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Abstract

A primary goal of artificial intelligence is to understand human mental states. One direction 
aims at emotionally coherent and empathetic machine systems. As emotion is often indicated 
in natural language, emotion recognition from text has become an important research topic in 
the Natural Language Processing (NLP) community. For example, Emotion Recognition in 
Conversations (ERC) aims to identify the emotion of each utterance within a dialogue, which 
has attracted growing research interest due to its wide applications in real-world scenarios. 
In another line of work, interdisciplinary researchers put much effort into automatic mental 
health analysis, which devises NLP techniques to detect and analyse mental health conditions 
(e.g. depression, stress and bipolar). Particularly, mental health analysis from social media 
posts develops fast with the growing availability of large-scale data from social networks.

This thesis aims to push the boundary of the above two tasks from the perspective of rep-
resentation learning, which is the core of modern deep learning and NLP techniques. Firstly, 
we explore the application of contrastive learning. Though previous works mainly perform 
contrastive learning in an unsupervised manner, we focus on supervised contrastive learning 
as both tasks are modelled as text classification, and rich labelled data are available. For ERC, 
we propose a low-dimensional Supervised Cluster-level Contrastive Learning (SCCL). SCCL 
first reduces the high-dimensional contrastive learning space to a three-dimensional affect 
(emotion) representation space Valance-Arousal-Dominance (VAD), then performs cluster-
level contrastive learning to incorporate measurable emotion prototypes from a human-labelled 
VAD sentiment lexicon. For stress and depression detection, we also introduce contrastive 
learning to fully leverage label information for capturing class-specific features. Secondly, 
we propose new knowledge infusion methods to enhance the representations. For ERC, we 
leverage the pre-trained knowledge adapters to infuse linguistic and factual knowledge in a 
plug-in manner. To explicitly model the speakers’ mental states and enhance the mentali-
sation ability for stress and depression detection, we extract mental state knowledge from 
a commonsense knowledge base and infuse the knowledge explicitly to the representations. 
Then we propose a knowledge–aware mentalisation module to accordingly attend to the most 
relevant knowledge aspects.

Experiments show that our methods achieve new state-of-the-art results on three ERC 
and three stress and depression detection datasets. The analysis also proves that the VAD 
space is not only suitable for ERC but also interpretable, and VAD prototypes enhance the 
ERC performance and stabilise the training of SCCL. In addition, the pre-trained knowledge 
adapters benefit the performance of the utterance encoder and SCCL. Finally, factor-specific 
analysis and visualisation are performed to prove the effectiveness of all proposed modules. 
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Emotion Recognition

Emotion is defined as people’s mental states related to their thoughts, feelings and behaviours, 
which is one of the most important aspects of human life. Charles Darwin hypothesizes that 
emotion evolves along with natural selection and develops universal characteristics across 
races and cultures, and the above unified definition of emotion is available and widely stud-
ied in psychology. There are two types of models for emotions in the literature: categorical 
emotion models and dimensional emotion models. Categorical models classify emotions into 
fixed discrete categories, and dimensional models define emotions into multi-dimensional 
continuous vectors, where each dimension defines a corresponding aspect of emotions. In 
categorical emotion definitions, Ekman et al. [1] defined the six most common emotions: 
happiness, surprise, sadness, anger, disgust and fear. In addition, Plutchik et al. [2] fur-
ther defined eight primary emotion types and a wheel of emotions (see Figure 1.1), where 
each emotion is extended with fine-grained sub-types. In dimensional emotion definitions, 
a widely used model is Valance-Arousal-Dominance (VAD) [3], [4], where Valance reflects 
the pleasantness of a stimulus, Arousal reflects the intensity of emotion provoked by a stimu-
lus, and Dominance reflects the degree of control exerted by a stimulus [5]. The dimensional 
model maps emotions into a continuous spectrum, which facilitates the comparison of emo-
tions using vector computations such as similarity computation. The vectors also enable 
more fine-grained emotion classifications than categorical emotions, especially for semanti-
cally similar emotions such as happy and excited.

Emotion is often indicated in natural language. Therefore, NLP researchers have devoted 
much effort to emotion recognition from text [6]. However, early emotion recognition works 
mainly focus on detecting the emotions of a single sentence, which is inconvenient in real-
world scenarios such as during conversations. Therefore, Emotion Recognition in Conversa-
tions (ERC) task is proposed as a sub-field of emotion recognition, which aims at identifying 
the emotion of each utterance within a dialogue from pre-defined emotion categories  [7]. In 
recent years, ERC has attracted increasing research interest from the NLP community due to 
its wide applications. For example, ERC enables dialogue systems to generate emotionally 
coherent and empathetic responses [8], [9], which is often achieved by accurately recognis-
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Figure 1.1. Illustration of the wheel of emotions. The figure is adapted from Plutchik et al. [2].

ing the emotion expressed by the dialogue participants and using it as the cue for response 
generation. It has also been utilised for opinion mining from customer reviews [10], [11]. 
A common application scenario is analysing the emotions expressed by the customers about 
certain products in a chat with customer service robots. In addition, ERC is also applied to 
emotion-related social media analysis [12], [13], where people’s attitudes and feelings to-
wards a target topic or public event are mined from their posts and responses on social media, 
such as Twitter.

Dataset Conv.(Train/Val/Test) Utter.(Train/Val/Test) Utter./Conv

IEMOCAP [14] 100/20/31 4,778/980/1,622 49.2
MELD [15] 1,038/114/280 9,989/1,109/2,610 9.6
EmoryNLP [16] 713/99/85 9,934/1,344/1,328 14.1
DailyDialog [17] 11,118/1,000/1,000 87,170/8,069/7,740 7.9
SEMAINE [18] 63/32 4368/1430 69.3
EmotionLines [19] 720/80/200 10561/1178/2764 14.7
EmoContext [20] 30159/2754/5508 90477/8262/16524 3.0

Table 1.1. Statistics of the current mainstream ERC datasets.

The growing availability of public datasets with diverse characteristics also helps the de-
velopment of ERC. We list the current mainstream ERC datasets in Table 1.1, where Conv. 
and Utter. denote the conversation and utterance number. Utter./Conv denotes the average 
utterance number per dialogue. According to the statistics, these datasets cover a wide range 
of average utterance numbers from 3.0 to 69.3 per dialogue, which facilitates the evalua-
tion of many techniques, from context modelling to knowledge infusion. In addition, multi-
modal information (including acoustic, visual and textual information) is also provided in 
IEMOCAP, SEMAINE and MELD. The datasets also employ different emotion categorisa-
tion methods. For example, each utterance of SEMAINE is annotated with dimensional labels 
with four dimensions: Valance, Arousal, Expectancy (anticipation related factors) and Power 
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(Dominance), with each factor ranging from -1 to 1, while the rest of the datasets all utilise 
categorical emotion labels.

ERC introduces extra research challenges compared to vanilla emotion recognition, which 
are mainly derived from the complex nature of dialogues. We briefly summarise the main 
challenges of ERC as follows:

• Context Modelling A major challenge is the context modelling problem widely encoun-
tered in NLP. In a dialogue, the context usually refers to the dialogue history before the 
target utterance (sometimes also includes future conversations as future utterances can 
also bring cues to the emotion reasoning of the target utterance). The influence of the 
context on the target utterance’s emotion often contains two aspects: intra- and inter-
speaker dependencies [21]. Intra-speaker dependency models the emotional influence 
of the speaker’s psychological activities during the conversation. Inter-speaker depen-
dency deals with the emotional influence of other dialogue participants on the target 
utterance speaker. We provide an example dialogue in Figure 1.2 to further explain 
these dependencies, where solid lines show the influence of previous utterances on the 
emotion of the target utterance (marked blue). As shown, the dialogue history of the 
target utterance speaker reflects his happy mental state and the dialogue topic “go to the 
gym and jogging”, which directly influences the emotions of the target utterance. The 
utterance of the other dialogue participant also provides key information such as “Sally 
is their friend” and raises the positive sentiment of the target utterance.

I love jogging after lunch, it relaxes me. [happy]

Hmm, perhaps we can go with my friend Mary and Sally, 
they often go to the gym … [neutral]

Yeah, jogging with Sally! [happy]

Alright, will you turn off the radio first? That’s too much noise! [angry]

We can go to the gym. That’ll be a lot of fun! [excited]

Figure 1.2. An example dialogue with inter- and intra-speaker dependencies.

The usefulness of the context is also influenced by conversation distance and the infor-
mation richness of the target utterance. The local dialogue history usually plays a more 
important role in affecting the emotion, and distant dialogue history sometimes takes 
part in the emotion reasoning, such as when a distant utterance is referred to in the cur-
rent utterance. In addition, context information plays a more important role in detecting 
emotions of less informative target utterances. The utterance length often reflects the 
informativeness as short utterances (e.g. “OK!”, “Yes!” and “Why?”) tend to be less 
informative.
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• Multi-Party Conversations In multi-party conversations, more than two dialogue par-
ticipants are involved. The intra- and inter-speaker dependencies become more complex, 
which requires the ERC model to attend to the speaker information and track the status 
of each individual and multiple co-references. Another challenge is the modelling of 
the speaker personas, as each speaker has unique and subtle ways of emotional expres-
sion. For example, some individuals tend to use sarcasm in their language expressions, 
where the meaning of certain words varies as the emotion and tone change. Since neces-
sary backgrounds of dialogue participants are often missing from the dialogue, persona 
modelling is considered a useful technique for ERC.

• Emotion Dynamics While the emotions of a dialogue participant tend to stick to a par-
ticular status, external stimuli (usually from other dialogue participants) can disturb the 
consistency. A sudden change of the discussion topic can also lead to emotion dynamics. 
An example is presented in Figure 1.2, where dashed lines denote the sudden change of 
topic from “exercise at the gym” to “turn off the radio”. While emotion dynamics across 
sentiment polarity (e.g. change from happy to sad) is relatively easy to model, emotion 
dynamics within certain sentiment polarity (e.g. change from fear to sad) remains chal-
lenging for current ERC models. It requires a deeper understanding of the utterance 
semantics and more clear distinction of similar emotions.

1.1.2 Mental Health Analysis

Mental health conditions are defined as the conditions that affect a person’s thinking, feeling, 
behaviour or mood1. They pose serious public health problems worldwide. There are multi-
ple types of mental health conditions, including depression, schizophrenia, bipolar, bulimia 
and other psychiatric impairments2. According to the latest mental health report, nearly one 
billion people are suffering from at least one type of mental health conditions, which can lead 
to self-harm, physical disability and even suicide [22]. However, many of these patients do 
not receive timely psychiatric treatment to avoid these serious consequences. One reason is 
that mental health conditions lead people to stigma, which prevents them from seeking clin-
ical aids [23]. The COVID-19 pandemic also exacerbates this problem, with less availability 
of medical resources.

With social media becoming an integral part of our daily lives3, people continuously turn 
to social media platforms such as Twitter and Reddit to share their feelings and express their 
stress. Similarly, people with mental health conditions often share their mental states and seek 
help for their mental health issues on these platforms by posting texts, photos and other links, 
which makes related cues from these social media texts a rich and useful resource for mental 
health analysis. On the other hand, the reliability of mental health analysis based on social 
media is rigorously studied. Early works in psychology prove the relations between people 
with mental health conditions and their textual expressions, which is referred to as “depressive 

1https://www.nami.org/About-Mental-Illness/Mental-Health-Conditions
2https://www.nhs.uk/mental-health/conditions/
3https://wearesocial.com/uk/blog/2022/01/digital-2022/
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language” [24], [25]. Other works study various mental health conditions and summarise the 
specific linguistic features of their expressions [25]–[27]. Gkotsis et al. [28] collect large-
scale data from the social media Reddit and analyse the linguistic features associated with 
various kinds of mental disorders. Sentiment features are also proven relevant to mental 
health conditions. Based on the above observations, many works leverage NLP techniques 
for text-based mental health analysis on social media [29], [30]. Current methods mainly 
focus on mental conditions detection, which aims to detect mental conditions tendency from 
text posts and have achieved promising results.

In our work, we focus on early stress and depression detection on social media among 
various types of mental conditions for the following reasons:

• Stress is defined as the reaction to extant and future demands and pressures4 expressed 
commonly in our daily lives. Many studies have shown too much stress as an indica-
tive factor of mental health conditions [31], [32]. Therefore, stress detection provides 
valuable references for early diagnosis of mental health conditions.

• Depression remains a highly-untreated [33] but very threatening [34] mental health 
condition. Research has also shown that depression can manifest by the way people 
write [35], which facilitates text-based analysis. Depression is also widely researched 
in NLP-based mental health analysis. According to the statistics in Figure 1.3, 45% of 
mental health analysis focus on analysing depression, which denotes rich available data 
and many baseline works for comparison.

Figure 1.3. The percentages of different mental illnesses studied in mental health analysis. The figure is 
adapted from Zhang et al. [29].

• The applications of stress and depression detection are not limited to assisting early 
diagnosis. They can also be utilised in other scenarios, such as alleviating the ethical 
problems of chatbots [36]. For example, the medical chatbot based on GPT-3 is reported 

4https://www.apa.org/topics/stress
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to tell fictitious patients to commit suicide during the test5, which can lead to severe con-
sequences in practice. These medical chatbots must be able to detect stress or depression 
potential and carefully generate the proper response before actual deployment.

Stress and depression detection has many differences from other text classification tasks, 
and several key challenges remain:

• Representation Learning There are several challenges for representation learning:

– The quantity and quality of the annotated data are not guaranteed. Most of the 
representation learning methods rely on supervised learning, which is attributed 
to large-scale training datasets. However, mental health analysis still lacks an-
notated public datasets. Diagnosis of mental conditions also requires expertise, 
which is usually time-consuming and expensive. Nevertheless, many datasets are 
not labelled by experts or only weakly labelled (e.g. labelling posts from different 
sub-regions of the online forum as the topic), which brings bias and noise to the 
annotations. In addition, most people do not share their mental states online due to 
the sensitivity of mental health conditions, which leads to label imbalance in the 
annotated datasets.

– Short texts provide limited information. Some posts with depression or stress ten-
dencies are short, which requires the context to provide more information or other 
commonsense knowledge for the correct detection. Therefore, appropriate tech-
niques are needed for context modelling and knowledge incorporation.

– The reasoning process for stress and depression detection can be complex as people 
have various writing styles and semantic heterogeneity. Model performance can 
be bad when transferred to another dataset. Therefore, more effort is required to 
develop robust representation learning techniques for different data sources.

• Interpretability Successful stress and depression detection methods not only achieve 
high-quality classification but also understand the cause or explanatory factors of the 
mental health conditions, which provides clues for the decision-making of the clini-
cians. However, current methods primarily leverage deep learning techniques to learn 
distributed text representations. Though achieving high accuracy performance in classi-
fication, they lack interpretability in key features utilised for reasoning underlying some 
predictions. Therefore, another research direction is to open the black box and enhance 
the explainability of the deep learning models.

• Ethical Considerations As stress and depression detection use large-scale mental health-
related textual data, the relevant ethical concerns also grow increasingly. The concerns 
mainly involve the privacy and security of personal health data. Under the guidance of 
Bentan et al. [37], most previous works follow strict protocols to ensure that the data 
is appropriately applied in their experiments to protect the privacy and avoid further 

5https://artificialintelligence-news.com/2020/10/28/medical-chatbot-openai-gpt3-patient-kill-themselves/
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psychological distress. In addition, ethical approvals are required from human research 
ethics committees and institutional review boards for some sensitive data.

1.2 Research Questions

Emotion recognition in conversations and mental health analysis are practical techniques but 
still with many challenges. As deep learning algorithms become the state of the art in both 
tasks, enhancing the learnt textual representations grows to be the mainstream in the effort 
to improve model performance. Therefore, we also focus on developing helpful representa-
tion learning techniques for ERC and mental health analysis. In this thesis, we examine the 
effectiveness of two representation learning techniques: contrastive learning and knowledge 
infusion. Contrastive learning aims to enhance representation learning by using contrastive 
samples against each other to learn common features among data clusters and those that set 
apart each other. Knowledge infusion aims to incorporate task-related knowledge into the 
learnt representations explicitly or implicitly, which provides more information to the classi-
fication phase and facilitates reasoning on the representations. In the following sections, we 
detail each technique’s research questions, hypotheses and objectives.

1.2.1 Contrastive Learning

As a new but prosperous sub-field of representation learning, contrastive learning origi-
nates in Computer Vision (CV) [38]–[40]. Its application in NLP includes both supervised 
and unsupervised manner for enhancing multiple-level representations [41]–[43]. Unsuper-
vised contrastive learning usually constructs positive samples via data augmentation and ran-
domly samples negative pairs from other instances. Supervised Contrastive Learning (SCL) 
is mainly devised to enhance the traditional supervised text classification, which regards sam-
ples with the same label as positive pairs. Therefore, we hope to examine the effectiveness of 
SCL on the two proposed tasks and raise the following research question:

Research Question #1 Can supervised contrastive learning enhance the representations 
for ERC and stress and depression detection task? For ERC, a natural method is to employ 
SCL based on emotion labels. In SCL, the samples labelled with the same emotion are clus-
tered, and samples with different emotions are pushed apart. An expected benefit of SCL 
is that semantically similar emotions will be easier to distinguish. For example, previous 
works consistently report that a primary source of errors is the misclassifications between 
similar emotions (e.g. happy and excited) [44], as the expressions of these emotions in the 
utterances tend to be similar, which requires the awareness of more fine-grained features. 
With SCL pushing apart the representations, the model is forced to attend to the fine-grained 
difference between similar emotions, which benefits the final classification performance. A 
critical hypothesis of applying SCL is that the potential ambiguities between semantically 
similar emotions can be distinguished by the textual features learnt in the representations.
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Similar approaches and hypotheses for the stress and depression detection task are utilised 
for leveraging SCL. However, the effect is expected to be less significant, as stress and de-
pression detection is modelled as a binary classification task. To increase the interpretability 
of the mental health analysis models, we also adapt our detection model to a stress factor de-
tection task, which aims to analyse the causal factor of the stress and model it as a multi-class 
classification task. SCL is anticipated to perform well on the stress factor detection task.

1.2.2 Knowledge Infusion

Current representation learning methods for NLP leverage information from the input text 
and make inference based on the learnt embeddings. However, many NLP tasks rely on 
world knowledge to make correct reasoning. Therefore, many works incorporate appropriate 
knowledge sources and develop knowledge infusion methods to enrich the semantics of the 
representations and help the reasoning process. For example, large-scale knowledge graphs 
are constructed to store commonsense knowledge [45]–[47]. Graph neural networks [48] 
are devised to aggregate the knowledge for further infusion in tasks such as commonsense 
question answering, dialogue systems and text classifications. Implicit knowledge infusion 
is also widely explored. For example, Transformer-based pre-trained language models [49]–
[51] infuse knowledge stored in texts via pre-training and perform well in various downstream 
tasks. With the success of knowledge infusion methods in many tasks, we also explore their 
applications in ERC and mental health analysis and raise the following research question:

Research Question #2: Can knowledge infusion enrich the representations and benefit 
the reasoning process for ERC and stress and depression detection task? For ERC, there are 
many scenarios where extra knowledge is required for correct classification. For example, 
some utterances are short and lack context. In these cases, some commonsense knowledge, 
such as the relations between certain entities and emotions, can boost the emotion reasoning 
process. Extra knowledge also helps the model to understand particular scenarios such as 
sarcasm. Based on the observations, we explore knowledge infusion to ERC from both ex-
plicit and implicit perspectives. First, factual and linguistic knowledge is infused explicitly 
by incorporating pre-trained knowledge adapters [52], which effortlessly infuses knowledge 
in a plug-in manner without re-training. Both knowledge types are anticipated to aid ERC as 
factual knowledge can enrich the semantics, and linguistic knowledge can help analyse the 
utterance structures. We also introduce human-labelled VAD supervision signals for each 
emotion from a sentiment lexicon NRC-VAD [53] to the SCL method, which not only lowers 
the dimension of the contrastive learning space but also aims to facilitate the convergence of 
the clustering process for each emotion. The VAD knowledge is expected to guide under-
standing each emotion category’s sentiments.

For the stress and depression detection task, we consider the close relations between peo-
ple’s mental health conditions and mental states. We infuse mental state knowledge into 
the learnt representations. Specifically, we leverage COMET [54], a generative mental state 
knowledge source, to combine mental state knowledge at the sentence level. The utilised 
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COMET version is pre-trained on a large-scale mental state knowledge graph called ATOMIC 
[47]. Each sentence within the post is input to COMET and obtains knowledge from various 
pre-defined mental state aspects such as “intention of the speaker” and “effect on others”. 
The knowledge-enriched representation for each aspect is further reasoned and combined for 
classification. The infused mental state knowledge is expected to provide clues on modelling 
the speakers’ mental states, which facilitates the final diagnosis.

1.3 Contributions

1.3.1 Emotion Recognition in Conversations

A key challenge for ERC is distinguishing semantically similar emotions. Some works utilise 
SCL, which uses categorical emotion labels as supervision signals and contrasts in high-
dimensional semantic space. However, categorical labels fail to provide quantitative infor-
mation about emotions. ERC is also not equally dependent on all embedded features in 
the semantic space, which makes the high-dimensional SCL inefficient. To address these 
issues, we propose a novel low-dimensional Supervised Cluster-level Contrastive Learning 
(SCCL) method, which first reduces the high-dimensional SCL space to a three-dimensional 
affect representation space Valance-Arousal-Dominance, then performs cluster-level con-
trastive learning to incorporate measurable emotion prototypes from a sentiment lexicon. 
To help modelling the dialogue and enriching the context, we leverage the pre-trained knowl-
edge adapters to infuse linguistic and factual knowledge. Experiments show that our method 
achieves new state-of-the-art results with 69.81% on IEMOCAP, 65.7% on MELD, and 62.51% 
on DailyDialog datasets. The analysis also proves that the VAD space is not only suitable for 
ERC but also interpretable, with VAD prototypes enhancing its performance and stabilising 
the training of SCCL. In addition, the pre-trained knowledge adapters benefit the performance 
of the utterance encoder and SCCL.

