 40ms. This
was based on other AI competitions such as the GVG-AI
competition [12]. As Hanabi is turn-based, and real-time
moves are not required, the time per move has been increased
to 1 second to allow for more complex strategies. Longer
times were considered, but increasing the time budget per
move further would reduce the number of games that could
be evaluated given the time constraints of the competition and
available compute power.

IX. CONCLUSIONS AND FUTURE WORK

This paper outlined the format and motivation for the
Hanabi competition and outlined some of the existing work in
the area. Showing research both in rule-based techniques and
search-based strategies. The new ‘learning’ track provides a
greater opportunity for adapting to player styles over multiple
games.

The results from the 2018 competition show that the
difference between the two best performing agents is more
pronounced in mirror games than mixed games. In the mirror
games, the IS-MCTS search based agent was able to out-
perform a rule-based agent created using an evolutionary strat-
egy. The mixed track showed less of a difference between the
performance of the agents. Although the MonteCarloOppNN
agent features a basic form of player modelling and the rule-
based agent, this does not seem to have increased performance
when compared to the other entrants. This could be due selec-
tion of the paired agents or due to the modelling techniques
employed. The 2019 competition will use a wider range of
agents in the paired agent set.

There are multiple areas for future work; firstly, the work
presented by Bard, Foerster, Chandar, et al. [10] on the
creation of a framework for learning agents is an exciting area
of research. The creation of a ‘bridge’ to allow these agents to
be used in the competition framework would allow for learning
agents to be compared to search-based techniques. Given that
the competition framework’s architecture is designed around
message passing, this should be possible.

The Hanabi rule book contains three variations around the
use of a 6th suit (the multi-coloured suit). The suit can be
simply added to the game as another suit (meaning the game
now contains 6 complete suits), increasing the maximum score

to 30. In another variant, only one card of each rank in the suit
is added to the deck. This means the team cannot allow any
multi-coloured cards to be discarded if they wish to obtain a
perfect score. Finally, the multi-coloured suit can act as ‘wild’
when executing a tell suit action. This means fully identifying
a multi-coloured card requires 3 tell actions (one to tell value
and two contradictory tell suit actions). The cards still from
their own deck on the table when played. Introducing these
would show the adaptability and robustness of the agents;
however, this is not currently possible without changes to the
engine.

Another possible variation on the learning track would be to
allow offline learning by providing game logs from the paired
agents ahead of time. This would be implemented in a similar
way to the learning track (agents being given labels rather
than their names). This would give the agents more time to
process the behaviours of the players and could allow for more
complex modelling techniques.

ACKNOWLEDGMENT

This work was funded by the EPSRC Center for Doctoral
Training in Intelligent Games & Games Intelligence (IGGI)
[EP/L015846/1]

REFERENCES

[1] A. Bauza, Hanabi, boardgame, 2010.
[2] M. Johansson, M. Eladhari, J. McCoy, and H. Verha-

gen, “Social believability in games,” in Proceedings of
DIGRA, 2013, pp. 216–228.

[3] M. Eger, C. Martens, and M. A. Córdoba, “An inten-
tional ai for hanabi,” in Computational Intelligence and
Games (CIG), 2017 IEEE Conference on, IEEE, 2017,
pp. 68–75.

[4] J. Walton-Rivers, P. R. Williams, R. Bartle, D. Perez-
Liebana, and S. M. Lucas, “Evaluating and modelling
hanabi-playing agents,” in 2017 IEEE Congress on Evo-
lutionary Computation (CEC), 2017, pp. 1382–1389.
DOI: 10.1109/CEC.2017.7969465.

[5] J.-F. Baffier, M.-K. Chiu, Y. Diez, M. Korman, V.
Mitsou, A. van Renssen, M. Roeloffzen, and Y. Uno,
“Hanabi is np-hard, even for cheaters who look at
their cards,” Theoretical Computer Science, vol. 675,
pp. 43–55, 2017, ISSN: 0304-3975. DOI: 10.1016/j.tcs.
2017.02.024. [Online]. Available: http://dx.doi.org/10.
1016/j.tcs.2017.02.024.

