639 research outputs found

    Digital technologies for virtual recomposition : the case study of Serpotta stuccoes

    Get PDF
    The matter that lies beneath the smooth and shining surface of stuccoes of the Serpotta family, who used to work in Sicily from 1670 to 1730, has been thoroughly studied in previous papers, disclosing the deep, even if empirical, knowledge of materials science that guided the artists in creating their master- works. In this work the attention is focused on the solid perspective and on the scenographic sculpture by Giacomo Serpotta, who is acknowledged as the leading exponent of the School. The study deals with some particular works of the artist, the so-called "teatrini" (Toy Theater), made by him for the San Lorenzo Oratory in Palermo. On the basis of archive documents and previous analogical photogrammetric plotting, integrated with digital solutions and methodologies of computer- based technologies, the study investigates and interprets the geometric-formal genesis of the examined works of art, until the prototyping of the whole scenic apparatus.peer-reviewe

    A survey of techniques and technologies for web-based real-time interactive rendering

    Get PDF
    When exploring a virtual environment, realism depends mainly on two factors: realistic images and real-time feedback (motions, behaviour etc.). In this context, photo realism and physical validity of computer generated images required by emerging applications, such as advanced e-commerce, still impose major challenges in the area of rendering research whereas the complexity of lighting phenomena further requires powerful and predictable computing if time constraints must be attained. In this technical report we address the state-of-the-art on rendering, trying to put the focus on approaches, techniques and technologies that might enable real-time interactive web-based clientserver rendering systems. The focus is on the end-systems and not the networking technologies used to interconnect client(s) and server(s).Siemens; Bertelsmann mediaSystems GmbH; Eptron Multimedia; Instituto Politécnico do Porto - ISEP-IPP; Institute Laboratory for Mixed Realities at the Academy of Media Arts Cologne, LMR; MÀlardalen Real-Time Research Centre (MRTC) at MÀlardalen University in VÀsterÄs; Q-Systems

    Digital photogrammetry for visualisation in architecture and archaeology

    Get PDF
    Bibliography: leaves 117-125.The task of recording our physical heritage is of significant importance: our past cannot be divorced from the present and it plays an integral part in the shaping of our future. This applies not only to structures that are hundreds of years old, but relatively more recent architectural structures also require adequate documentation if they are to be preserved for future generations. In recording such structures, the traditional 2D methods are proving inadequate. It will be beneficial to conservationists, archaeologists, researchers, historians and students alike if accurate and extensive digital 3D models of archaeological structures can be generated. This thesis investigates a method of creating such models, using digital photogrammetry. Three different types of model were generated: 1. the simple CAD (Computer Aided Design) model; 2. an amalgamation of 3D line drawings; and 3. an accurate surface model of the building using DSMs (Digital Surface Models) and orthophotos

    Automated and adaptive geometry preparation for ar/vr-applications

    Get PDF
    Product visualization in AR/VR applications requires a largely manual process of data preparation. Previous publications focus on error-free triangulation or transformation of product structure data and display attributes for AR/VR applications. This paper focuses on the preparation of the required geometry data. In this context, a significant reduction in effort can be achieved through automation. The steps of geometry preparation are identified and examined concerning their automation potential. In addition, possible couplings of sub-steps are discussed. Based on these explanations, a structure for the geometry preparation process is proposed. With this structured preparation process, it becomes possible to consider the available computing power of the target platform during the geometry preparation. The number of objects to be rendered, the tessellation quality, and the level of detail (LOD) can be controlled by the automated choice of transformation parameters. Through this approach, tedious preparation tasks and iterative performance optimization can be avoided in the future, which also simplifies the integration of AR/VR applications into product development and use. A software tool is presented in which partial steps of the automatic preparation are already implemented. After an analysis of the product structure of a CAD file, the transformation is executed for each component. Functions implemented so far allow, for example, the selection of assemblies and parts based on filter options, the transformation of geometries in batch mode, the removal of certain details, and the creation of UV maps. Flexibility, transformation quality, and timesavings are described and discussed
    • 

    corecore