1.3.2 Stress and Depression Detection

Stress and depression detection on social media aim to analyse stress and identify depres-
sion tendencies from social media posts, which assist in the early detection of mental health 
conditions. Existing methods mainly model the mental states of the post-speaker implicitly. 
They also lack the ability to mentalise for complex mental state reasoning. Besides, they 
are not designed to capture class-specific features explicitly. To resolve the above issues, 
we propose a mental state Knowledge–aware and Contrastive Network (KC-Net). In detail, 
we first extract mental state knowledge from a commonsense knowledge base COMET, and 
infuse the knowledge using Gated Recurrent Units (GRUs) to model the speaker’s mental 
states explicitly. Then we propose a knowledge–aware mentalisation module based on dot-
product attention to accordingly attend to the most relevant knowledge aspects. A supervised 
contrastive learning module is also utilised to fully leverage label information for capturing 
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class-specific features. We test the proposed methods on a depression detection dataset De-
pression_Mixed with 3165 Reddit and blog posts, a stress detection dataset Dreaddit with 
3553 Reddit posts, and a stress factors recognition dataset SAD with 6850 SMS-like mes-
sages. The experimental results show that our method achieves new state-of-the-art results 
on all datasets: 95.4% of F1 scores on Depression_Mixed, 83.5% on Dreaddit and 77.8% 
on SAD, with 2.07% average improvement. Factor-specific analysis and ablation study prove 
the effectiveness of all proposed modules, while UMAP analysis and case study visualise 
their mechanisms. We believe our work facilitates the detection and analysis of depression 
and stress on social media data, and shows potential for applications to other mental health 
conditions.

1.4 Thesis Structure

The thesis consists of five chapters. In Chapter #1 (Introduction, the current chapter), we 
introduce the importance of ERC and stress and depression detection and our motivation for 
conducting research on these tasks. Then we briefly describe our research questions, which 
mainly focus on adapting contrastive learning and knowledge infusion methods to enhance the 
representation learning process on these tasks. In addition, our contributions to the literature 
of both tasks in this thesis are summarised.

In Chapter #2 (Background), we introduce the necessary background information for this 
thesis. We first focus on the development of representation learning techniques. It starts from 
introducing state-of-the-art neural network architectures such as CNN, RNN and the Trans-
former, which are the basis of most modern representation learning methodologies. Then 
we describe the literature on three cutting-edge representation learning techniques that this 
thesis focuses on: Transformer-based pre-trained language models, contrastive learning and 
knowledge-enhanced methods. We also introduce current efforts to improve the representa-
tion learning of ERC and mental health analysis.

In Chapter #3 (Cluster-Level Contrastive Learning), we detail our proposed cluster-level 
contrastive learning method and its application in ERC. Firstly, we briefly summarise the new 
techniques developed: cluster-level contrastive learning and pre-trained knowledge adapters. 
Secondly, we explain the process of leveraging factual and linguistic knowledge with pre-
trained knowledge adapters in a plug-in manner. Thirdly, we introduce the features and build-
ing process of the NRC-VAD emotion lexicon and the detailed methodology of lowering the 
high dimension of vanilla SCL, combining NRC-VAD, and performing contrastive learning 
at the cluster level. Finally, we conduct various experiments to examine the effectiveness of 
the proposed methods, including performance comparison on ERC datasets, ablation study, 
comparison of different contrastive learning methods, visualisation, etc.

In Chapter #4 (Mental State Knowledge Infusion), we detail our proposed mental state 
knowledge infusion method and its application in stress and depression detection. Firstly, 
we briefly introduce the data pre-processing process. Secondly, the mental state knowledge 
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infusion process is introduced in detail, including the knowledge extraction process from the 
knowledge source, the knowledge infusion methods, and the automatic mentalisation process. 
Thirdly, we describe the application of SCL to enhance representation learning. Finally, we 
conduct experiments on a stress detection, depression detection and stress factor detection 
task to examine the effectiveness of the proposed model on different mental health analysis 
tasks. Other analyses such as error analysis, case study and visualisation are exerted to prove 
the effectiveness of each module further.

In Chapter #5 (Conclusion), we summarise our contributions of this thesis, analyse the 
limitations of current methods, and propose future research directions.

24



Chapter 2

Background

2.1 Representation Learning

Representation learning is a subset of machine learning approaches that aims to discover 
the representations required for feature detection from the data. Machine learning starts by 
designing features manually, but feature engineering was later replaced by representation 
learning techniques, where data is sent to the machine to learn representations on its own. 
Early works explicitly represent the features in each dimension of the representation, such as 
the bag-of-words representations in NLP. With the development of deep learning techniques, 
distributed representations have become the mainstream in artificial intelligence, which re-
duces the high-dimensional representations to low-dimensional dense vectors. Various types 
of neural network architectures are devised to compute the representations. During train-
ing, the representations are usually optimised in a supervised or unsupervised manner via 
back-propagation [55] using designed loss functions, such as the cross-entropy loss for text 
classification. For example, the cross-entropy loss for multi-class classification is as follows: 

ℒ𝐶𝐸 = −
|𝐶|

∑
𝑗=1

𝑌 𝑗𝑙𝑜𝑔 ̂𝑌 𝑗 (2.1)

where 𝑌 𝑗 and ̂𝑌 𝑗 are the 𝑗-th element of the prediction probability distribution 𝑌 ∈ ℝ|𝐶| and 
the one-hot label ̂𝑌𝑖 ∈ ℝ|𝐶| respectively, 𝐶 denotes the set of classes. This loss is widely 
utilised in text classification and generation tasks. Based on neural networks, many other 
techniques are proposed to enhance the representations under different circumstances, such 
as the recent contrastive learning methods [38], [41]. Progress in knowledge engineering also 
helps develop various knowledge-enhancing methods for learning representations. This sec-
tion briefly introduces these techniques and mainly focuses on state-of-the-art representation 
learning methodologies in NLP.

2.1.1 Neural Networks

Neural networks are inspired by the operations of the human brain and mimic how biological 
neurons signal to one another, which are a subset of machine learning methods and the core of 
deep learning. With the growing availability of computational resources, neural networks are 

25



leveraged for representation learning in most application scenarios of artificial intelligence 
(e.g. NLP, CV, recommendation systems) and achieve state-of-the-art performance.

Feed-Forward Neural Networks

The basic component of neural networks is called the node (also known as neuron). The 
computation of a single node is called the Perceptron, which is formalised as: 

𝑦 = 𝑓(𝑤⊤𝑥 + 𝑏) (2.2)

where 𝑥 ∈ ℝ𝑛 denotes the input signal usually from the target source such as text, image and 
music. 𝑤 ∈ ℝ𝑛 is a vector and 𝑏 is a scalar, which are learnable parameters. The fundamental 
type of neural network is the Feed-Forward Network (FFN), which is composed of multiple 
Perceptrons. It is formulated as: 

𝑦 = 𝑓(W𝑥 + b) (2.3)

where W ∈ ℝ𝑚×𝑛 is the weight matrix, and 𝑏 ∈ ℝ𝑚 is the bias vector. The FFN can naturally 
be extended to several layers to build deeper neural networks, which solves more complex 
problems. An example two-layer FFN is formalised as: 

𝑦 = 𝑓 ′(W′𝑓(W𝑥 + b) + b′) (2.4)

where 𝑦 ∈ ℝ𝑑 is the learnt representation, W ∈ ℝ𝑚×𝑛, W′ ∈ ℝ𝑑×𝑚 are the weight matrix 
of the two layers, and 𝑏 ∈ ℝ𝑚, 𝑏′ ∈ ℝ𝑑 are the corresponding bias vectors. The multi-layer 
FFN is able to solve classification problems with non-linear decision boundaries, such as the 
solution of the famous logic XOR operator. We provide an intuitive view of multi-layer FFN 
in Figure 2.1, where the input is connected to the output via three intermediate hidden layers. 
The input of each hidden layer is the output of the last layer, and the output of the final layer 
is used for classification.

In multi-layer FFNs, all input parts are equally transformed within each layer, and each 
node within one layer is connected to all nodes in the previous layer. These priors limit its 
applications in many real-world signals, such as sequence-based texts and two-dimensional 
images. Therefore, other architectures are developed to process more complex inputs, such 
as the three mainstream architectures widely used in NLP tasks: CNN, RNN and the Trans-
former.

In addition, initial NLP works represent words and sentences in real-valued vectors, where 
each binary dimension denotes the appearance of a word in the vocabulary. This method is 
known as one-hot representations. Considering the sparsity and high dimension problems of 
one-hot representations, another branch of work uses multi-layer FFNs to compute a dense 
representation vector for each word and trains the neural networks on a large-scale dataset. 
Representative works include “word2vec” [56], which trains the model to predict the context 
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Figure 2.1. Illustration of a three-layer FFN.

words within a context window. Another work “Glove” [57] aggregates and maps the word 
co-occurrence into a meaningful space where the representations of frequently co-occurred 
words are distantly similar. These learnt word representations are used as the foundation for 
sentence-level processing and perform well in numerous downstream NLP tasks. However, 
these word representations are static as the context of the word changes, which brings limita-
tions in many context-dependent scenarios.

Convolutional Neural Networks

Figure 2.2. Illustration of the text-based CNN structure. The figure is adapted from Kim et al [58].

Convolutional Neural Networks (CNN) were originally designed to extract two-dimensional 
image features [59], and later applied to the text modality [58] for sentence-level or document-
level representation learning. An example of CNN is presented in Figure 2.2. As illustrated, 
the text sequence is transferred to a word representation matrix w ∈ ℝ𝑠×𝑑 via an embed-
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ding look-up process, where 𝑠 is the sequence length, and 𝑑 is the dimension of the word 
representations. The look-up table usually comes from the pre-trained word embeddings pre-
viously introduced. Then the representation matrix walks through a set of filters, and each 
filter learns a phrase-level feature. Specifically, the 𝑖-th filter 𝑓𝑖 ∈ ℝ𝑑×ℎ𝑖 is a parameterised 
convolution kernel, where ℎ𝑖 is the corresponding window size. The computation of filter 𝑓𝑖

on 𝑘-th window is as follows: 

𝑟𝑘
𝑖 = 𝑔(𝑓𝑖w𝑘∶𝑘+ℎ𝑖−1 + 𝑏) (2.5)

where 𝑔 is the non-linear activation function, b is a scalar, and 𝑟𝑘
𝑖 is the feature. Then the 

window shifts in sequence and obtains a series of features. The features are concatenated to 
and pooled (such as max-pooling or mean-pooling) to get the representation:

𝑟𝑖 = [𝑟1
𝑖 ; 𝑟2

𝑖 ; ...; 𝑟𝑠−ℎ𝑖+1
𝑖 ]

̂𝑟𝑖 = 𝑃𝑜𝑜𝑙(𝑟𝑖)
(2.6)

where ; denotes the concatenation operation, the stride of the shift can also be adjusted. The 
output features are usually concatenated when multiple filters are introduced to get the final 
representations.

Recurrent Neural Networks

As sequence-based signals, natural language expression is influenced by previous history. 
Most inference and reasoning tasks over texts also depend closely on the context. However, 
this dependence is not modelled well by either FFN or CNN, which leads to the development 
of Recurrent Neural Networks (RNN). The idea behind RNN is to consider the history infor-
mation during the representation learning process of the current word/sentence. The basic 
architecture of RNN is presented in Figure 2.3.

Figure 2.3. Illustration of the basic RNN structure. The figure is adapted from the blog Understanding LSTM 
Networks.

As illustrated, the RNN performs computation sequentially on the text and accepts a mem-
ory of history from the output of the last time step. This structure corresponds to the nature 
of the text and allows the context information to pass through the sequence. Current most 
popular RNN models are two of its variants: Long-Short Term Memory (LSTM) and Gated 
Recurrent Unit (GRU) [60], where LSTM is designed to solve long-term dependencies and 

28

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/


gradient vanishing problems, and GRU consists of less training parameters. We introduce 
LSTM in detail as it is widely used in many NLP tasks.

Though the vanilla RNN structure performs well on many context-dependent tasks, it has 
two limitations: (a) The current task is not equally relevant to all history, while previous RNN 
structures handle different parts of the context information in a unified manner; (b) During 
the training process of RNN, the long distance of back-propagation through the time sequence 
easily leads to gradient vanishing problems. Considering the above problems, Hochreiter et 
al. [61] propose LSTM, which is depicted in Figure 2.4, where each green block denotes the 
LSTM at a time step. Each yellow block represents a neural network part of LSTM, and each 
pink block denotes an operation.

Figure 2.4. Illustration of the LSTM structure. The figure is adapted from the blog Understanding LSTM 
Networks.

LSTM introduces three gates to enable the model to memorise critical long-term contexts 
and remove redundant information, where each gate is responsible for an objective. First, a 
forget gate is proposed to determine the excluded information from memory. Specifically, the 
forget gate takes the hidden state of last time step ℎ𝑡−1 and the current input 𝑥𝑡 as input and 
computes the forget co-efficient as follows: 

𝑜𝑓 = 𝜎(𝑊𝑓[𝑥𝑡; ℎ𝑡−1] + 𝑏𝑓) (2.7)

where 𝑊𝑓 and 𝑏𝑓 are learnable parameters, 𝜎 denotes the sigmoid activation function. An-
other input gate is leveraged to determine the new information to be included in the memory. 
The input co-efficient 𝑜𝑖 is obtained via a similar computation process to Eqn. 2.7, and we 
filter the candidate vectors from the memory and inputs: 

𝑐𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐[𝑥𝑡; ℎ𝑡−1] + 𝑏𝑐) (2.8)

where 𝑊𝑐 and 𝑏𝑐 are learnable parameters and 𝑡𝑎𝑛ℎ denotes the Tanh activation function. 
Then we update the memory by considering both the forget and input gate, where the forget 
gate filters the hidden states of the previous time step and the input gate filters the candidate 
states: 

̂𝑐𝑡 = 𝑜𝑓 ∗ ̂𝑐𝑡−1 + 𝑜𝑖 ∗ 𝑐𝑡 (2.9)
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where ∗ denotes the element-wise multiplication operation. Finally, an output gate is devised 
to determine the aspects to be output at the current time step. The output co-efficient 𝑜𝑡 is 
computed via a similar procedure to Eqn. 2.7, and the final output is computed as follows: 

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ( ̂𝑐𝑡) (2.10)

In addition, Schuster et al. [62] notice that the current task can also benefit from future 
contexts. To introduce both past and future contextual information, they design two LSTMs 
to walk through the text sequence from left-to-right and right-to-left and concatenate both 
outputs at the corresponding time step, which is denoted as bi-directional LSTM: 

ℎ̂𝑡 = [
←
ℎ𝑡;

→
ℎ𝑡] (2.11)

where 
←
ℎ𝑡 and 

→
ℎ𝑡 denote the output of left-to-right and right-to-left LSTM at time step 𝑡. LSTM 

dynamically manages the short- and long-term memory and prevents the gradient vanishing 
problem, which makes it perform well compared to other RNN structures. It is widely utilised 
in many NLP tasks, such as text classification [63], [64], text generation [65], [66], machine 
translation [67], [68] and recommendation systems [69], [70].

The Transformer

Figure 2.5. Illustration of the Transformer structure. The figure is adapted from Vaswani et al. [71].

Pre-trained word representations are widely leveraged in most previous introduced neural 
networks to initialise the embedding look-up table. A significant limitation of these static 
embeddings is that their real-valued vectors remain the same in different contexts. However, 
the semantics of a word can alter as the context changes. For example, the word “apple” 
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represents a fruit in the sentence “An apple a day, keep the doctors away”, while it denotes a 
technology company in the sentence “Steve Jobs is the founding father of Apple”. Another 
limitation of CNN and RNN is that they only allow direct interaction of neighbouring sig-
nals. In CNN, direct aggregation is performed within the context window of the filter, while 
the reasoning between long-range signals requires multi-layer convolution. In RNN, mod-
elling long-range dependency relies on the message passing of hidden states, while crucial 
information can be lost during this process.

Considering the above limitations, Vaswani et al. [71] propose a novel neural network 
architecture called the Transformer, where the model overview is presented in Figure 2.5. As 
the Transformer was first applied to machine translation, it consists of an encoder and decoder 
parts. The encoder and decoder share a randomly initialised embedding look-up table, and 
a position embedding is directly summed with the word embeddings. Precisely, the position 
embeddings are calculated as follows:

𝑃𝐸(𝑝𝑜𝑠,2𝑖) = 𝑠𝑖𝑛(𝑝𝑜𝑠/100002𝑖/𝑑𝑚𝑜𝑑𝑒𝑙)

𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = 𝑐𝑜𝑠(𝑝𝑜𝑠/100002𝑖/𝑑𝑚𝑜𝑑𝑒𝑙)
(2.12)

where 𝑝𝑜𝑠 denotes the absolute position of the word, 𝑖 denotes the dimension, and 𝑑𝑚𝑜𝑑𝑒𝑙

denotes the dimension of the word representations.

The encoder consists of 𝑁 identical layers, where the critical component is the multi-head 
attention, which is based on the scaled dot-product attention. Their structures are illustrated 
in Figure 2.6.

Figure 2.6. Illustration of the scaled dot-product attention and multi-head attention. The figure is adapted 
from Vaswani et al. [71].

As shown in the left part of Figure 2.6, the scaled dot-product attention takes the query 
(Q), keys (K) and values (V) as input. First, a matrix multiplication operation is performed 
between Q and K, and the results are divided by √𝑑𝑞 (the scaling operation), where 𝑑𝑞 denotes 
the dimension of query and key vectors. For large values of 𝑑𝑞, the dot-product result also 
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becomes large in magnitude, which leads the softmax into regions with minimal gradients. 
The authors introduce the scaling operation to alleviate this problem. Then a softmax is 
computed to obtain the normalised weights on the values. Finally, the weights are summed 
on V to get the output. In practice, the operations are packed into matrices, where Q ∈ ℝ𝐵×𝑑𝑞 , 
K ∈ ℝ𝐵×𝑛×𝑑𝑞 and 𝑉 ∈ ℝ𝐵×𝑛×𝑑𝑣 . 𝐵 denotes the batch size, 𝑛 denotes the number of keys 
and values, and 𝑑𝑣 denotes the dimension of the value vectors. This process is formalised as:

𝑎𝑡𝑡(Q, K, V) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(Q⊤K
√𝑑𝑞

)V (2.13)

CNN walks the filters sequentially on the input signals, which aims to perceive features 
from different parts. Inspired by the success of CNN, the Transformer also employs a multi-
head attention mechanism, which enables the model to jointly attend to features from multiple 
representation subspaces at different positions. As shown in the right part of Figure 2.6, 
instead of computing a single dot-product attention with a 𝑑𝑚𝑜𝑑𝑒𝑙-dimensional keys (𝑑𝑚𝑜𝑑𝑒𝑙

denotes the dimension of the original input representations), ℎ heads are computed, where 
for each head, a set of FFN networks are used to linearly transform the Q,K,V pairs into a 𝑑𝑞, 
𝑑𝑞 and 𝑑𝑣 dimensions. Then ℎ attention operations are performed in parallel, which results 
in ℎ different outcomes. The outcomes are concatenated and linear projected as the final 
output. To facilitate the linear projection and reduce the computational cost, the dimensions 
are normally set to 𝑑𝑣 = 𝑑𝑚𝑜𝑑𝑒𝑙/ℎ. This process is formulated as follows:

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(Q, K, V) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, ..., ℎ𝑒𝑎𝑑ℎ)𝑊 𝑂

𝑤ℎ𝑒𝑟𝑒 ℎ𝑒𝑎𝑑𝑖 = 𝑎𝑡𝑡(Q𝑊 𝑄
𝑖 , K𝑊 𝐾

𝑖 , V𝑊 𝑉
𝑖 )

(2.14)

where 𝐶𝑜𝑛𝑐𝑎𝑡 denotes the concatenation operation, 𝑊 𝑂 ∈ ℝℎ𝑑𝑣×𝑑𝑚𝑜𝑑𝑒𝑙 , 𝑊 𝑄
𝑖 ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑞 , 

𝑊 𝐾
𝑖 ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑞 , 𝑊 𝑉

𝑖 ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑣 are learnable parameters.

In Transformer encoders, we employ the multi-head attention in a self-attention manner, 
where Q = K = V, and 𝑑𝑞 = 𝑑𝑣. The input of a layer comes from the output of the last layer, 
and each position in the current layer can attend to all positions in the last layer. In addition, 
residual connections (also known as skip connections) are widely used in CV and achieve 
outstanding performance [72]. It is proved especially effective in deep neural networks since 
it mitigates the degeneration problem as the layers increase and avoid the problem of gradient 
vanishing, which facilitates the training of models with deep layers. Therefore, the Trans-
former also introduces residual connections to the structure. For the multi-head attention, the 
residual connection is added as follows: 

𝑥𝑖 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚( ̂𝑥𝑖−1 + 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑( ̂𝑥𝑖−1, ̂𝑥𝑖−1, ̂𝑥𝑖−1)) (2.15)

where ̂𝑥𝑖−1 denotes the output of layer 𝑖−1, and 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 denotes the layer normalisation 
operation. Then the outputs pass through a point-wise FFN and another residual connection 
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to form the output of the 𝑖-th layer:

𝑥′
𝑖 = 𝑚𝑎𝑥(0, 𝑥𝑖𝑊1 + 𝑏1)𝑊2 + 𝑏2

̂𝑥𝑖 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑥𝑖 + 𝑥′
𝑖)

(2.16)

where 𝑊1, 𝑊2, 𝑏1, 𝑏2 are learnable parameters, and the output of 𝑁-th layer is used for 
decoding.