[6] H. Osawa, “Solving hanabi: Estimating hands by op-
ponent’s actions in cooperative game with incomplete
information.,” in AAAI workshop: Computer Poker and
Imperfect Information, 2015, pp. 37–43.

[7] M. J. van den Bergh, A. Hommelberg, W. A. Kosters,
and F. M. Spieksma, “Aspects of the cooperative card
game hanabi,” in Benelux Conference on Artificial In-
telligence, Springer, 2016, pp. 93–105.

[8] C. Cox, J. De Silva, P. Deorsey, F. H. Kenter, T. Retter,
and J. Tobin, “How to make the perfect fireworks
display: Two strategies for hanabi,” Mathematics Mag-
azine, vol. 88, no. 5, pp. 323–336, 2015.

[9] B. Bouzy, “Playing hanabi near-optimally,” in Advances
in Computer Games, Springer, 2017, pp. 51–62.

[10] N. Bard, J. N. Foerster, S. Chandar, N. Burch, M. Lanc-
tot, H. F. Song, E. Parisotto, V. Dumoulin, S. Moitra,
E. Hughes, I. Dunning, S. Mourad, H. Larochelle, M. G.
Bellemare, and M. Bowling, The hanabi challenge: A
new frontier for ai research, 2019. arXiv: 1902.00506
[cs.LG].

[11] J. N. Foerster, F. Song, E. Hughes, N. Burch, I. Dun-
ning, S. Whiteson, M. Botvinick, and M. Bowling,
Bayesian action decoder for deep multi-agent reinforce-
ment learning, 2018. arXiv: 1811.01458 [cs.MA].

[12] D. Perez-Liebana, S. Samothrakis, J. Togelius, T.
Schaul, S. M. Lucas, A. Couëtoux, J. Lee, C.-U. Lim,
and T. Thompson, “The 2014 general video game play-
ing competition,” IEEE Transactions on Computational
Intelligence and AI in Games, vol. 8, no. 3, pp. 229–243,
2016.

[13] R. D. Gaina, D. Pérez-Liébana, and S. M. Lucas,
“General video game for 2 players: Framework and
competition,” in Computer Science and Electronic En-
gineering (CEEC), 2016 8th, IEEE, 2016, pp. 186–191.

[14] R. Prada, P. Lopes, J. Catarino, J. Quiterio, and F. S.
Melo, “The geometry friends game ai competition,”
in Computational Intelligence and Games (CIG), 2015
IEEE Conference on, IEEE, 2015, pp. 431–438.

[15] P. R. Williams, D. Perez-Liebana, and S. M. Lucas,
“Ms. pac-man versus ghost team cig 2016 competition,”
in Computational Intelligence and Games (CIG), 2016
IEEE Conference on, IEEE, 2016, pp. 1–8.

[16] J. Walton-Rivers and P. Williams. (2017). Hanabi agent
builder, [Online]. Available: https://hanabi.aiclash.com/
builder.html (visited on Feb. 15, 2019).

[17] J. Goodman, Re-determinizing information set monte
carlo tree search in hanabi, 2019. arXiv: 1902.06075
[cs.AI]. (visited on Jun. 24, 2019).

[18] P. I. Cowling, E. J. Powley, and D. Whitehouse, “Infor-
mation set monte carlo tree search,” IEEE Transactions
on Computational Intelligence and AI in Games, vol. 4,
no. 2, pp. 120–143, 2012.

[19] R. Canaan, H. Shen, R. Torrado, J. Togelius, A. Nealen,
and S. Menzel, “Evolving agents for the hanabi 2018
cig competition,” in 2018 IEEE Conference on Compu-
tational Intelligence and Games (CIG), 2018, pp. 1–8.
DOI: 10.1109/CIG.2018.8490449.

[20] B. Small. (2017). Finesse, bluff, reverse finesse - ex-
plained, [Online]. Available: https : / / boardgamegeek .
com / thread / 1309490 / finesse - bluff - reverse - finesse -
explained (visited on Jun. 24, 2019).

