7 research outputs found

    Superstrong and other large cardinals are never Laver indestructible

    Full text link
    Superstrong cardinals are never Laver indestructible. Similarly, almost huge cardinals, huge cardinals, superhuge cardinals, rank-into-rank cardinals, extendible cardinals, 1-extendible cardinals, 0-extendible cardinals, weakly superstrong cardinals, uplifting cardinals, pseudo-uplifting cardinals, superstrongly unfoldable cardinals, \Sigma_n-reflecting cardinals, \Sigma_n-correct cardinals and \Sigma_n-extendible cardinals (all for n>2) are never Laver indestructible. In fact, all these large cardinal properties are superdestructible: if \kappa\ exhibits any of them, with corresponding target \theta, then in any forcing extension arising from nontrivial strategically <\kappa-closed forcing Q in V_\theta, the cardinal \kappa\ will exhibit none of the large cardinal properties with target \theta\ or larger.Comment: 19 pages. Commentary concerning this article can be made at http://jdh.hamkins.org/superstrong-never-indestructible. Minor changes in v

    Laver and set theory

    Full text link
    In this commemorative article, the work of Richard Laver is surveyed in its full range and extent.Accepted manuscrip

    Inner models with large cardinal features usually obtained by forcing

    Full text link
    We construct a variety of inner models exhibiting features usually obtained by forcing over universes with large cardinals. For example, if there is a supercompact cardinal, then there is an inner model with a Laver indestructible supercompact cardinal. If there is a supercompact cardinal, then there is an inner model with a supercompact cardinal \kappa for which 2^\kappa=\kappa^+, another for which 2^\kappa=\kappa^++ and another in which the least strongly compact cardinal is supercompact. If there is a strongly compact cardinal, then there is an inner model with a strongly compact cardinal, for which the measurable cardinals are bounded below it and another inner model W with a strongly compact cardinal \kappa, such that H_{\kappa^+}^V\subseteq HOD^W. Similar facts hold for supercompact, measurable and strongly Ramsey cardinals. If a cardinal is supercompact up to a weakly iterable cardinal, then there is an inner model of the Proper Forcing Axiom and another inner model with a supercompact cardinal in which GCH+V=HOD holds. Under the same hypothesis, there is an inner model with level by level equivalence between strong compactness and supercompactness, and indeed, another in which there is level by level inequivalence between strong compactness and supercompactness. If a cardinal is strongly compact up to a weakly iterable cardinal, then there is an inner model in which the least measurable cardinal is strongly compact. If there is a weakly iterable limit \delta of <\delta-supercompact cardinals, then there is an inner model with a proper class of Laver-indestructible supercompact cardinals. We describe three general proof methods, which can be used to prove many similar results