In the decoder part of the Transformer, the basic blocks are similar to their counterparts 
in the encoder, except that an interaction module is inserted between the multi-head atten-
tion and FFN modules, which works as the function of the typical encoder-decoder attention 
mechanisms in previous sequence-to-sequence models. Specifically, the module performs 
standard multi-head attention with the encoder output ̂𝑥𝑁 as the K, V, and the output of the 
last multi-head attention module 𝑦𝑖 in the decoder as Q, which is depicted as follows: 

𝑦′
𝑖 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑦𝑖 + 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑( ̂𝑥𝑁, ̂𝑥𝑁, 𝑦𝑖)) (2.17)

In the decoder, the leftward information flow is prohibited as the expected auto-regressive 
property. Therefore, in the scaled dot-product attention, all values in the right of the current 
query are masked with −∞ at the input of the softmax (see Figure 2.6).

Compared to CNN and RNN, a vital feature of the pure attention-based Transformer is that 
the representation of each position is allowed to interact with all positions directly, facilitating 
long-range reasoning and message passing. Multi-head attention also enables the model to 
focus on different input subspaces. These architectures equip the Transformer with more 
vital context modelling ability. Unlike RNN, which requires a sequential encoding process, 
the Transformers takes in and encodes the input at once, which makes it easy to deploy and 
optimise on the hardware (such as a GPU) to perform computation in parallel. The above 
advantages set the foundation for its application in broader scenarios and the later success of 
Transformer-based pre-trained language models.

Transformers-Based Pre-trained Language Models

Pre-trained Language Models (PLMs) [73] utilise appropriate neural networks and is trained 
on large-scale datasets in a supervised or unsupervised manner, which aims to learn valu-
able patterns and knowledge. Then the pre-trained weights are transferred to downstream 
tasks. One branch of works applies pre-trained representations as features [56], [57], [74], 
and design task-specific architectures for each downstream task. Another line of work in-
troduces minimal task-specific parameters and fine-tunes all pre-trained parameters on the 
downstream tasks [49], [51], [75]. The model architecture is also crucial for performance. 
Early works utilise the FFN to pre-train word representations [56], [57]. Other works con-
struct the model with the stack of RNN and obtain superior performance than the FFN [74], 
[76]. In recent years, the Transformer-based PLMs significantly outperform other neural ar-
chitectures in most NLP tasks [49], [51], [75], and become the mainstream in NLP research. 
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Significantly, the work “Pre-training of Deep Bidirectional Transformers for Language Un-
derstanding”, also known as BERT [49], is pioneering and most influential in this line of 
work, which we introduce in detail.

Most finetuning-based PLMs are pre-trained in an auto-regressive manner, where each to-
ken can only attend to previous tokens [75]. However, the negligence of leftward information 
flows limits many downstream tasks that rely on future contexts. Therefore, Devlin et al. [49] 
propose BERT, which builds the PLM with the Transformer encoder and attends to all con-
texts for each token. The main components of BERT are presented in Figure 2.7, where the 
same architecture is used for both stages, and the same pre-trained weights are leveraged to 
initialise for different downstream tasks. BERT is composed of 𝑁 stacked layers of standard 
Transformer encoder structures, and the input of each layer is the output of the last layer’s 
Transformer.

Figure 2.7. Illustration of the BERT pre-training and fine-tuning stage. The figure is adapted from Devlin et 
al. [49].

In the pre-training stage, each input sentence is tokenised and projected into word embed-
dings, where the look-up table is randomly initialised. Another set of embeddings is also ran-
domly initialised to embed the sentence segment. The input representation is constructed by 
summing the corresponding word, segment and position embeddings. Then the input embed-
dings pass through the encoder to obtain the word-level representations. BERT is pre-trained 
with two tasks: Masked Language Model (MLM) and Next Sentence Prediction (NSP). MLM 
is inspired by the Cloze task, where 15% of all tokens within the dataset are masked at random 
(the token is replaced by “[MASK]”). The model is trained to reconstruct the masked tokens 
and optimised with cross-entropy loss. However, there is a mismatch between pre-training 
and fine-tuning as the “[MASK]” token does not appear during fine-tuning. Therefore, the 
task replaces the chosen token with: (a) The “[MASK]” token 80% of the time; (b) A random 
token 10% of the time; (c) The unchanged token 10% of the time. The NSP task randomly 
selects a series of adjacent sentences A and B from the corpus. 50% of the sentences B is 
replaced with a random sentence in the corpus, and 50% of B is unchanged. The model is 
trained to predict whether the sentence B is the following sentence of A and optimised with 
binary cross entropy loss.
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In the fine-tuning stage, a task-specific output layer (usually an FFN with a small number 
of parameters) is put on top of the BERT output representations. All weights are fine-tuned on 
the target dataset. For example, in text classification tasks, a common approach is to build the 
output classification layer on top of the representations of the start-of-sentence token “[CLS]”. 
These fine-tuning strategies lead BERT to achieve state-of-the-art performance on 11 NLP 
tasks [49]. The outstanding performance of BERT also started a revolution in NLP research 
paradigms.

After BERT, there are many works to improve the PLMs. For example, RoBERTa [50] 
was pre-trained on more data and discards the NSP pre-training task. XLNet [51] introduces 
segment recurrence to enable lengthy text processing and re-introduces auto-regressive train-
ing to BERT while allowing future contexts. These approaches advance the performance of 
Transformer-based PLMs. PLMs have become the foundation of most NLP research, and our 
works depend on the strong representations learnt by these PLMs.

2.1.2 Contrastive Learning

In Sec. 2.1.1, we have introduced the mainstream neural networks utilised for representation 
learning. Most of these methods use task-specific loss functions (e.g. the cross entropy loss) 
to directly train on the target datasets or leverage the learnt representations from pre-trained 
word embeddings or PLMs to introduce extra information. The former requires large-scale 
data to learn decent representations while performing poorly in low-data resource scenarios. 
The pre-training process of modern large-scale Transformer-based PLMs requires computa-
tional resources that are not affordable for most institutes. For example, the powerful GPT-3 
model has 175 billion parameters and requires 800 GB of storage. A single training process 
costs 4.6 million dollars and 355 GPU years1. Though the weights of many PLMs have been 
released for free by organisations such as Huggingface2, the PLMs can still perform poorly in 
low-resource tasks without proper fine-tuning. Therefore, methodologies other than target-
oriented training are developed to enhance representation learning further.

One of the most successful methods is contrastive learning (CL). It is also inspired by 
human learning paradigms and shows promising results in many artificial intelligence areas 
(e.g. NLP, CV) under the deep learning framework. CL aims to enhance representation 
learning by using contrastive samples against each other to learn common features among data 
clusters and those that set apart each other. This basic idea makes CL a part of deep metric 
learning [77]. For implementation, CL designed a contrastive loss and trained a model to learn 
representations of input signals. Similar samples lie closer in the representation space while 
different samples fall apart. Specifically, for two positive pairs and their representations 𝑧𝑖

and 𝑧𝑗 within the batch 𝑁 where the rest are negative pairs, the contrastive loss is implemented 
as follows: 

ℒ𝑖,𝑗 = −𝑙𝑜𝑔
𝑒𝑥𝑝(𝑠𝑖𝑚(𝑧𝑖, 𝑧𝑗)/𝜏)

Σ𝑁
𝑘=1𝑒𝑥𝑝(𝑠𝑖𝑚(𝑧𝑖, 𝑧𝑘)/𝜏)

(𝑘 ≠ 𝑖) (2.18)

1https://en.wikipedia.org/wiki/GPT-3
2https://huggingface.co/
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where 𝑠𝑖𝑚() is the similarity metric function which is usually the dot product operation, 𝜏 is 
a pre-defined temperature co-efficient. This loss is a revised version of the cross entropy loss 
and is minimised to encode positive samples in similar representations and negative samples 
in different representations. The critical process of CL is mining positive example pairs, 
which can be implemented in a supervised or unsupervised manner. Therefore, CL is divided 
into Unsupervised Contrastive Learning (UCL) and supervised contrastive learning, where 
UCL mainly constructs positive pairs via various data augmentation methods and SCL mines 
positive pairs according to the existing labels of the data. We introduce both methods in detail 
in the following two sections.

Unsupervised Contrastive Learning

Unsupervised Contrastive Learning (UCL) aims to construct training samples in an unsuper-
vised manner. Each sample has only one positive pair obtained by data augmentation, and 
negative pairs are randomly sampled from the dataset. CL is trained with the loss function in 
Eqn. 2.18. UCL was first applied to CV. A representative work is SimCLR [38], which se-
quentially applies three stochastic data augmentation methods to obtain the positive pair: (a) 
Random cropping followed by resizing back to the original size; (b) Random colour distor-
tion; (c) Random Gaussian blur. The thorough experiments on image classification prove the 
effectiveness of UCL. Further analysis shows several key properties that benefit the following 
works: (a) Composition of data augmentation operation is crucial for learning good repre-
sentations; (b) UCL needs stronger data augmentation than normal supervised learning; (c) 
UCL benefits more from larger models; (d) CL benefits more from larger batch sizes and more 
training. Based on SimCLR, more works improve UCL on CV from different perspectives. 
For example, Li et al. [39] propose contrastive clustering to produce clustering-favourite rep-
resentations, which regard each classification class as a cluster and obtain positive pairs from 
two different data augmentation methods. Then contrastive learning is performed on both 
instance and cluster levels. There are also many attempts to reduce the high-dimensional 
UCL space to incorporate prior knowledge [78], [79], boost semi-supervised learning [80] 
and visualise the results [81].

With a similar training framework in NLP, UCL is mainly devised to enforce the sen-
tence representations of PLMs to distinguish similar semantics. A representative work is 
SimCSE [41], where the main structure is presented in Figure 2.8. The left part denotes the 
structure for the unsupervised setting, and the right part denotes the structure for the super-
vised setting. As shown in the left part, the unsupervised SimCSE simply passes the same 
sentence to the encoder twice with the standard dropout operation. These two different em-
beddings are used as positive pairs. It is viewed as a minimal form of data augmentation as 
the positive pairs only differ in dropout masks. Other samples within the same mini-batch 
are regarded as negative pairs. CL is trained with the loss function in Eqn. 2.18. The au-
thors compare the dropout operation with other data augmentation techniques such as crop, 
word deletion and replacement on the semantic textual similarity task, and the result proves 
the effectiveness of the dropout operation. Further analysis explains that SimCSE can keep a 
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Figure 2.8. Illustration of the SimCSE for contrastive learning. The figure is adapted from Gao et al. [41].

steady alignment thanks to the use of dropout noise, which does not change the semantics of 
the sentence.

Figure 2.9. Illustration of the four data augmentation methods for contrastive learning. The figure is adapted 
from Yan et al. [42].

Later UCL works mainly focus on developing better techniques to obtain positive pairs. 
Apart from dropout, Yan et al. [42] develop several new data augmentation methods, as pre-
sented in Figure 2.9: (a) adversarial attack: generate adversarial samples by adding a worst-
case perturbation to the input sample; (b) token shuffling: randomly shuffle the token orders 
of the input sentence; (c) cut-off: randomly discard some tokens, feature dimensions or token 
spans in the feature matrix. Giorgi et al. [82] did not use the data augmentation methods but 
regarded textual segments sampled from nearby in the same document as positive pairs. Kim 
et al. [83] trained a Siamese model to construct positive pairs. However, the copy of PLMs 
such as BERT leads to more costs in model storage and computation.
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Supervised Contrastive Learning

Supervised contrastive learning introduces supervised learning to self-supervised contrastive 
methods by leveraging label information. A key difference from UCL is that several samples 
instead of one are considered positive pairs in SCL. An example in CV is shown in Figure 
2.10, where the UCL contrasts a single positive pair while SCL can have multiple positive 
pairs from the same class for each sample. Self-supervised contrastive learning constructs a 
single positive pair from each target sample (also known as “anchor” in CV) and randomly 
samples negative pairs, while SCL contrasts the sets of all samples with the same label to the 
target as positive pairs and those with different labels as negative pairs.

Figure 2.10. The training of self-supervised (unsupervised) and supervised contrastive learning. The figure is 
adapted from Khosla et al. [40].

With this expansion, the loss of SCL needs to be generalised to arbitrary numbers of pos-
itive pairs. One of the widely used modifications is as follows: 

ℒ𝑆𝐶𝐿
𝑖 = − 1

|𝑃(𝑖)|
∑

𝑝∈𝑃(𝑖)
𝑙𝑜𝑔

𝑠𝑖𝑚(𝑧𝑖, 𝑧𝑗)/𝜏
Σ𝑎∈𝐴(𝑖)𝑒𝑥𝑝(𝑠𝑖𝑚(𝑧𝑖, 𝑧𝑎)/𝜏)

(2.19)

where 𝐴(𝑖) is the sampled mini-batch, and 𝑃(𝑖) = {𝑝|𝑝 ∈ 𝐴(𝑖); 𝑦𝑝 = 𝑦𝑖} where 𝑦𝑖 denotes 
the label of 𝑖-th sample. Some other works also put the 𝑙𝑜𝑔 function outside: 

ℒ𝑆𝐶𝐿
𝑖 = −𝑙𝑜𝑔 ( 1

|𝑃 (𝑖)|
∑

𝑝∈𝑃(𝑖)

𝑠𝑖𝑚(𝑧𝑖, 𝑧𝑗)/𝜏
Σ𝑎∈𝐴(𝑖)𝑒𝑥𝑝(𝑠𝑖𝑚(𝑧𝑖, 𝑧𝑎)/𝜏)

) (2.20)

In CV, experiments show that SCL performs better than traditional cross entropy loss in 
applications such as image classification [40]. In NLP, an early SCL work is still SimCSE, 
where the structure is presented in the right part of Figure 2.8. As illustrated, SimCSE incor-
porates supervision signals from natural language inference datasets, which predicts whether 
the relationship between two sentences is entailment, contradiction or neutral. During train-
ing, the entailment sentences are used as positive pairs, and the contradiction and neutral pairs 
are used as negative pairs. The experiments show the advantage of adding these supervision 
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signals over the unsupervised SimCSE model.

SCL is also successfully applied to fine-tuning PLMs. Gunel et al. [43] combine an SCL 
loss to the cross entropy loss during the fine-tuning of BERT on the single sentence and 
sentence-pair classification tasks. For single-sentence classification tasks, the sentences with 
the same label are considered positive pairs (such as the samples with the sentiment “pos-
itive” in sentiment analysis). In sentence-pair classification tasks, two sentences 𝑠1 and 𝑠2

are concatenated: 𝑠 = [𝐶𝐿𝑆; 𝑠1; 𝑆𝐸𝑃 ; 𝑠2], where 𝐶𝐿𝑆 is the start-of-sentence token and 
𝑆𝐸𝑃 is the separation token in BERT. 𝑠 is input to BERT, and sentences with correct rela-
tionships are considered positive pairs. During training, the SCL loss is combined with the 
cross entropy loss in a multi-task learning manner: 

ℒ = 𝛼ℒ𝐶𝐸 + (1 − 𝛼)ℒ𝑆𝐶𝐿 (2.21)

where 𝛼 is the co-efficient that controls the weights of the two losses, ℒ𝐶𝐸 is the cross entropy 
loss and ℒ𝑆𝐶𝐿 is the SCL loss. This multi-task learning paradigm enables SCL to enforce 
the traditional cross entropy classification process and is extended to many other tasks. In 
ERC, Li et al. [84] utilise SCL to distinguish sentences and emotions with similar semantics, 
and also combine the SCL loss with an utterance reconstruction loss in a multi-task learn-
ing setting. Alhuzali and Ananiadou [85] also introduce a centre loss apart from the triplet 
loss (a variation of SCL loss), which pushes close samples from the same class towards the 
corresponding centre and combines both intra- and inter-class variations into the emotion 
classification loss function.

2.1.3 Knowledge-Enhanced Methods

Most of the inferences and decisions humans make rely on previous experiences and knowl-
edge. The knowledge is usually expected to be possessed by most people in their daily com-
munications [86], and helps them make sense of everyday situations. For example, in the sce-
narios of daily dialogue, one participant could ask: “Where is the headquarter of Apple?”. It 
requires the critical commonsense knowledge that “Apple is a technology company” and “Ap-
ple Park is the headquarters of Apple Inc., located in Cupertino, California, United States”3

to answer the question correctly. Similarly, lack of knowledge often presents a challenge 
for many NLP tasks, especially when not all necessary information is available in the pro-
cessed text. Therefore, enhancing representation learning with external knowledge has been 
a primary focus of the NLP research community. Two crucial aspects of related research are 
knowledge sources and knowledge infusion methods. Research on knowledge sources mainly 
focuses on constructing knowledge structures suitable to combine in representation learning, 
whereas the representative works include knowledge graphs, generative knowledge sources, 
sentiment lexicons, etc. Research on knowledge infusion tries to develop appropriate meth-
ods to infuse knowledge, where the NLP models can quickly leverage them for inference. 
Current works either infuse knowledge explicitly or implicitly. In the following sections, we 

3https://en.wikipedia.org/wiki/Apple_Park
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introduce state-of-the-art methods in these two directions separately.

Knowledge Sources

One of the most important types of knowledge is commonsense knowledge. Obvious ex-
amples of their applications include commonsense question answering, dialogue systems, 
natural language inference and text generation [87]. Many text classification tasks, such as 
sentiment analysis, require external knowledge to understand the context and special seman-
tics, such as irony. A good commonsense knowledge source for NLP requires representing 
commonsense knowledge in a machine-readable form. Considering the features of common-
sense knowledge, a natural choice is to store it in the triplet form, where a pre-defined relation 
connects two entities. For example, the knowledge that “David Bowie is an English singer” is 
represented in a triplet <David Bowie, occupation, singer> and <David Bowie, nationality, 
English>. A knowledge graph is constructed with the entities as nodes and the pre-defined 
relations as edges. Representative works in this line include ConceptNet [45], ATOMIC [47] 
and WebChild [88]. We list several knowledge graphs widely used in various tasks in Figure 
2.11, where “Relations” denotes the pre-defined relation types in the knowledge source. Ex-
cept on the phrase level, there are also knowledge graphs built on other granularity, such as 
the sentence-level knowledge graph CICERO [89], which provides commonsense knowledge 
for dialogue-level reasoning and inference.

Figure 2.11. A brief summary of commonsense knowledge graphs. The figure is adapted from Ilievski et 
al. [90].

As an example, we explain the building process of ConceptNet [45] in detail. Concept-
Net is a knowledge graph that connects concepts (natural language words and phrases) with 
weighted edges (assertions), which is expected to include world knowledge from many dif-
ferent sources in multiple languages. It represent relations between concepts such as “A net
is used for catching fish” and “leaves is a form of the word leaf ”. Specifically, ConceptNet 
5.5 is built from the following sources: Facts from Open Mind Common Sense (OMCS) [46] 
and its sister projects in other languages, Wiktionary in multiple languages, the multilingual 
WordNet [91], the Japanese dictionary JMDict [92], the knowledge base OpenCyc [93], and 
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a subset of the factual knowledge base DBPedia [94].

ConceptNet 5.5 aligns the knowledge sources on 36 kinds of relation, which are listed as 
follows: Antonym, DistinctFrom, EtymologicallyRelatedTo, LocatedNear, RelatedTo, Simi-
larTo, Synonym, AtLocation, CapableOf, Causes, CausesDesire, CreatedBy, DefinedAs, De-
rivedFrom, Desires, Entails, ExternalURL, FormOf, HasA, HasContext, HasFirstSubevent, 
HasLastSubevent, HasPrerequisite, HasProperty, InstanceOf, IsA, MadeOf, MannerOf, Mo-
tivatedByGoal, ObstructedBy, PartOf, ReceivesAction, SenseOf, SymbolOf, and UsedFor.

All the above methods of constructing knowledge graphs are extractive and store knowl-
edge with canonical templates, which lack flexibility and do not include a large amount of 
world knowledge in natural language. Therefore, Bosselut et al. [54] explore the development 
of generative commonsense knowledge models. The proposed method COMET leverages ex-
isting commonsense knowledge graphs as the seeds and trains a Transformer-based PLM on 
them, which aims to enable the PLM to adapt its representations to knowledge generation and 
produce novel knowledge triplets in natural language.

Figure 2.12. The input token setup for the two knowledge sources. The figure is adapted from Bosselut et 
al. [54].

Specifically, COMET leverages the GPT-2 [75] language model as the generative model 
and trains the model on two knowledge graphs: ConceptNet and ATOMIC [47]. As the input 
to the model, each triplet is concatenated to a sequence of words, as shown in Figure 2.12. For 
ATOMIC and relation-only input of ConceptNet, the first phrase is followed by the “[MASK]” 
token, then followed by the relation token (such as xIntent) and the second phrase. Since the 
relation of some items in ConceptNet has more than one token, another input format is used 
where two “[MASK]” tokens are used between the first phrase and the relation, and another 
“[MASK]” is asserted between the relation and the second phrase.

