1,025 research outputs found

    Convolution-based neural attention with applications to sentiment classification

    Get PDF
    Neural attention mechanism has achieved many successes in various tasks in natural language processing. However, existing neural attention models based on a densely connected network are loosely related to the attention mechanism found in psychology and neuroscience. Motivated by the finding in neuroscience that human possesses the template-searching attention mechanism, we propose to use convolution operation to simulate attentions and give a mathematical explanation of our neural attention model. We then introduce a new network architecture, which combines a recurrent neural network with our convolution-based attention model and further stacks an attention-based neural model to build a hierarchical sentiment classification model. The experimental results show that our proposed models can capture salient parts of the text to improve the performance of sentiment classification at both the sentence level and the document level

    Cross-domain & In-domain Sentiment Analysis with Memory-based Deep Neural Networks

    Get PDF
    open4noCross-domain sentiment classifiers aim to predict the polarity, namely the sentiment orientation of target text documents, by reusing a knowledge model learned from a different source domain. Distinct domains are typically heterogeneous in language, so that transfer learning techniques are advisable to support knowledge transfer from source to target. Distributed word representations are able to capture hidden word relationships without supervision, even across domains. Deep neural networks with memory (MemDNN) have recently achieved the state-of-the-art performance in several NLP tasks, including cross-domain sentiment classifica- tion of large-scale data. The contribution of this work is the massive experimentations of novel outstanding MemDNN architectures, such as Gated Recurrent Unit (GRU) and Differentiable Neural Computer (DNC) both in cross-domain and in-domain sentiment classification by using the GloVe word embeddings. As far as we know, only GRU neural networks have been applied in cross-domain sentiment classification. Senti- ment classifiers based on these deep learning architectures are also assessed from the viewpoint of scalability and accuracy by gradually increasing the training set size, and showing also the effect of fine-tuning, an ex- plicit transfer learning mechanism, on cross-domain tasks. This work shows that MemDNN based classifiers improve the state-of-the-art on Amazon Reviews corpus with reference to document-level cross-domain sen- timent classification. On the same corpus, DNC outperforms previous approaches in the analysis of a very large in-domain configuration in both binary and fine-grained document sentiment classification. Finally, DNC achieves accuracy comparable with the state-of-the-art approaches on the Stanford Sentiment Treebank dataset in both binary and fine-grained single-sentence sentiment classification.openGianluca Moro, Andrea Pagliarani, Roberto Pasolini, Claudio SartoriGianluca Moro, Andrea Pagliarani, Roberto Pasolini, Claudio Sartor

    Mining Social Media and Structured Data in Urban Environmental Management to Develop Smart Cities

    Get PDF
    This research presented the deployment of data mining on social media and structured data in urban studies. We analyzed urban relocation, air quality and traffic parameters on multicity data as early work. We applied the data mining techniques of association rules, clustering and classification on urban legislative history. Results showed that data mining could produce meaningful knowledge to support urban management. We treated ordinances (local laws) and the tweets about them as indicators to assess urban policy and public opinion. Hence, we conducted ordinance and tweet mining including sentiment analysis of tweets. This part of the study focused on NYC with a goal of assessing how well it heads towards a smart city. We built domain-specific knowledge bases according to widely accepted smart city characteristics, incorporating commonsense knowledge sources for ordinance-tweet mapping. We developed decision support tools on multiple platforms using the knowledge discovered to guide urban management. Our research is a concrete step in harnessing the power of data mining in urban studies to enhance smart city development
    • …
    corecore