    Virtual Set Theory:Taking the Blue Pill

    Get PDF

    Contributions to the theory of Large Cardinals through the method of Forcing

    Full text link
    [eng] The present dissertation is a contribution to the field of Mathematical Logic and, more particularly, to the subfield of Set Theory. Within Set theory, we are mainly concerned with the interactions between the largecardinal axioms and the method of Forcing. This is the line of research with a deeper impact in the subsequent configuration of modern Mathematics. This area has found many central applications in Topology [ST71][Tod89], Algebra [She74][MS94][DG85][Dug85], Analysis [Sol70] or Category Theory [AR94][Bag+15], among others. The dissertation is divided in two thematic blocks: In Block I we analyze the large-cardinal hierarchy between the first supercompact cardinal and Vopenka’s Principle (Part I). In Block II we make a contribution to Singular Cardinal Combinatorics (Part II and Part III). Specifically, in Part I we investigate the Identity Crisis phenomenon in the region comprised between the first supercompact cardinal and Vopenka’s Principle. As a result, we settle all the questions that were left open in [Bag12, §5]. Afterwards, we present a general theory of preservation of C(n)– extendible cardinals under class forcing iterations from which we derive many applications. In Part II and Part III we analyse the relationship between the Singular Cardinal Hypothesis (SCH) and other combinatorial principles, such as the tree property or the reflection of stationary sets. In Part II we generalize the main theorems of [FHS18] and [Sin16] and manage to weaken the largecardinal hypotheses necessary for Magidor-Shelah’s theorem [MS96]. Finally, in Part III we introduce the concept of _-Prikry forcing as a generalization of the classical notion of Prikry-type forcing. Subsequently we devise an abstract iteration scheme for this family of posets and, as an application, we prove the consistency of ZFC + ¬SCH_ + Refl([cat] La present tesi és una contribució a l’estudi de la Lògica Matemàtica i més particularment a la Teoria de Conjunts. Dins de la Teoria de Conjunts, la nostra àrea de recerca s’emmarca dins l’estudi de les interaccions entre els Axiomes de Grans Cardinals i el mètode de Forcing. Aquestes dues eines han tigut un impacte molt profund en la configuració de la matemàtica contemporànea com a conseqüència de la resolució de qüestions centrals en Topologia [ST71][Tod89], Àlgebra [She74][MS94][DG85][Dug85], Anàlisi Matemàtica [Sol70] o Teoria de Categories [AR94][Bag+15], entre d’altres. La tesi s’articula entorn a dos blocs temàtics. Al Bloc I analitzem la jerarquia de Grans Cardinals compresa entre el primer cardinal supercompacte i el Principi de Vopenka (Part I), mentre que al Bloc II estudiem alguns problemes de la Combinatòria Cardinal Singular (Part II i Part III). Més precisament, a la Part I investiguem el fenòmen de Crisi d’Identitat en la regió compresa entre el primer cardinal supercompacte i el Principi de Vopenka. Com a conseqüència d’aquesta anàlisi resolem totes les preguntes obertes de [Bag12, §5]. Posteriorment presentem una teoria general de preservació de cardinals C(n)–extensibles sota iteracions de longitud ORD, de la qual en derivem nombroses aplicacions. A la Part II i Part III analitzem la relació entre la Hipòtesi dels Cardinals Singulars (SCH) i altres principis combinatoris, tals com la Propietat de l’Arbre o la reflexió de conjunts estacionaris. A la Part II obtenim sengles generalitzacions dels teoremes principals de [FHS18] i [Sin16] i afeblim les hipòtesis necessàries perquè el teorema de Magidor-Shelah [MS96] siga cert. Finalment, a la Part III, introduïm el concepte de forcing _-Prikry com a generalització de la noció clàssica de forcing del tipus Prikry. Posteriorment dissenyem un esquema d’iteracions abstracte per aquesta família de forcings i, com a aplicació, derivem la consistència de ZFC + ¬SCH_ + Refl

    Sekvencijalne topologije na Bulovim algebrama

    No full text
    A priori limit operator>. maps sequence of a set X into a subset of X. There exists maximal topology on X such that for each sequence x there holds >.(x) C limx. The space obtained in such way is always sequential. If a priori limit operator each sequence x which satisfy lim sup x = lim inf x maps into {lim sup x}, then we obtain the sequential topology Ts.  If a priori 'limit operator maps each sequence x into {lim sup x}, we obtain topology denoted by aT. Properties of these topologies, in general, on class of Boolean algebras with condition (Ii) and on class of weakly-distributive b-cc algebras are investigated. Also, the relations between these classes and other classes of Boolean algebras are considered.A priori limit operator A svakom nizu elemenata skupa X dodeljuje neki podskup skupa X. Tada na skupu X postoji maksimalna topologija takva da za svaki niz x vazi A(X) c lim x. Tako dobijen prostor je uvek sekvencijalan. Ako a priori limit operator svakom nizu x koji zadovoljava uslov lim sup x = liminfx dodeljuje skup {limsupx} onda se, na gore opisan nacin, dobija tzv. sekvencijalna topologija Ts. Ako a priori limit operator svakom nizu x dodeljuje {lim sup x}, dobija se topologija oznacena sa OT.  Ispitivane su osobine ovih topologija, generalno, na klasi Bulovih algebri koje zadovoljavaju uslov (Ii) ina klasi slabo-distributivnih i b-cc algebri, kao i odnosi ovih klasa prema drugim klasama Bulovih algebri
    corecore