During training, the COMET learns to generate the second phrase 𝑒2 of the triplet given 
the first phrase 𝑒1 and the relation token 𝑟. Specifically, with the concatenated tokens of 𝑒1

and 𝑟 as in Figure 2.12, the model is trained to generate all tokens of 𝑒2. COMET is optimised 
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to maximise the conditional log-likelihood of predicting 𝑒2: 

ℒ = −
|𝑒1|+|𝑟|+|𝑒2|

∑
|𝑒1|+|𝑟|

𝑙𝑜𝑔 𝑃 (𝑥𝑡|𝑥≤𝑡) (2.22)

where |𝑒1|, |𝑟| and |𝑒2| are the number of tokens in 𝑒1, 𝑟 and 𝑒2. Empirical studies on the qual-
ity, novelty and diversity of the newly produced triplets show that COMET can generate high-
quality commonsense knowledge since human evaluation proves that 77.5% of ATOMIC’s 
generated tuples and 91.7% of ConceptNet’s generated tuples are correct. The success of gen-
erative commonsense knowledge sources facilitates the discovery of new knowledge and the 
construction of new knowledge graphs. It also inspires more ways of incorporating knowl-
edge into the representations.

The above-introduced knowledge sources mainly consist of factual knowledge for com-
mon use in NLP tasks. However, other knowledge sources also provide common sense for 
certain aspects. As our works mainly focus on emotion-related tasks, we introduce knowl-
edge sources specially designed to facilitate sentiment analysis, known as sentiment lexicons. 
The most widely used sentiment lexicons are SenticNet [95] and SenticWordNet [96]. Sen-
ticWordNet is a lexical resource where each WordNet [91] synset is assigned three scores 
ranging from 0 to 1. These scores show how objective, positive and negative the terms in 
synset are. The three scores are derived from the results of a committee of ternary classifiers.

SenticWordNet is widely utilised in sentiment-related tasks but only provides sentiment 
polarity at the syntactical level and contains much noise. Considering these limitations, Cam-
bria et al.  [95] develop SenticNet, which aims to construct a collection of sentiment polarity 
for phrase-level concepts such as “look attractive” and “good deal”. They discard concepts 
without strong emotions and only associate each concept with one value 𝑝𝑐 ranging from -1 
to 1, quantifying its sentiment polarity from very negative to very positive. The computing 
of the scores is mainly based on the Hourglass of Emotions [97], where four affective dimen-
sions are considered: Pleasantness (Plsn), Attention (Attn), Sensitivity (Snst) and Aptitude 
(Apti). Each dimension is further defined by six activation levels (also known as sentic lev-
els), which reflect the intensity of the expressed/perceived emotion. SenticNet computes 𝑝𝑐

as follows: 
𝑝𝑐 = |𝑃 𝑙𝑠𝑛(𝑐)| + |𝐴𝑡𝑡𝑛(𝑐)| − |𝑆𝑛𝑠𝑡(𝑐)| + |𝐴𝑝𝑡𝑖(𝑐)|

9
(2.23)

Another widely leveraged knowledge type is linguistic knowledge. It mainly refers to 
the knowledge of the grammatical structure of sentences, which establishes the relationships 
between headwords and words that modify the headwords. An example is shown in Figure 
2.13. According to the example, the terms below the sentence denote the part-of-speech tag 
for each word. The arrow from the word “control” to the word “good” indicates that “good” 
modifies “control”, and the label “amod” describes the exact nature of the dependency (e.g. 
“amod” denotes “good” works as the adjective of “control”).

Linguistic knowledge helps the model understand the sentence structures and is helpful in 
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Figure 2.13. The example of a dependency parsing tree of a short sentence.

representation learning for many downstream NLP tasks such as entity typing and question 
answering [52]. The primary resources of linguistic knowledge are the human-labelled tree-
banks, such as the famous Penn Treebank4. With the fast development of the basic NLP tech-
nique dependency parsing, Chen et al. [98] first utilise neural networks to train on the large-
scale treebanks and obtain high accuracy in labelling linguistic knowledge. Their research is 
developed as the widely used dependency parsing tool called Stanford Parser5. Nowadays, 
researchers do not access linguistic knowledge directly from the treebanks but run the depen-
dency parser on the target text to obtain the parsing tree, which is easy to implement.

Knowledge Infusion Methods

Developing appropriate knowledge infusion methods is a crucial challenge of leveraging ex-
ternal knowledge to aid representation learning. Wrong knowledge infusion methods intro-
duce noise to the model and affect the learnt representations. Therefore, there have been many 
efforts in knowledge infusion algorithms, roughly divided into explicit knowledge infusion, 
knowledge adapters, pretraining-based knowledge infusion and finetuning-based knowledge 
infusion.

Figure 2.14. An example of knowledge graphs.

Explicit knowledge infusion designs extra modules for learning representations for the 
knowledge and combines them with the text representations. A representative line of work is 
the knowledge graph embedding methods [99], which aims to embed components of a knowl-

4https://catalog.ldc.upenn.edu/docs/LDC95T7/cl93.html
5https://nlp.stanford.edu/software/lex-parser.html

43

https://catalog.ldc.upenn.edu/docs/LDC95T7/cl93.html
https://nlp.stanford.edu/software/lex-parser.html


edge graph, including entities and relations, into continuous vector spaces, as the example of 
a knowledge graph shown in Figure 2.14. Considering its graph structure, a popular approach 
is utilising Graph Neural Networks (GNNs) to encode the graph. The intuition is regarding 
each entity as a node and each relation as an edge, then learning the representation for each 
node. Many GNN structures are effective for knowledge graph embedding, such as graph 
convolution networks [100] and Graph Attention Networks (GAT) [101]. We take GAT as 
an example to introduce the process. Firstly, each node 𝑖 is initialised a representation ℎ(0)

𝑖

either randomly or from the pre-trained word embeddings. Then a 𝐿-layer GAT is used to 
encode for each node. For the 𝑙-th layer, the pair-wise un-normalised attention score for each 
neighbour node 𝑗 is computed as follows:

𝑧(𝑙)
𝑖 = 𝑊 (𝑙)ℎ(𝑙)

𝑖

𝑒(𝑙)
𝑖𝑗 = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (𝑎⊤

(𝑙)(𝑧
(𝑙)
𝑖 ; 𝑧(𝑙)

𝑗 )) (𝑗 ∈ 𝒩(𝑖))
(2.24)

where 𝑊 (𝑙) and 𝑎(𝑙) are learnable parameters, 𝒩(𝑖) denotes the set of node 𝑖’s neighbors (node 
𝑖 is also regarded as its own neighbor), ; denotes concatenation and 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 denotes 
the LeakyReLU activation function. The attention scores are then normalised by a softmax 
operation and used to aggregate and compute the input of the next layer:

𝛼(𝑙)
𝑖𝑗 =

𝑒𝑥𝑝(𝑒(𝑙)
𝑖𝑗 )

Σ𝑘∈𝒩(𝑖)𝑒𝑥𝑝(𝑒(𝑙)
𝑖𝑘 )

ℎ(𝑙+1)
𝑖 = 𝜎 ( ∑

𝑘∈𝒩(𝑖)
𝛼(𝑙)

𝑖𝑘 𝑧(𝑙)
𝑘 )

(2.25)

where 𝜎 denotes the sigmoid activation function. After 𝐿 layers of computation, we obtain 
an embedding for each node 𝑖: ℎ(𝐿)

𝑖 . The graph-level embedding is usually computed with 
the pooling operation (e.g. max pooling or mean pooling). In the case of knowledge infusion, 
the knowledge embeddings are often concatenated with the token-level embeddings to get the 
knowledge-enhanced representations and jointly trained with the main task objective. The 
embeddings can also be trained in a self-supervised manner via techniques such as graph 
auto-encoders or graph contrastive learning [102].

For generative knowledge sources, the knowledge is usually combined at the sentence 
level. Instead of decoding the knowledge, current methods mainly concatenate the hidden 
representations of the knowledge encoder to the sentence representations [103], [104] or com-
bine them in the dialogue-level graph [105].

Besides directly leveraging external knowledge to help the task, many works are devoted 
to knowledge infusion to the PLMs, which aims to enhance its task-specific representation 
learning ability. Most of these works infuse knowledge in the pre-training phase, and the 
main difference lies in the ways of incorporating the knowledge. One line of work infuses 
knowledge as input and trains the PLM to reconstruct the knowledge. For example, Sun et 
al. [106] input factual knowledge to the PLM in natural language format but with key parts 
masked. Then the PLM is trained to predict the masked words to learn the knowledge. Ke et 
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al. [107] explicitly sum the sentiment polarity embeddings to the input representations, and 
new loss functions are designed to learn sentiment-related information. Other methods do 
not explicitly input the knowledge but use the knowledge as supervision signals. For exam-
ple, LIBERT [108] takes entity pairs as training instances to enable BERT to understand the 
lexical-semantic relations. Some other works avoid the high-cost pre-training by infusing the 
knowledge in the fine-tuning process. For example, Xie et al. [44] introduce a sentiment po-
larity intensity prediction task, which predicts the sentiment scores obtained from SenticNet, 
and the task is combined with the emotion detection main task in a multi-task learning man-
ner during fine-tuning. Chen et al. [109] incorporate factual knowledge during the prompt 
construction process for prompt tuning of the PLM.

All the above works infuse knowledge to the PLMs by tuning their parameters for each 
knowledge source, which is inefficient considering the high cost of pre-training. Wang et 
al. [52] propose to add a knowledge adapter to the PLM in a plug-in manner, which takes the 
introduced knowledge and the PLM output of particular layers as input. During pre-training, 
only the parameters of the knowledge adapter are optimised, and the PLM weights are fused. 
This way of training reduces the computational cost to a large extent as the knowledge adapter 
has much fewer parameters than the PLM. Another key advantage is that the PLM avoids re-
training with each knowledge source incorporated. Only a knowledge adapter is required, and 
the knowledge can be efficiently utilised for the PLM.

2.2 Emotion Recognition in Conversations

ERC aims at identifying emotions from a pre-defined emotion category set. A critical differ-
ence between ERC and the vanilla emotion recognition of a sentence is that the emotion of 
the target utterance is influenced by both previous utterances from other participants and the 
speaker himself, which is denoted as inter- and intra-speaker influence [21]. The complex 
relations in multi-party conversations bring more challenges to ERC. Therefore, most previ-
ous works in the literature focus on developing appropriate context modelling techniques to 
deal with these challenges. Another research direction aims to leverage task-related knowl-
edge to help the emotion reasoning process, including sentiment-related knowledge, factual 
knowledge and linguistic knowledge. In this section, we introduce the development of ERC 
methods from the above two perspectives.

2.2.1 Context Modelling

There are mainly two directions for improving the context modelling ability: (a) Leverage 
superior neural network architectures to obtain better utterance-level representations, and (b) 
Design an appropriate dialogue modelling structure to facilitate cross-utterance emotion rea-
soning. We introduce these techniques in the following two sections.
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Utterance Modelling

Early works in ERC utilise CNN to obtain utterance-level representations [110], [111]. For 
example, Majumder et al. [112] use a textual-CNN to encode the text modality of each ut-
terance and a 3D-CNN for visual and acoustic modalities. For text-based ERC, some works 
leverage the strong text modelling ability of RNNs for representation learning of each utter-
ance [76], [113]. For example, Hazarika et al. [76] pre-train a standard hierarchical recurrent 
encoder-decoder framework on large-scale conversation data generatively and transfer the 
pre-trained weights of the RNN-based encoder to ERC task.

As the Transformer architecture is proved effective in NLP, some works utilise a self-
attention-based structure to model the utterances. Zhong et al. [114] and Zhang et al. [115] 
design multi-head self-attention-based networks to encode the word embeddings and incorpo-
rate factual knowledge at the word level. Some recent works leverage the strong Transformer-
based PLMs to encode each utterance and obtain an informative representation separately. 
Commonly leveraged PLMs include BERT [113], [116], [117], RoBERTa [118], [119], XL-
Net [44], [120] and BART encoder [84]. While most of these methods jointly fine-tune the 
PLMs during training, some works fuse the PLM weights to enable a faster optimisation 
process and still achieve good performance [121].

Figure 2.15. An overview of the DialogueRNN architecture. The figure is adapted from Majumder et al. [112]

Dialogue Modelling

In dialogue modelling, a natural approach is to divide the relations into intra- and inter-speaker 
dependencies and separately model them. A significant line of work usually utilises RNNs to 
model these relations [103], [110], [111]. For example, as shown in Figure 2.15, Majumder 
et al. [112] model the intra-speaker dependencies by devising a GRU to encode through the 
utterance sequence for each of the dialogue participants. Considering the inter-speaker de-
pendencies, a global state RNN is proposed to encode the whole dialogue, which aims to 
model multi-party relations and emotional dynamics. The representations at previous time 
steps are stored as a memory bank. The memory bank is accessed via an attention mechanism 
and fused for emotion recognition at the current time step.
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Self-attention-based models are also utilised for dialogue-level modelling. Zhong et al. 
[114] concatenate the utterance-level representations of previous utterances as contexts and 
design a hierarchical self-attention module to capture the context information. Then another 
multi-head dot-product attention is used to allow context reasoning, where the representa-
tion of the current utterance is used as the query, and the context representations are used 
as keys and values. Zhang et al. [115] achieve similar goals by introducing an incremental 
Transformer structure, which combines the utterance encoder and the cross-attention between 
utterance representations in different layers. Another branch of work leverages the strong con-
text modelling ability of the Transformer-based PLMs to model the dialogue as a whole. For 
example, Li et al. [122] concatenate all utterances within the dialogue in sequential order and 
insert the “[CLS]” token at the beginning of each utterance. The dialogue is then fed into 
BERT as a single sequence. Kim et al. [119] follow a similar approach but combine speaker 
information by explicitly pre-pending the speaker name for each utterance. Shen et al. [120] 
exploit the XLNet [51] to model the dialogue sequentially, which solves the problem of the 
limited sequence length for previous methods. They further enhance XLNet by introducing 
four types of masks for the self-attention mechanism to focus on different aspects of dialogue 
modelling: (a) Global self-attention: global self-attention performs attention on all the dia-
logue contexts, which is the same as the vanilla self-attention; (b) Local self-attention: local 
self-attention only keeps a reception field of 𝜔 most recent historical utterances, where 𝜔 is 
a pre-defined context window and masks all representations before the field. It is motivated 
by the fact that the most recent dialogue histories influence the emotion of the current utter-
ance more; (c) Speaker self-attention: speaker self-attention masks all utterance representa-
tions uttered by the listeners of the current speaker. It is designed to focus on intra-speaker 
dependency; (d) Listener self-attention: listener self-attention masks all previous utterance 
representations uttered by the current speaker and focuses on the listeners’ utterances. It is 
designed to focus on inter-speaker dependency. These four attention results are concatenated 
for emotion reasoning.

Though rich information is available for ERC in the dialogue context, the extraction and 
reasoning process remains challenging. To introduce more priors and interpretable models, 
there are also many works [105], [117], [121], [123] that regard each utterance as a node 
and manually construct graphs for the dialogue. State-of-the-art GNNs are devised to learn 
node-level representations, and ERC is modelled as a node-classification task. For example, 
Shen et al. [121] design a Directed Acyclic Graph (DAG) on the dialogue. DAG denotes the 
set of graphs that have directed edges and no directed cycles. The DAG is built consider-
ing three principles: (a) A past utterance can pass the message to a future utterance, but the 
reverse is prohibited. Therefore, the edges can only point from past utterances to future utter-
ances; (b) Utterances before the last utterance spoken by the current speaker are considered 
remote information. The influence of remote information is limited to the current utterance. 
Therefore, no edges are constructed from remote information to the current utterance; (c) 
Utterances between the last and current utterances spoken by the current speaker are consid-
ered local information. Local information is expected to have more influence on the current 
utterance, and each local utterance should connect to the current utterance. Based on these 
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principles, an example of DAG for ERC is given in Figure 2.16.

Figure 2.16. An example of the directed acyclic graph built for ERC.

In the example, each colour denotes the utterances of a dialogue participant, solid lines de-
note the edges from all local information to the current utterance, and dashed lines denote the 
connection from the last utterance of the current speaker to the current utterance. The remote 
information is anticipated to pass through the dashed lines to the current utterance. During 
the aggregation process, a multi-layer Directed Acyclic Graph Neural Network (DAGNN) 
is utilised for encoding the graph. DAGNN works like a combination of GNNs and RNNs. 
They aggregate information for each node in temporal order and allow all nodes to gather 
information from neighbours.

2.2.2 Knowledge Infusion

Constrained by the size of available datasets, ERC models cannot learn all the information 
required through the training process. Therefore, many works use external knowledge sources 
and infuse task-related knowledge to aid emotion reasoning. Common methods include direct 
knowledge infusion via the combination of knowledge representations, knowledge infusion 
via transfer learning and knowledge infusion via fine-tuning. Effective knowledge sources 
include factual knowledge, mental state knowledge, topic information and sentiment lexicons.

Knowledge Representation

The knowledge representations are incorporated into the model in different granularity for 
explicit knowledge infusion methods. Some works infuse knowledge from commonsense 
knowledge graphs to word-level representations [44], [115], [124]. The commonsense knowl-
edge is mainly utilised to enrich the semantic space of the representations. For example, Xie 
et al. [44] introduce knowledge from ConceptNet [45]. Specifically, for each token in an ut-
terance that is a concept, a sub-graph is extracted with each of its direct neighbours, and a 
GAT is utilised to aggregate the sub-graph, as introduced in Sec. 2.1.3. For each token rep-
resentation ℎ, we obtain a corresponding knowledge representation 𝑘. Tokens that are not in 
the knowledge graph are also assigned an average of all node representations in the graph. 
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The knowledge enriched embedding 𝑢 is obtained via concatenation: 

𝑢 = [ℎ; 𝑘] (2.26)

where [; ] denotes concatenation. The work then introduces another module to enable a full 
interaction between the token and knowledge embeddings, called self-matching. For two to-
ken representations within one utterance, 𝑢𝑖 and 𝑢𝑗, their similarity is computed via a trilinear 
function: 

𝑟𝑖
𝑗 = W⊤[𝑢𝑖; 𝑢𝑗; 𝑢𝑖 ⊙ 𝑢𝑗] (2.27)

where 𝑊 is a learnable parameter matrix, and ⊙ denotes the element-wise multiplication 
operation. A self-attention matrix Q is obtained with the softmax operation, where 𝑞𝑖

𝑗 is its 
𝑖𝑗-th entry: 

𝑞𝑖
𝑗 =

𝑒𝑥𝑝(𝑟𝑖
𝑗)

∑𝑁
𝑘=1 𝑒𝑥𝑝(𝑟𝑖

𝑘)
(2.28)

where 𝑁 denotes the token number within the utterance. In addition, indirect interaction 
allows the model to learn deeper semantic relations within the knowledge-enriched represen-
tations. To achieve the indirect interaction, a self-multiplication of the attention matrix 𝑄 is 
calculated: 

Q̂ = QQ⊤ (2.29)

With Q̂, each token pair can interact via another token. Two attended vectors are computed 
with the matrices:

𝑣𝑖 =
𝑁

∑
𝑘=1

𝑞𝑖
𝑘𝑢𝑘

̂𝑣𝑖 =
𝑁

∑
𝑘=1

̂𝑞𝑖
𝑘𝑢𝑘

(2.30)

The two attended vectors are concatenated in various means to allow rich interactions: 

𝑐𝑖 = [𝑢𝑖; 𝑣𝑖; 𝑢𝑖 − 𝑣𝑖; 𝑢𝑖 ⊙ 𝑣𝑖; ̂𝑣𝑖; 𝑢𝑖 − ̂𝑣𝑖] (2.31)

where 𝑐𝑖 denotes the final knowledge enriched representation for token 𝑖. The self-matching 
process introduces knowledge purposefully instead of acting as noise. Self-matching is one of 
the effective knowledge interaction methods proposed by many ERC works, and experiments 
show their effectiveness.

In ERC, Commonsense knowledge is also introduced on the utterance level. A represen-
tative work is COSMIC [103], which utilises the generative knowledge source COMET [54] 
trained on the knowledge graph ATOMIC (introduced in Sec. 2.1.3). The utterance 𝑢 is con-
catenated with each relation type as input of COMET. The representations of the COMET 
encoder for each relation type are regarded as the knowledge representation and directly 
concatenated with the utterance-level representations of the corresponding utterance. The 
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knowledge-enriched representations are combined via the attention mechanism and used for 
final emotion prediction. In another work, Li et al. [105] build a graph on the dialogue and 
utilise the COMET knowledge representations as the edge representations of the graph. A 
graph transformer is used to propagate the information of the dialogue graph.

Transfer Learning

Explicit knowledge infusion usually requires structured knowledge sources, which require 
much human processing. However, a large amount of helpful knowledge exists in unstructured 
natural language data and demands specific techniques to leverage. Therefore, some works 
devise the transfer learning method, which designs relevant pre-training tasks and transfers 
the pre-trained weights to ERC [76], [113]. For example, Hazarika et al. [76] design a conver-
sation modelling pre-training task and transfer the weights of the dialogue encoder to ERC, 
as shown in Figure 2.17.

Figure 2.17. The transfer learning framework for ERC. The figure is adapted from Hazarika et al. [76].

Two large-scale conversation datasets are collected for the source conversation modelling 
task, and an RNN-based Hierarchical Recurrent Encoder-Decoder (HRED) architecture is 
trained on these data in the response generation style. The HRED contains a sentence encoder 
(usually an RNN or BERT structure), an RNN-based context encoder and an RNN-based 
utterance decoder. The sentence and context encoder weights are transferred to the ERC task. 
In ERC, the transferred HRED encoders are used to encode the dialogue history, and an FFN-
based classifier is devised to predict emotions on top of the context-aware representations.

Fine-Tuning

Though transfer learning brings helpful information to ERC, it usually requires large-scale 
datasets and high computational costs for pre-training. Therefore, some works utilise PLMs 
and infuse useful information via fine-tuning, such as sentiment scores [44], topic informa-
tion [116], [125] and speaker-utterance relations [122]. The knowledge-aware fine-tuning 
task is usually jointly trained with the ERC task in a multi-task learning manner. For exam-
ple, Xie et al. [44] propose an auxiliary Sentiment Polarity Intensity Prediction (SPIP) task, 
which assigns a sentiment score to each phrase within the dataset that exists in the emotion 
lexicon SenticNet [95]. The model is trained to predict the sentiment score of each labelled 
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phrase. The SPIP task enables the model to be aware of the sentiment intensity of key phrases 
and helps determine the emotion of the utterance.

More fine-grained sentiment information is also proved effective in ERC. For example, 
Valance-Arousal-Dominance is an effective dimensional emotion representation model in 
psychology [126]. Therefore, VAD information is also incorporated to facilitate categorical 
emotion detection [124], [127], [128], which considerably boosts the model performance. 
In ERC, Zhong et al. [124] utilise the human-labelled VAD scores from the lexicon NRC-
VAD [53] to help determine the weights of each term during the factual knowledge infusion 
process, which aims to attend more on emotion-intense concepts.

2.3 Mental Health Analysis

2.3.1 Foundations in Psychology

The high prevalence of mental health disorders worldwide has been one of the most severe 
public health concerns. Therefore, developing convenient early detection methods for mental 
health problems has attracted growing research interests. In psychology, early works have 
noticed the theoretical relations between mental health conditions and certain linguistic fea-
tures such as “depressive language”, and try to leverage these features to aid mental health 
analysis. For example, Beck et al. [24] develop cognitive therapy and consider the frequency 
of negatively-valenced words expressed during the therapy. The result shows that people with 
a higher frequency of negatively-valenced words tend to face higher risks of mental health 
issues. Pyszczynski et al. [25] focus on studying the expression of depression. They col-
lect the different judgments of patients diagnosed as depressed and non-depressed people on 
the probability of future positive and negative life events occurring to themselves and others. 
The results show an apparent difference in positive levels that depressed people are much 
less optimistic in their anticipation of the future. The study also finds that depressed patients 
are usually more self-focused than non-depressed people and hypothesises that inducing de-
pressed subjects to focus externally would attenuate the pessimistic tendencies.

Further empirical studies verify these hypotheses and further focus on validating the con-
nections between certain linguistic features and the patients’ mental states. Rude et al. [26] 
collect essays written by current depressed and non-depressed college students and exam-
ine features that reflect the cognitive operations associated with depression and depression-
vulnerability. The study discovers several patterns. For example, depressed people use negatively-
valenced words and the word “I” more frequently than non-depressed or previously depressed 
people, which corresponds to early hypotheses of Pyszczynski et al. [25]. Ramirez-Esparza 
et al. [27] collect multi-lingual posts (English and Spanish) from forums on the Internet to 
examine the above results in broader views and different cultural backgrounds. The results 
show that though depressed people with different cultural backgrounds tend to be concerned 
about different aspects of depression, linguistic cues associated with depression are higher in 
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depressed than in non-depressed posts in both English and Spanish. With the connection be-
tween mental health issues and language expression assured, some works utilise social media 
as a rich source of text data and use these online user-generated posts to manually analyse 
mental health conditions [129]–[131] and detect mental disorders such as depression, PTSD 
and eating disorders.

2.3.2 NLP-Based Approaches

With the fast-growing numbers of online texts and the sensitivity of mental health conditions, 
manual analysis of texts and timely psychiatric treatment on a large scale is no longer practical. 
Therefore, the artificial intelligence community pays attention to mental health analysis and 
tries to leverage NLP and text mining techniques for automated mental health analysis from 
social media data. However, given the non-experts nature of NLP researchers on psychology, 
these methods are not expected to make an actual diagnosis but offer assistance for early 
detection. This claim is often stated in the ethical considerations of previous related works.

Early methods extract statistical features such as Bag-of-Words [132], [133] and TF-IDF 
[134] from the collected data, then employ them in traditional machine learning methods such 
as Support Vector Machine [135], Random Forest [136] and Logistic Regression [137], [138] 
to predict depression, suicide tendency [131], etc. For example, Saleem et al. [135] collect 
data from an online forum for veterans with post-combat psychological issues and annotate 
the dataset with distress labels. The distress identification task is divided into a two-stage 
text classification problem. In the first stage, a support vector machine is utilised to classify 
relevant versus irrelevant messages, where each post is classified as whether it bears useful 
information. An ensemble of multiple machine learning methods is used for the second-stage 
distress label classification task. The work utilises several linguistic features, including bag-
of-words representations, normalised count of punctuations and pronouns, average sentence 
lengths and sentiment-bearing word features, etc. The experiments show the effectiveness of 
the proposed features and the ensemble methods.

Advances in deep learning also boost mental health-related tasks. Most current meth-
ods employ deep learning models to capture latent semantic information automatically with-
out complex feature engineering. Some works utilise CNN [139] or RNN, including LSTM 
[140] and GRU [141] to detect depression based on the posted text. For example, Ghosh 
et al. [140] collect data from Twitter and extract features from each post, such as the 12-
dimensional emotional features, topic model features, and user information. Then a 3-layer 
LSTM is used to encode these extracted features and predict the depression intensity of the 
posts. Researchers also explore hybrid architectures of CNN and RNN to capture both lo-
cal and long-dependency features [142], [143]. Furthermore, an attention mechanism [141], 
[144], [145] is used to make models focus on the most significant parts of the input. In addi-
tion, multi-task learning is utilised to jointly train with other auxiliary tasks such as statistical 
feature classification [146], and depression cause prediction [147], which provide additional 
information for depression detection. With the development of Transformer-based models, 
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PLMs such as BERT [148], [149], RoBERTa [150] and GPT [151] are also widely applied 
to detection of many mental health issues such as suicide and PTSD, due to their strong con-
text modelling ability. The representations of the PLMs are usually fine-tuned on the target 
dataset to adapt to the mental health domain. The representations are sometimes used as input 
features to classification algorithms such as logistic regression and outperform the statistical 
feature-based methods.

Figure 2.18. The emotion information-enriched models for the stress detection task. The figure is adapted 
from Turcan et al. [152].

In short-context scenarios, identifying mental health issues can be difficult due to the lack 
of information. Therefore, another branch of work infuses external knowledge to aid mental 
health-related tasks. Some works notice the close relations between mental states and emo-
tion expressions, and leverage history context modelling [153], [154], multi-task learning 
[155] or transfer learning [152], [156] to infuse emotion information. As an example, Turcan 
et al. [152] develop three emotion information-enriched model architectures for the stress de-
tection task, as shown in Figure 2.18. The designed architectures are: (a) a multi-task learning 
setting where the emotion detection and stress detection tasks share the BERT parameters; (b) 
the emotion detection task is performed first, and the detected emotion features are combined 
with stress detection features; (c) the model is pre-trained on the emotion detection task first, 
and the pre-trained weights are transferred to the stress detection task. Experiments show 
that all three settings perform well. In addition, Ji et al.[157] collect a large amount of data 
on mental health from social media platforms and fine-tune them on the pre-trained BERT 
for a new domain-specific model, namely MentalBERT. The knowledge introduced during 
post-training boosts MentalBERT to achieve state-of-the-art performance on several stress 
and depression detection datasets. In addition, some works focus on qualitative analysis of 
the bias of these models towards gender and racial/ethnic groups [158].
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2.4 Summary

This chapter provided an overview of the related literature with our methodology. Specifi-
cally, we first introduce state-of-the-art representation learning methods for NLP, starting with 
neural networks such as CNN, RNN, and Transformer. We also present the widely utilised 
PLM-based methods. Then we introduce the contrastive learning methods and their applica-
tions in representation learning. Knowledge-enhanced representation learning methods are 
also briefly explained. For ERC, we first introduce popular architectures for context mod-
ellings, such as graph-based and recurrent-based structures. Then we present current knowl-
edge sources and infusion methods for ERC, such as knowledge graphs and pre-training-based 
knowledge infusion. For mental health analysis, we also briefly introduce previous works in 
the NLP research community.
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Chapter 3

Cluster-Level Contrastive Learning

3.1 Overview

Context modelling is a crucial challenge for ERC. The emotion of each utterance is influenced 
both by the previous utterances of the speaker and the responses of other participants [120]. 
Current methods mainly utilise the Transformer-based PLMs [73] to deal with this challenge. 
However, PLMs are found to poorly capture the semantics of sentences without careful fine-
tuning [159], which also raises difficulties for the identification of semantically similar emo-
tions (e.g., excited and happy). Since previous works utilise unsupervised contrastive learning 
to alleviate this problem [82], [159] and obtain promising results in several text classification 
tasks, Li et al. [84] manage to introduce supervised contrastive learning, where utterances 
with the same emotion label are considered as positive pairs, and the instance-level utter-
ance representations are directly utilised for contrastive learning. SCL decouples the overlap 
between samples with similar emotions in the semantic representation space and facilitates 
learning the decision boundary.

However, SCL treats two samples as a negative pair as long as they are with different 
labels, regardless of the quantitative semantic similarity between emotions (e.g., happy is 
closer to excited than sad). This negligence is manifested by the fact that all negative sam-
ples are equally pushed apart in the semantic space during SCL. In addition, the success of 
works with manual feature selection [160] (e.g., pleasantness and emotion intensity of the 
current utterance) shows that ERC is not equally dependent on all features embedded in the 
high-dimensional utterance representations. We expect a low-dimensional prototype for each 
emotion, defined as a representative embedding for a group of similar instances [78], to be 
more efficient in contrastive learning. High-dimensional SCL space also leads to other limita-
tions: (a) Euclidean distance becomes less meaningful due to the curse of dimensionality [80]; 
(b) the results are hard to interpret and visualise. Previous works mainly utilise t-SNE [161] 
to reduce the dimensions, but it may lead to mis-interpretations1, and the reduced dimensions 
have no practical significance; (c) stable SCL requires large batch sizes [40], which leads to 
high computational costs. This requirement limits the application of SCL-based methods in 
low computational resource scenarios.

To tackle the above challenges, we propose a novel low-dimensional Supervised Cluster-
1http://deeplearning.csail.mit.edu/slide_cvpr2018/laurens_cvpr18tutorial.pdf
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Figure 3.1. An example of appropriate emotion prototypes in VAD space bringing quantitative information.

level Contrastive Learning (SCCL) method for ERC. With a PLM-based context-aware utter-
ance encoder, we improve SCL as follows: Firstly, we reduce the high-dimensional contrastive 
learning space to a three-dimensional space called Valence-Arousal-Dominance, a widely ex-
plored affect representation model in psychology [3], [4]. Secondly, we introduce a prototype 
for each emotion in VAD space from a sentiment lexicon called NRC-VAD [53], which brings 
quantitative information between all emotion labels. We provide an example for some emo-
tions in Figure 3.1, where the emotions within the same sentiment polarity lie closer, and their 
relative positions are reasonable. Regarding each emotion category as a cluster centre, SCCL 
predicts the cluster-level VAD for each emotion, transfers the instance-level emotion labels 
to cluster level with the emotion prototypes, and performs cluster-level contrastive learning. 
Meanwhile, Liu et al. [162] argue that current PLMs lack fine-grained linguistic knowledge, 
which is proved useful to help to model the utterances in sentiment-related tasks [107]. Fac-
tual knowledge is also widely leveraged in ERC [44], [103], [114] and proved effective in 
enriching the context and providing relevant knowledge for emotion reasoning. Therefore, 
we infuse linguistic and factual knowledge leveraging the pre-trained knowledge adapter in a 
plug-in manner, which avoids modification of the PLM weights. An overview of our model 
is presented in Figure 3.2, where in ERC and SCCL, each colour denotes an emotion cate-
gory. The function of each part is described: (a) linguistic and factual knowledge is infused 
into the knowledge adapters through pre-training and combined with the utterance encoder 
in a plug-in manner; (b) the one-hot label matrix is mapped to the VAD space with emo-
tion prototypes; (c) cluster-level representations are aggregated from the VAD predictions, 
and contrastive learning is performed in the VAD space. We conduct experiments on four 
widely used ERC benchmark datasets. The results show that our method achieves competi-
tive performance on all datasets and state-of-the-art outcomes on three: IEMOCAP, MELD, 
and DailyDialog. An ablation study proves the effectiveness of each proposed module, and 
further comparisons analyse their property and visualise the contrastive results.

To summarise, this work mainly makes the following contributions:

• We reduce the high-dimensional SCL space to a three-dimensional space VAD, which 
improves model performance and facilitates the interpretability of contrastive learning.

• For the first time in ERC, we incorporate VAD prototypes into SCL by proposing a 
novel supervised cluster-level contrastive learning method. Analysis shows that SCCL 
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remains stable with both large and small batch sizes, which facilitates its application in 
low computational resource scenarios.

• We infuse linguistic and factual knowledge into the utterance encoder by utilising the 
pre-trained knowledge adapters and analysing their benefits via the ablation study and 
empirical comparisons.
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Figure 3.2. An overview of our model architecture.

3.2 Pre-trained Knowledge Adapter

3.2.1 Context-Aware Utterance Encoder

To introduce speaker information, we pre-pend the speaker’s name 𝑃(𝐷𝑗) for each utterance 
𝐷𝑗 as �̂�𝑗. Then the current utterance �̂�𝑖 is concatenated with both past and future contexts 
to get the context-aware input 𝑅𝑖: 𝑅𝑖 = {[𝐶𝐿𝑆]; �̂�𝑖−𝑊𝑝

; ...; �̂�𝑖; ...; �̂�𝑖+𝑊𝑓
; [𝐸𝑂𝑆]}, where 

𝑊𝑝 and 𝑊𝑓 denotes past and future context window size, [𝐶𝐿𝑆] and [𝐸𝑂𝑆] denote the start-
of-sentence and end-of-sentence token in PLMs. Then we use 𝑅𝑖 to obtain the context-aware 
utterance embeddings: 

𝐻𝐿
𝑖 = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝑅𝑖) (3.1)

where 𝐸𝑛𝑐𝑜𝑑𝑒𝑟 denotes the RoBERTa [50] encoder, 𝐻𝐿
𝑖 ∈ ℝ𝑆×𝐷ℎ denotes the final output 

of the 𝐿-th layer, 𝑆 denotes sequence length and 𝐷ℎ is the hidden size of the encoder. 𝐻𝐿
𝑖 is 

used as the context-aware representation for the 𝑖-th utterance in the next methods.

3.2.2 Knowledge-infusion with Adapter

We incorporate external knowledge into the utterance encoder by injecting pre-trained knowl-
edge adapters. The knowledge adapter is a multi-layer Transformer-based model separately 
initialised and pre-trained for each knowledge source. During pre-training, the weights of the 
PLM are frozen, and only the knowledge adapter weights are updated. Compared with normal 
pre-training or explicit incorporation methods of knowledge infusion, this training paradigm 
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has three advantages: (a) The weight fusion prevents the catastrophic forgetting [163] prob-
lem of PLMs when multiple knowledge sources are infused; (b) The training process saves 
memory and speeds up since the knowledge adapter is smaller in size than the PLM; (c) With 
a new knowledge source to incorporate, the weights of the PLM do not need retraining.

As shown in Figure 3.2(a), we follow the methodology of Wang et al. [52] and pre-train 
two knowledge adapters with commonsense knowledge from T-REx [164] (FacAdapter) and 
linguistic knowledge provided by Stanford Parser2 (LinAdapter). T-REx is a large-scale fac-
tual knowledge graph built from over 11.1M alignments between statements and triples of 
Wikipedia, which provide relevant knowledge to enrich the context and aid emotion reason-
ing. For example, the statement “Vincent van Gogh and other late 19th century painters used 
blue not just to depict nature, but to create bad moods and emotions” is aligned with triples 
<Vincent van Gogh, occupation, painters> and <blue, represent, bad moods and emotions>. 
Given the statements and entities as input during the pre-training process, the FacAdapter 
predicts the relation type of the aligned triples. Linguistic knowledge is naturally embed-
ded in language texts, which benefits sentence modelling. It can be obtained by running a 
dependency parser to get semantic and syntactic information. Therefore, for pre-training on 
linguistic knowledge, the LinAdapter takes the texts as input and predicts the syntactic and 
semantic relations annotated by the parser.

The adapter is utilised on the utterance encoder in a plug-in manner as follows: let 𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝑙

denote the 𝑙-th hidden layer of the utterance encoder. LinAdapter, denoted as Adapter, has 
𝑛𝑘 Transformer-based layers, where 𝑛𝑘 ≤ 𝐿 and Adapter𝑗 denotes 𝑗-th layer of the adapter. 
LinAdapter is pre-defined as an interactive layer set �̂� = {𝑙1, 𝑙2, ..., 𝑙𝑛𝑘

}, where the hidden 
states of 𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝑙𝑗 will be combined in Adapter𝑗. Specifically, for 𝑖-th utterance and each 
𝑙𝑗 ∈ �̂�, this process can be formalised as: 

𝐻𝑗
𝑓 = 𝐻 𝑙𝑗

𝑖 ⊕ 𝐻𝑗−1
𝑎 (3.2)

𝐻𝑗
𝑎 = Adapter𝑗(𝐻𝑗

𝑓) (3.3)

where 𝐻𝑗
𝑎 ∈ ℝ𝐷ℎ denotes the 𝑗-th layer output of the knowledge adapter, 𝐻 𝑙𝑗

𝑖 is the 𝑙𝑗-th 
layer output of the utterance encoder, ⊕ denotes element-wise addition, and 𝐻1

𝑎 is initialised 
with an all-zero matrix. The final layer output 𝐻𝑛𝑘

𝑎 of the adapter is combined with the PLM 
embeddings as the final utterance representations: 

�̂�𝑖 = 𝑇 𝑎𝑛ℎ((𝐻𝐿
𝑖 ⊕ 𝐻𝑛𝑘

𝑎 )𝑊1 + 𝑏1) (3.4)

where �̂�𝑖 ∈ ℝ𝑆×𝐷ℎ denotes the knowledge-enhanced utterance embeddings, 𝑇 𝑎𝑛ℎ denotes 
the tanh activation function, and 𝑊1 ∈ ℝ𝐷ℎ×𝐷ℎ , 𝑏1 ∈ ℝ𝐷ℎ are learnable parameters.

2https://nlp.stanford.edu/software/lex-parser.html
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3.3 Supervised Cluster-Level Contrastive Learning

3.3.1 Emotion Prototypes

Valence-Arousal-Dominance (VAD) maps emotion states to a three-dimensional continuous 
space, where Valence reflects the pleasantness of a stimulus, arousal reflects the intensity of 
emotion provoked by a stimulus, and dominance reflects the degree of control exerted by a 
stimulus [5]. Instead of directly leveraging the one-hot categorical emotion labels for super-
vision, VAD allows each categorical emotion to be projected into the space with measurable 
distances. A few ERC resources [14] are human-labelled with a context-dependent VAD 
score for each utterance 𝑗: H-VAD𝑗 ∈ ℝ3, which can be leveraged for accurately computing 
emotion prototypes.

However, utterance-level VAD labels are expensive and unavailable in most cases. For ap-
plication in such scenarios, we consider the context-independent word-level VAD information 
from sentiment lexicons. We utilise NRC-VAD [53], a VAD sentiment lexicon that contains 
reliable human-ratings of VAD for 20,000 English words. All the terms in NRC-VAD denote 
or connote emotions, and are selected from commonly used sentiment lexicons and tweets. 
Each of these terms is first strictly annotated via best-worst scaling with crowdsourcing an-
notators. Then an aggregation process calculates the VAD for each term ranging from 0 to 1. 
With the pre-defined categorical emotion set 𝐸, we extract the VAD for each of the emotion 
𝑒 ∈ 𝐸 from NRC-VAD: NRC-VAD𝑒 ∈ ℝ3. For example, the emotion happiness is assigned: 
[0.9600, 0.7320, 0.8500]. The VAD information from either of the above methods is utilised 
to obtain cluster-level emotion representations. We expect utterance-level H-VADs to out-
perform word-level NRC-VADs since they are context-dependent and bear more fine-grained 
VAD information.

3.3.2 Cluster-Level Contrastive Learning

Though VAD prototypes provide useful quantitative information, they are difficult to be in-
fused to enhance SCL since infusion during inference leads to the leakage of label informa-
tion. Therefore, we propose to perform SCL at cluster level instead of instance level with 
a novel SCCL method. Regarding each emotion category as a cluster centre, we perform 
SCCL with cluster-level representations separately obtained from emotion labels and model 
predictions, where both processes are introduced below.

We first compute for emotion labels using the emotion prototypes. For a batch of utter-
ances, as shown in Figure 3.2(b), the emotion labels are projected to a one-hot label matrix 
𝑀 ∈ ℝ|𝐵|×|𝐸|, where 𝑀𝑖 ∈ ℝ|𝐸| is the 𝑖-th row of 𝑀, denoting the one-hot emotion label of 
the 𝑖-th sample, and 𝑀 𝑗 ∈ ℝ|𝐵| is the 𝑗-th column of 𝑀, denoting the samples with the label 
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𝑒𝑗 ∈ 𝐸. For the 𝑗-th cluster 𝑒𝑗, we map 𝑀 𝑗 to the VAD space as follows: 

�̂� 𝑗 =
∑𝐵

𝑘=1 𝑀 𝑗𝑘 × VAD𝑒𝑗

∑𝐵
𝑘=1 𝑀 𝑗𝑘

(3.5)

where 𝑀 𝑗𝑘 denotes 𝑘-th element of 𝑀 𝑗, �̂� 𝑗 ∈ ℝ3 denotes the cluster-level representation 
of 𝑒𝑗. When utterance-level VAD information is available, VAD𝑒𝑗

= H-VAD𝑗. When NRC-
VAD information is utilised, VAD𝑒𝑗

= NRC-VAD𝑒𝑗
and NRC-VAD𝑒𝑗

is directly regarded as 
the cluster-level emotion representation for 𝑒𝑗.

Then we compute for the model predictions. One choice is to adopt a similar approach as 
the emotion labels, which utilises the normalised categorical predictions with Softmax, and 
maps them to the VAD space using Eqn.3.5. However, it may deteriorate SCCL to the vanilla 
case where the model only learns the one-hot label information and ignores the emotion proto-
types. Therefore, we utilise a neural network to parameterise the dimension reduction process 
from the semantic space to the VAD space. Specifically, for �̂�𝑖, we regard the embedding 
of the start-of-sentence token at position 0 �̂� [𝐶𝐿𝑆]

𝑖 as its utterance-level embedding, and map 
�̂� [𝐶𝐿𝑆]

𝑖 to the VAD space: 

𝐻𝑉 𝐴𝐷
𝑖 = 1

1 + e−(�̂�[𝐶𝐿𝑆]
𝑖 𝑊2+𝑏2)

(3.6)

where �̂� [𝐶𝐿𝑆]
𝑖 ∈ ℝ𝐷ℎ , 𝐻𝑉 𝐴𝐷

𝑖 ∈ ℝ3, and 𝑊2 ∈ ℝ𝐷ℎ×3, 𝑏2 ∈ ℝ3 are learnable parameters.

As shown in Figure 3.2(c), following the idea of labels as representations, for each batch, 
we calculate the SCCL loss as follows: 

�̂�𝑉 𝐴𝐷
𝑗 = 1

|𝒜(𝑗)|
∑

𝑖∈𝒜(𝑗)
𝐻𝑉 𝐴𝐷

𝑖 (3.7)

𝑠𝑖𝑚(𝑗) = 𝑙𝑜𝑔
𝑒𝑥𝑝(�̂�𝑉 𝐴𝐷

𝑗 ⋅ �̂� 𝑗)/𝜏
∑𝑒𝑘∈𝐸 𝑒𝑥𝑝(�̂�𝑉 𝐴𝐷

𝑗 ⋅ �̂�𝑘)/𝜏
(3.8)

ℒ𝑆𝐶𝐶𝐿 = − 1
|𝐸|

∑
𝑒𝑗∈𝐸

𝑠𝑖𝑚(𝑗) (3.9)

where �̂�𝑉 𝐴𝐷
𝑗 ∈ ℝ3 denotes the cluster-level embedding for 𝑒𝑗 from model predictions, 

𝒜(𝑗) = {𝑖|𝑌𝑖 = 𝑒𝑗, 𝑖 ∈ [1, |𝐵|]} records the samples 𝐷𝑖 ∈ 𝐵 labelled with the emotion 
𝑒𝑗, ⋅ denotes dot-product operation, 𝜏 ∈ ℝ+ is the temperature coefficient, and ℒ𝑆𝐶𝐶𝐿 de-
notes the SCCL loss.

3.4 Model Training

We combine SCCL with ERC in a multi-task learning manner. For the 𝑖-th utterance, 
we still utilise �̂� [𝐶𝐿𝑆]

𝑖 as the utterance-level embedding, and compute the final classification 
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probability as follows: 
̂𝑌𝑖 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(�̂� [𝐶𝐿𝑆]

𝑖 𝑊3 + 𝑏3) (3.10)

where ̂𝑌𝑖 ∈ ℝ|𝐸|, and 𝑊3 ∈ ℝ𝐷ℎ×|𝐸|, 𝑏3 ∈ ℝ|𝐸| are learnable parameters. Then we compute 
the ERC loss using the standard cross-entropy loss: 

ℒ𝐸𝑅𝐶 = − 1
𝐵

𝐵

∑
𝑖=1

|𝐸|

∑
𝑗=1

𝑌 𝑗
𝑖 𝑙𝑜𝑔 ̂𝑌 𝑗

𝑖 (3.11)

where 𝑌 𝑗
𝑖 and ̂𝑌 𝑗

𝑖 are the 𝑗-th element of 𝑌𝑖 and ̂𝑌𝑖. Finally, we combine the ERC loss and 
SCCL loss in the following manner: 

ℒ = ℒ𝐸𝑅𝐶 + 𝛼ℒ𝑆𝐶𝐶𝐿 (3.12)

where 𝛼 ∈ [0, 1] denotes the pre-defined weight coefficient of ℒ𝑆𝐶𝐶𝐿.

3.5 Experimental Settings

3.5.1 Datasets

In our work, we follow the setting of all previous ERC works and assume that each utterance 
has a single categorical emotion label, due to the limitation of most ERC datasets. We eval-
uate our method on the following four benchmark datasets. The statistics of all datasets are 
presented in Table 3.1.

Dataset Conv.(Train/Val/Test) Utter.(Train/Val/Test) Utter./Conv

IEMOCAP 100/20/31 4,778/980/1,622 49.2
MELD 1,038/114/280 9,989/1,109/2,610 9.6
EmoryNLP 713/99/85 9,934/1,344/1,328 14.1
DailyDialog 11,118/1,000/1,000 87,170/8,069/7,740 7.9

Table 3.1. Statistics of the datasets. Conv. and Utter. denotes the conversation and utterance number. 
Utter./Conv denotes the average utterance number per dialogue.

IEMOCAP [14]: A two-party multi-modal conversation dataset derived from the scenar-
ios in the scripts of the two actors. For all datatsets, we only utilise the text modality in our 
experiments. The pre-defined categorical emotions are neutral, sad, anger, happy, frustrated, 
excited.

MELD [15]: A multi-party multi-modal dataset enriched from EmotionLines dataset, col-
lected from the scripts of American TV show Friends. The pre-defined emotions are neutral, 
sad, anger, disgust, fear, happy, surprise.

EmoryNLP [16]: Another dataset collected from TV show Friends, but annotated with 
different emotion label categories. The pre-defined emotions are neutral, sad, mad, scared, 
powerful, peaceful, joyful.
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DailyDialog [17]: A dataset compiled from human-written daily conversations with only 
two parties involved and no speaker information. The pre-defined emotion labels are the 
Ekman’s emotion types: neutral, happy, surprise, sad, anger, disgust, fear.

IEMOCAP neutral frustrated sad anger excited happy –

Valence 0.469 0.060 0.052 0.167 0.908 0.960 –
Arousal 0.184 0.730 0.288 0.865 0.931 0.732 –
Dominance 0.357 0.280 0.164 0.657 0.709 0.850 –

MELD neutral joy surprise anger sad disgust fear

Valence 0.469 0.980 0.875 0.167 0.052 0.052 0.073
Arousal 0.184 0.824 0.875 0.865 0.288 0.775 0.840
Dominance 0.357 0.794 0.562 0.657 0.164 0.317 0.293

EmoryNLP joyful neutral powerful mad sad scared peaceful

Valence 0.990 0.469 0.865 0.219 0.225 0.146 0.867
Arousal 0.740 0.184 0.830 0.873 0.333 0.828 0.108
Dominance 0.667 0.357 0.991 0.277 0.149 0.185 0.569

DailyDialog neutral anger disgust fear happy sad surprise

Valence 0.469 0.167 0.052 0.073 0.960 0.052 0.875
Arousal 0.184 0.865 0.775 0.840 0.732 0.288 0.875
Dominance 0.357 0.657 0.317 0.293 0.850 0.164 0.562

Table 3.2. The NRC-VAD assignments to all emotions in the four datasets.

Among the above datasets, human-labelled utterance-level VAD scores are only available 
in IEMOCAP, where the aggregation process calculates the VAD for each utterance ranging 
from 1 to 5. To cope with the SCCL method, we linearly transform all VAD scores to the 
range [0, 1] during inference.

When NRC-VAD is utilised, the emotion prototypes of the labels for all datasets are listed 
in Table 3.2. According to the assignments, most of the cluster centres (VAD assignments) 
reflect appropriate positions of the corresponding emotions in VAD space, where similar 
emotions are measurably closer to each other while maintaining a fine-grained difference to 
facilitate the model to distinguish them. For example, happy stays closer to excited than anger
in IEMOCAP. In addition, for all four datasets, positive and negative emotions are mostly 
separated by neutral in the dimension Valence, while the emotions within each sentiment 
polarity mostly differs in Arousal and Dominance.

3.5.2 Baselines

We select the following strong baseline models to compare with our model:

BERT-Large [49]: The model initialises from pre-trained weights of BERT-Large and 
is fine-tuned on the ERC task. The [𝐶𝐿𝑆] embedding at position 0 of the BERT output is 
passed through an FFN to predict the emotion.

DialogXL [120]: This work is based on the PLM XLNet [51]. It proposes four types of 
dialogue-aware self-attention (global self-attention, local self-attention, speaker self-attention, 
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listener self-attention) to model inter- and intra-speaker dependencies and uses an utterance 
recurrence mechanism to model the long-range contexts.

RGAT [117]: The model constructs a graph on each dialogue to introduce prior knowl-
edge in context modelling and combines a relation position encoding to introduce sequential 
information in the graph. GNNs are used to summarise and aggregate the graphs. The man-
ually designed graph structure guides the message passing process.

COSMIC [103]: This work uses the RNN structures to model the dialogue history for 
each participant and the context information. It also extracts utterance-level commonsense 
knowledge to model several aspects of the speakers’ mental states and attentively infuses the 
knowledge into the utterance representations.

KI-Net [44]: This work leverages token-level commonsense knowledge from knowledge 
graphs and explicitly infuses the knowledge into token-level dialogue representations. It also 
implicitly introduces sentiment scores from the sentiment lexicon SenticNet [95] via multi-
task learning to guide emotion reasoning.

DAG-ERC [121]: Utilising RoBERTa-Large as the single utterance encoder, this model 
builds a directed acyclic graph on the dialogue and uses a multi-layer DAGNN to aggregate the 
information on the graph. The outputs of all layers are concatenated for ERC classification.

SGED [165]: This method proposes a speaker-guided encoder-decoder framework to ex-
ploit speaker information for ERC.

SKAIG [105]: This work extracts psychological commonsense knowledge from COMET [54], 
builds a graph on the dialogue according to different aspects of the knowledge, and uses the 
corresponding knowledge representations as the edge representations.

CoG-BART [84]: Based on BART-Large [166], this work utilises SCL and a response 
generation auxiliary task to distinguish semantics of utterances with similar emotions. The 
tasks are trained in a multi-task learning manner.

3.5.3 Implementation Details

We conduct the experiments on IEMOCAP, MELD, and EmoryNLP using a single Nvidia 
Tesla V100 GPU with 16GB of memory, and set the batch size to 4. For large-scale dataset 
DailyDialog, we conduct the experiments using a single Nvidia Tesla A100 GPU with 80GB 
of memory, and set the batch size to 16. We initialise the pre-trained weights of PLMs 
and use the tokenization tools both provided by Huggingface3. The pre-trained knowledge 
adapter weights are from Wang et al.[52], and these weights are fused during training. We 
leverage AdamW optimiser [167] to train the model, with a linear warm-up learning rate 
scheduling [168] of warm-up ratio 20% and peak learning rate 1e-5. Due to the limitation of 
computation memory, we use mixed floating point precision [169] during training. Hyper-
parameters are tuned on the validation set. 𝛼 is tuned on the interval [0.5, 1.0] and set to 1.0 

3https://huggingface.co/
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for MELD and 0.8 for all other datasets. 𝑆 = 512, 𝐷ℎ = 1024, 𝐿 = 24 for RoBERTa-Large, 
and 𝐷ℎ = 768, 𝐿 = 12 for RoBERTa-Base. We set a dropout rate 0.1, a 𝐿2 regularisation 
rate 0.01 to avoid over-fitting. We use the weighted-F1 measure as the evaluation metric for 
IEMOCAP, MELD and EmoryNLP. Since neutral is the dominant tag in DailyDialog, we use 
micro-F1 for this dataset, and ignore the label neutral when calculating the results as in the 
previous works [84], [121]. All reported results are averages of five random runs.

3.6 Results and Analysis

3.6.1 Overall Performance

Table 4.3 presents the performance of our method, and compares it to the strong baseline 
models. 

Model IEMOCAP MELD EmoryNLP DailyDialog

BERT-Large [49] 60.60 62.83 33.73 54.09
DialogXL [120] 65.94 62.41 34.73 54.93

COSMIC [103] 65.28 65.21 38.11 58.48
KI-Net [44] 66.98 63.24 – 57.30
SGED [165] 68.53 65.46 40.24 –
SKAIG [105] 66.96 65.18 38.88 59.75

RGAT [117] 65.22 60.91 34.42 54.31
DAG-ERC [121] 68.03 63.65 39.02 59.33
CoG-BART [84] 66.18 64.81 39.04 56.29

HVAD-SCCL 69.88*(±0.50) – – –
NRC-SCCL 69.81*(±0.63) 65.70*(±0.82) 38.75(±0.49) 62.51*(±0.20)

Table 3.3. The test results on IEMOCAP, MELD, EmoryNLP and DailyDialog datasets. HVAD-SCCL 
denotes our SCCL method utilising the utterance-level VAD labels, and NRC-SCCL denotes SCCL with the 
NRC-VAD supervision signals. All SCCL results are with LinAdapter. Best values are highlighted in bold. 
The numbers with ∗ indicate that the improvement of our model over all baselines is statistically significant 

with p < 0.05 under t-test.

Figure 3.3. Visualisation of HVAD annotations in IEMOCAP training set.

According to the results, BERT-Large and DialogXL achieved competitive results on all 
datasets. These PLM-based methods are usually used as foundations for other works. KI-Net, 
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COSMIC and SKAIG all explicitly incorporate factual knowledge at the token level or mental 
state knowledge at the utterance level, and achieve competitive performance especially on 
short-context datasets, such as over 57% on DailyDialog (7.9 utterances per dialogue). SGED 
also implicitly models speaker information via an encoder-decoder framework, which leads 
to a balanced improvement on all datasets and the best performance 40.24% on EmoryNLP. 
These results demonstrate that infusing task-related knowledge and information is beneficial 
for ERC task. Though RGAT and DAG-ERC both utilise graph structure to model the context, 
DAG-ERC significantly outperforms RGAT with over 3% gain on all datasets, showing the 
importance of more reasonable dialogue modelling structures. The competitive performance 
of CoG-BART also shows the effectiveness of other representation learning techniques such 
as supervised contrastive learning and response generation.

We can only test HVAD-SCCL on IEMOCAP since all other datasets do not provide 
human-labelled utterance-level VAD scores. According to the results, HVAD-SCCL achieves 
a new state-of-the-art result of 69.88%, but outperforms NRC-SCCL slightly on IEMOCAP, 
which does not correspond to our early hypothesis. We notice that NRC-VAD follows strict 
best-worst scaling annotation and aggregation processes with a minimum of 6 annotators per 
word. In contrast, the IEMOCAP VAD (HVAD) annotation process follows a rough scheme, 
which brings inaccuracy to the annotated labels and only provides coarse-grained VAD in-
formation within each emotion. According to the visualisation results in Figure 3.3, the VAD 
shifts within each emotion are mostly discrete, which leads to a limited advantage over the 
fixed NRC-VAD prototypes. In addition, the VAD distributions of semantically similar emo-
tions (e.g. Frustrated and Sad) appear to be more entangled, which increases confusion 
during the training process.

On the other hand, NRC-SCCL obtains competitive results on all datasets, and achieves 
new state-of-the-art results 69.81% on IEMOCAP, 65.70% on MELD and 62.51% on Dai-
lyDialog. Specifically, NRC-SCCL outperforms all information infusion-based models on 
three datasets with linguistic knowledge and NRC-VAD emotion prototypes, showing the ef-
fectiveness of these information. It also improves the performance of CoG-BART by over 3%
on IEMOCAP and 6% on DailyDialog, indicating the advantage of SCCL over vanilla super-
vised contrastive learning and response generation. However, on EmoryNLP, NRC-SCCL 
fails to outperform the baseline models as in the other datasets. A possible reason is that 
EmoryNLP defines fuzzy emotions powerful and peaceful. Though appearing highly pos-
itive in NRC-VAD (Powerful: [0.865,0.830,0.991], peaceful: [0.867,0.108,0.569], as listed 
in Table 3.2), we find that many utterances labelled with these emotions do not yield posi-
tive sentiments. Therefore, unified VAD prototypes of the fuzzy emotions are misleading for 
many samples.

We provide some cases in Table 3.4 to explain the above hypothesis. All examples are 
from the training set of EmoryNLP. In the samples of peaceful, utterance #1 expresses no 
apparent emotions with a moderate Valance score 0.460, utterance #2 conveys weak sadness 
and anger with lower Valance 0.317 and higher Dominance 0.470, and utterance #3 shows im-
plicit happiness with higher Valance 0.752. In the samples of powerful, though all utterances 
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Emotion Utterances

peaceful (0.867,0.108,0.569)

1. Well...you never know. How’s. um... how’s the family? (0.460,0.249,0.355)

2. Warden, in five minutes my pain will be over. But you’ll have to live with
the knowledge that you sent an honest man to die. (0.317,0.470,0.261)

3. Yeah, I’m sorry too. But, I gotta tell you. I’m a little
relieved. (0.752,0.696,0.410)

4. Oh, like you’ve never gotten a little rambunctious with
Ross. (0.341,0.527,0.497)

5. Yeah, I’m thinking, if we put our heads together, between the two of us, we
can break them up. (0.770,0.194,0.712)

powerful (0.865,0.830,0.991)

1. ..Dammit, hire the girl! Okay, everybody ready? (0.483,0.936,0.898)

2. Okay, everybody, we’d like to get this in one take, please. Let’s roll it...
water’s working... and... action. (0.640,0.794,0.519)

3. I’m on top of the world, looking down on creation and the only explanation
I can find, is the wonders I’ve found ever since... (0.720,0.584,0.716)

4. Alright, I looked all over the building and I couldn’t find the kitty
anywhere. (0.325,0.764,0.372)

5. My God, you’re choking! That better? (0.322,0.905,0.569)

Table 3.4. Some samples of the fuzzy emotion peaceful and powerful that shift in 
Valance-Arousal-Dominance. We provide the NRC-VAD emotion prototypes for the two emotions, and the 

VAD predictions of each utterance in a random run of Lin-SCCL.

express high Arousal (emotion intensity) which corresponds to the NRC-VAD emotion proto-
types, these examples have different Valance and Dominance levels. For example, utterance 
#1 has high dominance 0.898 with a strong sense of control, but utterance #2 and #4 show 
relatively low dominance 0.519 and 0.372. On the other hand, utterance #3 conveys high 
Valance 0.722 with apparent pleasantness, while utterance #4 and #5 express sadness and 
fear with low Valance 0.325 and 0.322. Therefore, the model is unable to learn fine-grained 
shifts in fuzzy emotions with the unified NRC-VAD emotion prototypes. One direction of 
our future work is leveraging more fine-grained supervision signals to handle the change of 
situations for fuzzy emotions.

3.6.2 Ablation Study

We investigate the performance of each proposed module via an ablation study on Lin-SCCL 
in Table 3.5. According to the results, Lin-SCCL outperforms the context-aware utterance 
encoder by over 3% on IEMOCAP and DailyDialog, and over 2% on MELD and EmoryNLP. 
These improvements show the joint contribution of linguistic knowledge and SCCL. While 
the removal of either SCCL or LinAdapter decreases the model performance, removing SCCL 
leads to a more serious over 1.5% drop for IEMOCAP, MELD and DailyDialog. According 
to the previous analysis in NRC-VAD emotion prototypes, SCCL is expected to be beneficial 
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Model IEMOCAP MELD EmoryNLP DailyDialog

Fac-SCCL 69.66 65.10 37.85 61.89
-SCCL 68.25(↓1.41) 64.20(↓0.90) 37.10(↓0.75) 60.64(↓1.25)

Lin-SCCL 69.81 65.70 38.75 62.51
-SCCL 68.21(↓1.60) 63.70(↓2.00) 38.53(↓0.22) 60.38(↓2.13)
-Adapter 69.23(↓0.58) 64.72(↓0.98) 37.45(↓1.30) 61.53(↓0.22)
-SCCL,Adapter 66.52(↓3.29) 63.44(↓2.26) 36.68(↓2.07) 59.32(↓3.19)

Lin-RL 68.70(↓1.11) 64.65(↓1.05) 38.12(↓0.63) 61.24(↓1.27)

Table 3.5. Results of ablation study for two knowledge types. Lin-SCCL denotes the SCCL method with 
LinAdapter and Fac-SCCL is with FacAdapter. Lin-RL replaces the SCCL with a correlation-based 

regression loss on the VAD scores. All experiments use the NRC-VAD supervision signals.
“-” denotes the removal of one or several modules, and “Adapter” denotes the adapter module. The values 
in parentheses indicate the relative change with respect to Lin-SCCL and Fac-SCCL. We omit the repeated 
results for Fac-SCCL. Best values are highlighted in bold. 

in distinguishing similar emotions, which is crucial for ERC and leads to more improvement 
than LinAdapter on these datasets. On EmoryNLP, LinAdapter benefits model performance 
more significantly than SCCL since the fuzzy emotions affect the contrastive learning process 
in VAD space, as analysed in Sec. 3.6.1. Lin-SCCL outperforms Lin-RL by over 1% on most 
datasets, showing SCCL as more appropriate for leveraging VAD information. A possible 
reason is that regression loss only introduces the current emotion’s cluster-level represen-
tation, while SCCL also introduces and pushes apart all other emotion prototypes. SCCL 
further enables the model to be aware of the quantitative information between each pair of 
emotions.

3.6.3 Empirical Comparison of Knowledge Adapters

We analyse the effect of linguistic knowledge and factual knowledge on SCCL and the utter-
ance encoder by comparing their performance in ERC, where the results are shown in Table 
3.5. According to the results, both LinAdapter and FacAdapter contribute to the performance 
positively, denoting the effectiveness of both knowledge types. Lin-SCCL outperforms Fac-
SCCL on all four datasets, because linguistic knowledge provides utterance structure infor-
mation to help discover the linguistic patterns for emotion expression, which benefits the 
contrastive learning process. On the other hand, much factual knowledge is unrelated to af-
fect and brings noise to the fine-grained emotion reasoning in SCCL. With the removal of 
SCCL, the utterance encoder achieves superior results on MELD and DailyDialog with Fa-
cAdapter, since the factual knowledge enriches the semantics of utterances, which benefits 
the dialogues with short contexts. This hypothesis is further indicated by the more signif-
icant improvement with LinAdapter on the other two rich-context datasets IEMOCAP and 
EmoryNLP. Overall, the empirical comparison of both knowledge adapters verifies the more 
benefits of linguistic knowledge on SCCL, and factual knowledge provides more information 
to the utterance encoder in short-context scenarios.
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3.6.4 Comparison of Contrastive Learning Methods

We compare the results of different contrastive learning methods with RoBERTa encoder in 
Figure 3.4.

Both large and base-size encoders are leveraged to compare the performance of encoders 
with different context modelling ability. “VADCL” denotes performing SCL directly on VAD 
space without introducing emotion prototypes, and “Random-SCCL” utilises the same struc-
ture as SCCL except randomly initialising the prototype for each emotion instead of utilising 
NRC-VAD.

For the results on RoBERTa-Large, SCCL outperforms the RoBERTa baseline with an 
improvement of 2.71% on IEMOCAP and 1.28% on MELD. VADCL achieves compara-
ble performance with SCL on both datasets, proving the viability of performing contrastive 
learning on a low-dimensional space instead of the semantic space, which also provides useful 
information to facilitate the identification of emotions. SCCL also outperforms VADCL on 
both datasets, denoting that emotion prototypes guide samples of each emotion to cluster to-
wards proper positions and maintain appropriate quantitative relations. To further analyse this 
hypothesis, we experiment on RoBERTa+Random-SCCL, and Random-SCCL yields worse 
outcomes than RoBERTa on both datasets. These results indicate that SCCL relies on emo-
tion prototypes instead of merely clustering the same emotion as in SCL. The quantitative 
information embedded in the prototype of each emotion is eliminated as the consequence of 
the random initialisation, and these false relations mislead SCCL.

Figure 3.4. Performance of different contrastive learning methods with RoBERTa-Large and RoBERTa-Base 
encoder. Test performance is reported with tuning on the dev set.

We also present the results with RoBERTa-Base encoder. As expected, RoBERTa-Large 
outperforms RoBERTa-Base with all contrastive learning methods. Similar conclusions about 
the comparisons of contrastive learning methods are drown from the results of RoBERTa-
Base, showing that our above conclusions are robust with utterance representations of vary-
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ing quality. In addition, the advantage of SCCL is more apparent on IEMOCAP, showing the 
consistent benefits of rich context on SCCL with different utterance encoders.

3.6.5 Batch Size Stability

With the change in batch size, we compare the training stability of SCCL, VADCL and SCL in 
Weighted-F1 scores on IEMOCAP. The results are shown in Figure 3.5. Due to the limitation 
in computational resources, we utilise RoBERTa-Base as encoder and range the batch size 
from 20 to 24.

Figure 3.5. Change of F1 scores with different batch sizes on IEMOCAP, using RoBERTa-Base as the 
encoder.

According to the results, RoBERTa achieves the most stable outcomes as the batch size 
changes, with a Standard Derivation (SD) of 0.32%. SCCL obtains 0.82% better results 
than RoBERTa on average, and performs stable as the batch size change, with a SD of 0.66%. 
This result shows that emotion prototypes obtained from NRC-VAD provide a fixed clustering 
direction for samples of each emotion. Therefore, the model does not need a large amount of 
observations at each training step for a stable convergence.

For SCL, while the results remain competitive and stable with large batch sizes, the perfor-
mance drops fast below the RoBERTa baseline as the batch size decreases, leading to a high 
SD of 1.40%. In the extreme case where the batch size drops to 1, SCL fails to converge and 
brings noise to the training process, resulting in a severe 2.83% drop compared to RoBERTa. 
We also provide the variation scale at each batch size for SCCL and SCL. The results show 
that SCCL has relatively low variances compared to SCL, especially with small batch sizes. 
This result shows the benefit of NRC-VAD emotion prototypes and the low-dimensional con-
trastive space, which relieves the curse of dimensionality problem.

VADCL suffers from the similar problems as SCL, with the highest SD of 1.67%. In 
addition, VADCL performs worse than SCL with small batch sizes. When observing only 
a few samples at each training step, the model fails to extract effective features in the three-
dimensional space without emotion prototypes as the guidance.
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3.6.6 Visualisation in VAD Space

With the three-dimensional VAD space, we are able to directly visualise the predictions in-
stead of utilising dimension reduction techniques. Each VAD prediction also reflects the 
model’s corresponding emotion reasoning process from the Valence-Arousal-Dominance per-
spective, which benefits interpretability. We present the key elements of the visualisation 
results on all four test sets in Figure 3.6.

Figure 3.6. Key elements of the VAD visualisation results on all test sets. We only present the samples of 
representative emotions to provide a more intuitive view.

For IEMOCAP, we select and present semantically similar emotions (e.g., excited and 
happy) to gain clearer insights to the effect of SCCL, demonstarting their relationships to 
each other. For dissimilar emotions such as happy and sad, Valance alone separates them 
well enough. In addition, similar emotions are also well distinguished in VAD space by 
Arousal and Dominance, which corresponds with our early hypothesis. For example, frus-
trated and sad significantly vary in terms of Arousal, and happy and excited are jointly di-
vided by Arousal and Dominance.

70



In section 3.6.1, we speculate that SCCL provides less improvement to EmoryNLP due to 
the fuzzy emotions where the VAD prototypes vary in different situations. In the visualisa-
tion on EmoryNLP, we present the two fuzzy emotions powerful, peaceful and two relatively 
invariant emotions joyful, sad to provide an intuitive comparison. According to the results, 
the model makes accurate and well-clustered VAD predictions for samples of joyful and sad, 
while the predictions of peaceful and powerful spread across the VAD space and fail to cluster.

The visualisation results of MELD and DailyDialog shows similar well-separated samples 
of emotions, such as joy/happy and surprise. However, the predictions of several emotions 
are inaccurate and not well clustered (e.g., anger and sad in MELD, fear in DailyDialog). We 
notice that the label distribution of both MELD and DailyDialog is highly imbalanced. Train-
ing samples of sad cover merely 6.8% in MELD. In DailyDialog, over 60% of utterances are 
labelled with neutral or happy, while the ratio of fear and sad are both below 5%. Therefore, 
another direction of future work is to handle the lack of training samples caused by label im-
balance for SCCL. In addition, emotions such as anger and sad are often expressed implicitly, 
which is closely dependent on the context. Therefore, the lack of contextual information in 
MELD and DailyDialog brings more challenges to the prediction of these emotions. Overall, 
the above visualisation results correspond with other experimental outcomes.

3.7 Summary

In this chapter, based on a PLM utterance encoder, we propose a low-dimensional super-
vised cluster-level contrastive learning model for emotion recognition in conversations. We 
reduce the high-dimensional supervised contrastive learning space to a three-dimensional 
space Valance-Arousal-Dominance, and incorporate VAD prototypes from the emotion lex-
icon NRC-VAD by proposing the novel SCCL method. In addition, we infuse linguistic 
knowledge and factual knowledge into the context-aware utterance encoder by utilising the 
pre-trained knowledge adapters. Though pre-trained knowledge adapters are not modified in 
anyway, we are the first to successfully apply them to ERC.

Experimental results show that our method achieves new state-of-the-art results on three 
datasets IEMOCAP, MELD, and DailyDialog. Ablation study proves the effectiveness of each 
proposed module, and further analysis indicates that VAD space is an appropriate and inter-
pretable space for SCCL. Emotion prototypes from NRC-VAD provide useful quantitative 
information to guide SCCL, which improves model performance and stabilises the training 
process. The knowledge infused by pre-trained knowledge adapters also enhances the perfor-
mance of the utterance encoder and SCCL. In the future, we will leverage more fine-grained 
supervision signals to handle fuzzy emotions, and develop efficient methods to alleviate label 
imbalance and lack of context problems for SCCL.
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Chapter 4

Mental State Knowledge Infusion

4.1 Overview

Similar to other text mining tasks dealing with long sequences, context modelling ability is 
crucial for stress and depression detection. Early works utilise CNN[139] or RNN[140], 
[141] to capture long-dependency semantic information from posts. In recent years, the 
Transformer-based PLMs [49], [75], [170] have shown their strong context modelling ability, 
leading to the popularity of the pretraining-finetuning paradigm in mental health conditions 
detection. However, stress and depression detection are still more complicated than other 
related tasks, such as vanilla emotion recognition, since it requires fine-grained modelling 
of the speaker’s mental states. Mental states are defined as the states of mind of a person, 
such as intention, reaction and belief. For example, with the post of a depressed speaker I 
honestly have no idea how a day is gonna go anymore, the reaction feel sad and intention 
intend to complain about life clearly reflect the depression tendency of the speaker. In psy-
chology, researchers [171], [172] use questionnaires to evaluate an individual’s mental status 
and tendency to depression. For example, the Center for Epidemiologic Studies Depression 
Scale [173] utilises questions related to mental states such as how often do you feel lonely?. 
In deep learning-based methods, existing research has leveraged external knowledge such as 
emotional information [152], [153] and user intention features [174] to aid the mental state 
modelling process. In addition, Ji et al.[157] collect a large amount of data on mental health 
from social media platforms and fine-tune them on the pre-trained BERT to implicitly infuse 
mental state knowledge.

Although previous methods have presented promising results, they overlook several vital 
factors. Firstly, existing methods mainly focus on leveraging semantic information or emo-
tional features to model mental states that are not explicable or controllable implicitly. Sec-
ondly, even if we have explicitly modelled mental states, the model can still lack mentalisation 
[175], [176] ability (the ability to understand the mental states of others) to select and inter-
pret mental states correctly. For example, with reaction feel lonely and intention intend to ask 
questions, the model needs to mentalise that feel lonely is more related to mental health con-
ditions. A third challenge is developing more explicit ways to capture class-specific features 
from the post embeddings since the post encoders are found to poorly capture the semantics 
of sentences [159] without carefully fine-tuning in many other NLP tasks.
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To tackle the above challenges, we propose a mental state Knowledge-aware and Contrastive
Network (KC-Net) for early stress and depression detection. Based on a context-aware post 
encoder for the first challenge, we leverage a generative commonsense knowledge base called 
COMET [54] that provides the participants’ mental state descriptions of various aspects given 
a post as input. We call these descriptions as mental state knowledge. It is expected to model 
the mental states of speakers explicitly. Mental state knowledge is infused in post embeddings 
using GRU models. For the second challenge, we improve the model’s mentalisation ability 
by introducing knowledge-aware dot-product attention, allowing the model to attentively se-
lect mental state knowledge aspects most relevant to the current reasoning process. To solve 
the third problem, we employ supervised contrastive learning, which pushes together repre-
sentations with the same label, and repels those with different labels. We thoroughly leverage 
label information to mine the class-specific features. At the same time, we expect the more 
representative post embedding, also used for querying in knowledge-aware dot-product at-
tention, will perform better during mentalisation. We validate our method on a depression 
detection dataset, a stress detection dataset and a stress factors recognition dataset. Experi-
mental results show that our model consistently outperforms the strong baselines and achieves 
new state-of-the-art results on all three datasets.

In summary, this paper makes the following contributions:

• For the first time on stress and depression detection, we propose to explicitly model the 
mental states of speakers by leveraging mental state knowledge from COMET explicitly.

• We introduce a mentalisation module based on knowledge-aware dot-product attention 
to enhance the model’s ability to understand and utilise the introduced mental state 
knowledge.

• We discuss the necessity to capture class-specific features and utilise supervised con-
trastive learning to leverage label information for this purpose fully.

• Our method achieves new state-of-the-art results on three stress and depression detection 
datasets and each of the proposed modules is proved effective. Further analysis also 
explains and visualises the mechanism of these modules.

We provide an overview of our method in Figure 4.1. The framework mainly contains 
data pre-processing, post encoding, mental state feature extraction, knowledge-aware men-
talisation based on dot-product attention, and joint training of stress and depression detection 
and contrastive learning. We first (a) collect and (b) pre-process the raw data. Then we (c) 
employ the context-aware post encoder to obtain deep bidirectional word embeddings of the 
input post. Thirdly, we (d) extract mental state knowledge and infuse it into the network to 
aid the (e) mentalisation process. Specifically, after extracting the knowledge, we combine it 
with the post embeddings using GRUs and utilise knowledge-aware dot-product attention to 
focus on the most relevant knowledge aspects. Finally, we employ (f) supervised contrastive 
learning as the auxiliary task, together with the (g) stress and depression detection main task, 
for (h) jointly training in a multi-task learning manner.
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Figure 4.1. Overview of our stress and depression detection framework.

4.2 Post Encoding

4.2.1 Data Pre-Processing

Each post in the training data consists of multiple sentences without segmentation, while the 
extraction and infusion of mental state knowledge both require sentence-level representations. 
To facilitate the input construction of the knowledge encoder and the concatenation of mental 
state knowledge embeddings, we use NLTK1 sentence tokenizer to segment the post into 
sentences. Thus, the 𝑖th post in the data X𝑖 = {X𝑖

1, X𝑖
2, ..., X𝑖

N𝑖}, where X𝑖
𝑗 is the 𝑗th sentence, 

and N𝑖 denotes the number of sentences in X𝑖.

To make the post encoder context-aware, the model input needs to cover the whole post 
at once. We rejoin all post elements in X𝑖 with ⟨/𝑠⟩, which denotes end-of-sentence to-
ken in the post encoder. We also prepend the rejoined input with a start-of-sentence token 
⟨𝑠⟩. The final input is ̂X𝑖 = {⟨𝑠⟩ ; X𝑖

1; ⟨/𝑠⟩ ; ...; X𝑖
N𝑖 ; ⟨/𝑠⟩}, where ; denotes concatenation. 

Since the embedding look-up process of the encoder requires a token-level representation 
of the post, we use the token-level tokenizer provided by HuggingFace2 to tokenize ̂X𝑖: 
X̂𝑖 = {X̂𝑖

0, ̂X𝑖
1, ..., X̂𝑖

𝐾𝑖}, where ̂X𝑖
𝑘 denotes the 𝑘th token, and 𝐾𝑖 denotes the number of 

tokens in ̂X𝑖. We also record the position of the start-of-sentence and each of the end-of-
sentence tokens ⟨𝑠⟩ and ⟨/𝑠⟩ in ̂X𝑖: 𝑃 𝑖 = {0, 𝑃 𝑖

1 , 𝑃 𝑖
2 , ..., 𝑃 𝑖

𝑛𝑖}, where each 𝑃 𝑖
𝑘 is the 𝑘-th 

separation position, and 𝑛𝑖 denotes the number of separation tokens in ̂X𝑖. If the overall 
token numbers exceed the maximum input length, we truncate it to fit the post encoder.

4.2.2 Context-Aware Post Encoder

In recent years, we have witnessed the huge success of utilising PLMs [49], [75], [170] as 
sentence encoders for fine-tuning various downstream tasks, such as text classification [177] 
and text generation [178]. One advantage of these Transformer-based PLMs in text modelling 

1https://www.nltk.org/
2https://huggingface.co/
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is that they are context-aware and allow direct and full interactions between long-distance el-
ements, which is important in long-sequence posts. The semantic information and knowledge 
learned during pre-training also help to enrich sentence-level representations. Furthermore, 
domain-specific pre-trained PLMs usually outperforms general language pre-trained PLMs 
on domain-related tasks [179], [180]. MentalRoBERTa [157] is trained on mental health 
posts crawled from social media and customised for detecting mental health conditions. It 
outperforms RoBERTa on several related datasets due to domain-related knowledge intro-
duced during pre-training. Therefore, we propose a Context-Aware Post (CAP) encoder based 
on MentalRoBERTa to obtain token-level embeddings.

Specifically, with the pre-processed input ̂X𝑖, the CAP encoder uses 𝐿 layers of Trans-
former to get the input representations. For convenience, we denote the process as:

H𝑖 = 𝑝𝑜𝑠𝑡_𝑒𝑛𝑐𝑜𝑑𝑒𝑟( ̂X𝑖, 𝐿) (4.1)

where 𝑝𝑜𝑠𝑡_𝑒𝑛𝑐𝑜𝑑𝑒𝑟 denotes the CAP encoder, and H𝑖 ∈ ℝ𝑁×𝐷ℎ denotes the outputs of 𝐿th 
layer of the encoder, 𝑁 denotes the sequence length, and 𝐷ℎ is the hidden dimension of the 
CAP encoder.

4.3 Mentalisation

This section introduces the extraction of the sentence-level mental state knowledge and how 
we infuse this knowledge into the stress and depression detection model. An overview of 
our approach is provided in Figure 4.2. It mainly contains two parts: (a) mental state knowl-
edge feature extraction; (b) the mentalisation process, which includes the GRU-based knowl-
edge combination and the attentive knowledge selection process. We utilise a generative 
transformer model for mental state knowledge, namely COMET [54], to extract knowledge 
features. Based on GPT [75], COMET has two versions, which are trained separately on 
ATOMIC [47] and ConceptNet [45]. ConceptNet is a word-level commonsense knowledge 
base, while ATOMIC is a large-scale collection of everyday inferential if-then knowledge in 
the form of textual descriptions. These descriptions mainly focus on the speaker and listen-
ers of the input. In particular, there are nine different if-then aspects in ATOMIC. An input 
involving a speaker S and listeners (others) may include nine aspects: intent of S, need of S, 
attribute of S, effect on S, wanted by S, reaction of S, effect on others, wanted by others, and 
reaction of others. As an example, with the input Person S gives him a compliment, intent of 
S would be S wanted to be nice. With pre-training on ATOMIC, COMET can generate nine 
responses regarding the input and each aspect. These responses are similar to the knowledge 
in ATOMIC but are not bound by them. Considering the apparent mutual indications between 
mental states and mental health conditions, it is natural to select the COMET model trained 
on ATOMIC over ConceptNet, which mainly consists of general language concepts.
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Figure 4.2. Overview of the mental state knowledge infusion process.

4.3.1 Feature Extraction

COMET generates nine if-then responses for each input, which cover most aspects of the 
participants’ mental states. However, the nine aspects are not equally beneficial for mental 
state modelling. We select the following five aspects: intent of S (𝑅𝐼𝑆), effect on S (𝑅𝐸𝑆), 
reaction of S (𝑅𝑅𝑆), effect on others (𝑅𝐸𝐿) and reaction of others (𝑅𝑅𝐿), forming the selected 
aspect set R. These aspects are selected mainly by considering the following two factors: (a) 
Sap et al.[47] clearly define intent of S (𝑅𝐼𝑆), reaction of S (𝑅𝑅𝑆) and reaction of others (𝑅𝑅𝐿) 
as mental states of the participants, which is directly related to our goal; (b) These five aspects 
have been selected and utilised in emotion-related tasks and achieved promising performance 
[103], [116] than other combinations. Considering the close relationship between emotions 
and mental states, this selection is expected to be appropriate.

We have obtained split sentences for post X𝑖 (Section 4.2.1). Since COMET enforces each 
input event to be less than 17 tokens, we truncate the event after tokenisation: 

̂X𝑖
𝑗 = X𝑖

𝑗[0 ∶ 𝑚𝑖𝑛(|X𝑖
𝑗|, 17)] (4.2)
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Note that we slice segments of sentences that exceed the maximum position length of the 
CAP encoder, and we discard the corresponding knowledge of these sentences to avoid in-
troducing noise. Sentence ̂X𝑖

𝑗 is regarded as input for knowledge extraction and concatenated 
with each of the selected aspect phrases in R. As an example, to process with RIS, we have 
input {X̂𝑖

𝑗; 𝑖𝑛𝑡𝑒𝑛𝑡 𝑜𝑓 S}, which is then put into the encoder of COMET to obtain knowl-
edge representations. We extract the activations from the final time step as the corresponding 
mental state embedding. Throughout the process, for X̂𝑖

𝑗 we have a set of five knowledge 
vectors:

�̂�( ̂X𝑖
𝑗) = {𝑅𝐼𝑆(X̂𝑖

𝑗), 𝑅𝐸𝑆( ̂X𝑖
𝑗), 𝑅𝑅𝑆( ̂X𝑖

𝑗), 𝑅𝐸𝐿( ̂X𝑖
𝑗), 𝑅𝑅𝐿(X̂𝑖

𝑗)}

where �̂�( ̂X𝑖
𝑗) ∈ ℝ5×𝐷𝑘 , 𝐷𝑘 denotes the knowledge embedding dimension. Instead of using 

them for response generation, we discard the COMET decoder and utilise the representations 
directly to enhance knowledge in post representations. We expect to adopt these mental-
related variables in a unified model.

We have computed token-level CAP embeddings H (Section 4.2.2), with all separation 
positions 𝑃 recorded (Section 4.2.1). In H𝑖, we compute sentence-level representation Ĥ𝑖

𝑗 for 
𝑗th sentence by performing intra-sentence max-pooling with position record 𝑃 𝑖:

Ĥ𝑖
𝑗 = 𝑚𝑎𝑥_𝑝𝑜𝑜𝑙𝑖𝑛𝑔(H[𝑃 𝑖

𝑗−1 ∶ 𝑃 𝑖
𝑗 ]) (4.3)

where 𝑚𝑎𝑥_𝑝𝑜𝑜𝑙𝑖𝑛𝑔 denotes max pooling operation, Ĥ𝑖
𝑗 ∈ ℝ𝐷ℎ , and [∶] denotes the slicing 

operation. We concatenate each sentence representation separately with the extracted five 
mental state embeddings to preserve the semantic and knowledge information for knowledge-
enhanced embeddings. As an example, Ĥ𝑖

𝑗 produces 𝑖𝑛𝑡𝑒𝑛𝑡 𝑜𝑓 S embedding:

E𝑖𝑗
𝐼𝑆 = [Ĥ𝑖

𝑗; 𝑅𝐼𝑆(X𝑖
𝑗)]

where E𝑖𝑗
𝐼𝑆 ∈ ℝ2𝐷ℎ is the knowledge-enhanced embedding. Therefore, each sentence 𝑋𝑖

𝑗 has 
an embedding set Ê𝑖

𝑗 = {E𝑖𝑗
𝐼𝑆, E𝑖𝑗

𝐸𝑆, E𝑖𝑗
𝑅𝑆, E𝑖𝑗

𝐸𝐿, E𝑖𝑗
𝑅𝐿}.

4.3.2 Knowledge-Aware Mentalisation

Given the sentence-level mental state knowledge-enhanced representations Ê𝑖
𝑗, we propose a 

knowledge-aware dot-product attention to attentively select different aspects to enhance the 
mentalisation ability of our model. Because this process requires a post-level embedding for 
each aspect, we utilise 5 independent GRU models [181] to separately encode the 5 aspects 
of knowledge-enriched representations for a post. Each GRU model walks over one aspect 
representations of the sentences. For example, with embedding E𝑖 and aspect 𝑖𝑛𝑡𝑒𝑛𝑡 𝑜𝑓 S, 
we compute the post-level embedding:

O𝑖
𝐼𝑆 = 𝐺𝑅𝑈𝐼𝑆(E𝑖

𝐼𝑆, 𝐷𝑟) (4.4)
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where 𝐺𝑅𝑈𝐼𝑆 denotes the corresponding GRU model, 𝐷𝑟 denotes the hidden state dimension 
of the GRU, O𝑖

𝐼𝑆 denotes the hidden state of the final time step of the GRU, and E𝑖
𝐼𝑆 =

{E𝑖0
𝐼𝑆, E𝑖1

𝐼𝑆, ..., E𝑖N𝑖

𝐼𝑆 }. After the encoding process of 5 GRUs, for post 𝑋𝑖, we acquire a post-
level embedding set with 5 aspect embeddings: Ô𝑖 = {O𝑖

𝐼𝑆, O𝑖
𝐸𝑆, O𝑖

𝑅𝑆, O𝑖
𝐸𝐿, O𝑖

𝑅𝐿}.

Each mental state aspect of the knowledge-enriched embeddings contributes to the mental 
state reasoning process, according to different situations of various posts. Thus, we utilise 
a scaled dot-product attention module on the 5 post-level knowledge-enriched embeddings. 
For each post, the word-level embedding H𝑖

⟨𝑠⟩ of the start-of-sentence token ⟨𝑠⟩ is used as the 
overall semantic representation. Therefore, we use H𝑖

⟨𝑠⟩ as the query, and the aspect embed-
dings ̂O𝑖 as keys and values:

F𝑖 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(
H𝑖

⟨𝑠⟩ ⋅ Ô𝑖⊤

√𝐷ℎ
) ⋅ Ô𝑖 (4.5)

where F𝑖 denotes final post embedding of 𝑋𝑖, 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 denotes softmax operation, ⋅ denotes 
dot product operation.

Post 1 Post 2 Post 3 Post 4 Post 5

CAP Encoder CAP Encoder CAP Encoder CAP Encoder CAP Encoder

Post Embed 1 Post Embed 2 Post Embed 3 Post Embed 4 Post Embed 5

Select <s> Select <s> Select <s> Select <s> Select <s>

LSCL LSCL LSCL LSCL LSCL

Repel Push Closer

One Batch

Figure 4.3. Overview of the supervised contrastive learning module.

4.4 Instance-Level Contrastive Learning

Stress and depression have specific features, which can be used for diagnosis, such as alcohol 
use and eating disorders [182]. Recognition of these class-specific features usually requires 
multi-modal information such as facial expression [183], while we only have access to text-
based posts. Thus, the CAP encoder must fully utilise linguistic features that are discrimina-
tive in mental health identification [28], [184]. Unfortunately, the original post embedding 
H𝑖

⟨𝑠⟩ from CAP encoder cannot capture the semantics of sentences [159] without careful fine-
tuning. Recent works used unsupervised contrastive learning to solve this issue [42], [82]. 
We also employ contrastive learning, but in a supervised manner, to fully leverage the label 
information for capturing class-specific features. We provide an overview in Figure 4.3. The 
intuition of supervised contrastive learning is to make sentences with the same label cohesive 
and different labels mutually exclusive. As a result, we expect the model to correctly extract 
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key features in contrast with posts from the same and different categories. Since the post 
embeddings are also utilised as queries in knowledge-aware dot-product attention (Section 
4.3.2), we also expect the contrasted embeddings to perform better in mentalisation.

For each post 𝑋𝑖, we still utilise H𝑖
⟨𝑠⟩ as the semantic representation. All the posts within 

the same training batch take part in the contrast process of 𝑋𝑖, where posts with the same 
label as 𝑋𝑖 are considered as positive pairs and the ones with different labels are considered 
as negative pairs. For multi-class datasets such as SAD, there could be a class where only one 
sample exists in a batch, and it cannot be directly applied for contrastive learning. To solve 
the problem, inspired by Li et al.[84], we copy each post embedding H𝑖

⟨𝑠⟩ as H𝑖
⟨𝑠⟩, where 

H𝑖
⟨𝑠⟩ is detached from gradient. For a batch Ĥ⟨𝑠⟩ = {H1

⟨𝑠⟩, H2
⟨𝑠⟩, ..., H𝑁𝑏

⟨𝑠⟩}, where 𝑁𝑏 denotes 
the batch size, we obtain a new batch H̃⟨𝑠⟩ = [Ĥ⟨𝑠⟩, H⟨𝑠⟩] of size 2𝑁𝑏, where [, ] denotes 
concatenation in the first dimension. With this copy operation, each sample within one batch 
has at least one sample in the same category(the detached copy of itself). We then compute 
contrastive loss on this new batch:

𝑠𝑖𝑚(𝑝, 𝑖) = 𝑙𝑜𝑔
𝑒𝑥𝑝(H̃𝑝

⟨𝑠⟩ ⋅ H̃𝑖
⟨𝑠⟩/𝜏)

∑𝑎∈𝐴(𝑖) 𝑒𝑥𝑝(H̃𝑎
⟨𝑠⟩ ⋅ H̃𝑖

⟨𝑠⟩/𝜏)
(4.6)

𝐿𝑆𝐶𝐿 = ∑
𝑖∈𝐼

− 1
|𝑃(𝑖)|

∑
𝑝∈𝑃(𝑖)

𝑠𝑖𝑚(𝑝, 𝑖) (4.7)

where 𝑖 ∈ 𝐼 = {1, 2, ..., 2𝑁} denotes the sample index, 𝜏 indicates the temperature coeffi-
cient, 𝑃(𝑖) represents samples in the same category as sample H̃𝑖

⟨𝑠⟩ except itself, and 𝐴(𝑖)
denotes all sample in H̃⟨𝑠⟩ except H̃𝑖

⟨𝑠⟩.

4.5 Model Training

We combine the training of the stress and depression detection and supervised contrastive 
learning task in a multi-task learning setting. The training loss consists of 2 parts: (a) the out-
put of the knowledge-aware dot-product attention F𝑖 passes through a feed-forward network 
to obtain classification logits 𝐿𝑀𝐷 for computing cross-entropy of post 𝑋𝑖; (b) the supervised 
contrastive learning loss 𝐿𝑆𝐶𝐿. We formalize them as follows:

̂𝑌 𝑖 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐹𝐹𝑁(F𝑖)) (4.8)

𝐿𝑀𝐷 = − 1
𝑁

𝑁

∑
𝑖=1

𝐶

∑
𝑐=1

𝑌 𝑖,𝑐𝑙𝑜𝑔 ̂𝑌 𝑖,𝑐 (4.9)

𝐿𝑜 = 𝛼𝐿𝑀𝐷 + (1 − 𝛼)𝐿𝑆𝐶𝐿 (4.10)
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Dataset Category Data Source Avg. Sentence Avg. Token Train Validation Test
Depression_Mixed Depression Reddit & Blogs 13 264 2215 474 476

Dreaddit Stress Reddit 5 103 2270 568 715
SAD Stress Factors SMS 1 17 5548 617 685

Table 4.1. Summary of the datasets. If the original data does not have a validation set, we split a portion of 
the training set for validation.

where 𝐹𝐹𝑁 denotes a feed-forward network, 𝑌 𝑖 denotes the one-hot ground-truth label of 
𝑋𝑖, 𝐶 is the number of classes, 𝛼 is the weight for controlling contribution of the 2 losses, 
and 𝐿𝑜 denotes the overall training loss.

4.6 Experimental Settings

4.6.1 Datasets

In this paper, we evaluate and compare our method with others on three different publicly 
available datasets. We explain the building process of these datasets in this section, and their 
statistical details are listed on Table 4.1. We also provide some examples for each of the 
datasets on Table 4.2.

Depression_Mixed3[23] A weakly-supervised depression detection dataset with 2765 posts, 
which are collected from subreddits of Reddit4. Each post is labelled as depression or not, and 
consists of a multiple-sentence monologue stating the speaker’s background and current feel-
ings. Specifically, the authors match posts with certain protocols (e.g., posts containing I was 
just diagnosed with depression) in the Depression Support subreddit, and collect other posts 
written by the same speaker within one month as depressive posts. Non-depressive posts are 
collected in a similar way from the Breast Cancer and Family and Friends subreddits. Another 
400 blog posts are also collected from English depression forums [27].

Dreaddit5[185] A human labelled stress detection dataset. The authors select five domains 
belonging to three major topics: financial need, mental illness, and interpersonal conflict, 
where members are likely to discuss stressful topics. Then ten related subreddits are utilised 
to collect posts, such as homeless and PTSD. The dataset includes 3553 posts, each consists 
of a multiple-sentence monologue stating the feelings of the speaker, and each post is labelled 
as stressful or not. The annotation process is done using Amazon Mechanical Turk6, where 
workers are required to label 5 posts as stress, not stress and unknown, until each post is 
labelled by at least 5 workers. Finally, the label of each post is determined by vote and those 
with unknown label are discarded.

SAD7[186] A human-labelled stress factor detection dataset. To determine the stressors, 
the authors derive an original stressor set from Holmes and Rahe Scale[187], and simplify 

3https://github.com/Inusette/Identifying-depression
4https://www.reddit.com/
5http://www.cs.columbia.edu/ eturcan/data/dreaddit.zip
6https://www.mturk.com/
7https://github.com/PervasiveWellbeingTech/Stress-Annotated-Dataset-SAD
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Dataset Examples

Depression_Mixed

So one effect is that I get really, really, really sad about some things. I just saw a
per**n get hit by the bus I’d j*** gotten off of; when I went to help it, it g** hit
by another car and I head it’s skull smash. I am absolutely devastated and can’t
stop myself crying at work. (Depression)

Looking to start a business of having de***ions with people who want or need
so****dy to talk to. Pr***s to be arranged. Feel free to get in touch if you are
interested (Non-Depresson)

Dreaddit

But it’s been 2 mo***s already this time. We did not speak for Christmas or new
year. I’m lonely, sad, angry at the si***tion (not angry at him!) and the worst
part is not being able to talk or even know what’s going on. We did not fight
be***e this so he’s not angry at me. (Stress)

Maybe a couple more days will get me back to normal. Definitely quit***g the
alcohol. It’s an obvious trigger. But yeah, just w**ted to ask his thread on your
thoughts. Thanks (Non-Stress)

SAD

All these e**ra hours at work are driving me insane. (Work)

Coronavirus.I am high risk be***se of asthma so I am worried (Health, Fatigue,
or Physical Pain)

A person I know is man***lating money owed. (Financial Problem)

All t**s coursework I’ve had lately. (School)

Table 4.2. Some examples of the three datasets. The posts have been paraphrased and obfuscated for user 
privacy.

it by labelling collected messages from chat-bot history. Further simplification and data an-
notation are done by two rounds of human intelligence tasks on Amazon Mechanical Turk. 
As a result, the stressor set includes nine stressor categories: 𝑇={‘School’, ‘Financial Prob-
lem (Finance)’, ‘Family Issues (Family)’, ‘Social Relationships (Social)’, ‘Work’, ‘Health, 
fatigue, or physical pain (Health)’, ‘Emotional Turmoil (Emotion)’, ‘Other’, ‘Everyday Deci-
sion Making (Decision)’}. The authors also notice that some categories have low cardinality. 
Therefore, they randomly select messages from the low-cardinality categories, and scrape 
more data that have similar sentence embeddings with these messages to expand the dataset. 
Finally, the dataset contains 6850 SMS-like sentences, where each post is a short message 
(normally one sentence) divided into one of these categories.

4.6.2 Model Summary

We compare our model with the following baselines:

CNN [188]: A three channel convolution as the encoder, which has 128 dimensional fea-
tures and filters of 3,4,5. Post-level embeddings are obtained using max-pooling and features 
of different filters are concatenated for decoding.

GRU [189]: A two-layer uni-directional GRU is utilised as the encoder. The hidden states 
of the final time-step are used for decoding.

BiLSTM_Att [190]: Attention mechanism is used on the output of a bidirectional LSTM 
network. The attended hidden states are used for decoding.
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LR+Features [191]: Logistic Regression (LR) combining selected linguistic features 
(LIWC features, n-gram features, etc.).

EMO_INF [152]: An emotion-infused model which leverages emotion prediction as the 
auxiliary task to improve stress detection. The emotion prediction model is fine-tuned on 
GoEmotions dataset[192].

BERT [49]: Initialized from the pre-trained weights of BERT-base. The embedding of 
the ‘[CLS]’ token is used for decoding.

RoBERTa [50]: Initialized from the pre-trained weights of RoBERTa-base. The embed-
ding of the ‘⟨𝑠⟩’ token is used for decoding.

MentalRoBERTa [157]: Initialized from the pre-trained weights of MentalRoBERTa. 
The embedding of the ‘⟨𝑠⟩’ token is used for decoding.

4.6.3 Experiment Configuration

We conducted all experiments on a E5-2630L v3 CPU with 30GB of memory, and a Geforce 
RTX 3060 GPU with 12 GB of memory. For hyper-parameter setting, we set 𝐷ℎ = 𝐷𝑘 =
768. The maximum input length of the post encoder is 512. To facilitate further processing, 
we still keep the hidden state dimension of the GRU 𝐷𝑟 as 768, which is identical to the 
post and knowledge embeddings. The framework and initial weights of the PLMs come from 
Huggingface’s Transformers [193]. We employ AdamW [194] optimizer for model training, 
with a batch size 𝑁𝑏 of 8 on SAD, Dreaddit, and 4 on Depression Mixed. We use a learning 
rate of 1e-5, and set a dropout rate of 0.3 on all experiments. The evaluation metrics are cho-
sen as precision(P), recall(R) and F1 measures. All the results are obtained in text modality 
only. The results reported in our experiments are all based on the average of 3 random runs 
on the test set.

4.7 Performance Comparison

This section presents the overall and factor specific experimental performances of the baseline 
models and our methods on the three datasets. We also provide the ablation analysis to prove 
the effectiveness of the proposed modules.

4.7.1 Overall Results

The overall experiment results of our model and the baselines are listed in Table 4.3 and Table 
4.4, where ‘+RoBERTa’ denotes replacing the CAP encoder with RoBERTa to explore the 
performance of our method on models with different levels of domain expertise, and ‘C-Net’ 
and ‘K-Net’ denote the Contrast module and Knowledge infusion module separately imple-
mented on the CAP encoder. According to the results on Depression_Mixed and Dreaddit. 
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PLM-based models such as BERT and RoBERTa perform a general advantage with over 90%
performance on Depression_Mixed and 80% on Dreaddit. We also notice that the KC-Net 
based on RoBERTa outperforms MentalRoBERTa on both datasets, which shows the advan-
tage of explicit mental state modelling and mentalisation process over implicit infusion of 
domain-specific knowledge. KC-Net achieves 95.4% of F1 scores on Depression_Mixed, and 
83.5% on Dreaddit, which are both new state-of-the-art results, with over 2% improvements 
over the PLM-based models. It indicates the advantage of our method on longer sequences 
(with over 100 tokens per post) and complex contexts.

As for the results on SAD, PLM-based models still outperform other baselines by achiev-
ing over 74% of F1 scores, indicating the strong semantic modelling ability of deep, pre-
trained models. MentalRoBERTa, the current state-of-the-art model, achieves over 75% F1 
scores, since it introduces domain-specific knowledge in the post-training phase. For our 
methods, C-Net and K-Net both outperform previous methods on RoBERTa and CAP en-
coder, which separately prove the effectiveness of contrastive learning and mental state knowl-
edge infusion. KC-Net still outperforms C-Net and K-Net on RoBERTa, but K-Net on the 
CAP encoder achieves a new state-of-the-art F1 result 77.8%, and outperforms KC-Net. One 
possible reason is that with domain-specific knowledge, CAP encoder possesses higher class-
specific feature mining ability than RoBERTa, which already satisfies the need for short SAD 
posts with simple semantics and no contexts. Thus, the advantage of contrastive learning 
fades on these simple posts.

4.7.2 Factor-Specific Results

We present the F1-measure performance of our models and baselines on each stress factor in 
SAD on Table 4.4. Our method achieves the best results on most factors and gives a balanced 
performance. We believe the infusion of mental state knowledge and supervised contrastive 
learning both contribute to the performance. To gain a clearer view of their effect, we focus 
on each factor’s proportion of contribution to the improvement of C-Net and K-Net over the 
CAP encoder.

Depression_Mixed Dreaddit
Model P R F1 P R F1

CNN[188] 85.2 85.1 85.1 70.1 68.8 68.5
GRU[189] 84.4 84.4 84.4 71.2 69.4 69.9
BiLSTM_Att[190] 90.4 95.0 92.6 72.7 72.0 72.0
LR+Features[191] 89.0 92.0 89.0 73.5 81.0 77.0
EMO_INF[152] - - - 81.7 81.7 81.7
BERT[49] 91.4 91.4 91.4 80.3 79.9 79.8
RoBERTa[50] 93.2 92.4 92.9 81.2 81.3 81.3
MentalRoBERTa[157] 93.4 93.0 93.3 82.1 81.8 81.9

KC-Net+RoBERTa 93.7 93.7 93.7 82.7 82.6 82.7
KC-Net (Ours) 95.5 95.3 95.4 84.1 83.3 83.5

Table 4.3. Performance comparisons on Depression_Mixed and Dreaddit. We highlight top-1 values in bold. 
‘-’ means the original paper does not give the corresponding result.
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Model School Finance Family Social Work Health Emotion Other Decision P R F1

GRU 83.5 68.8 69.7 47.6 78.1 52.2 22.9 35.8 5.4 58.3 57.1 57.1
CNN 78.0 79.4 73.2 57.4 78.3 53.9 30.8 39.3 21.1 62.6 61.5 61.0
BERT 88.9 86.5 83.0 76.8 86.0 63.1 55.1 55.7 12.5 75.3 73.8 74.4
RoBERTa 87.3 83.9 81.6 77.3 86.7 74.9 53.7 51.7 30.0 72.6 76.2 74.9
MentalRoBERTa 88.2 84.4 85.7 76.3 88.0 76.8 52.9 53.7 9.9 74.8 76.5 75.3

C-Net+RoBERTa 88.1 87.9 84.9 79.4 87.0 72.9 56.6 59.9 13.5 75.5 77.0 76.4
K-Net+RoBERTa 89.0 85.1 84.7 79.7 86.3 79.0 54.6 56.1 6.7 77.3 75.7 76.2
KC-Net+RoBERTa 88.5 85.7 85.0 78.1 87.9 74.0 59.1 56.3 48.3 75.4 77.4 76.8

C-Net 88.5 87.4 86.2 78.2 89.0 74.7 54.6 54.7 13.4 75.4 77.1 76.6
K-Net 87.9 85.7 85.9 81.3 89.5 72.5 61.2 63.0 48.9 78.7 77.2 77.8
KC-Net(Ours) 89.3 88.3 86.4 79.4 90.9 68.8 57.7 59.5 30.8 75.6 77.6 77.0

Table 4.4. Performance comparison of ours, baselines, and state-of-the-art methods for F1 measures of each 
stress factor and the averages of P, R, F1 on SAD. We highlight top-1 values in bold.
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(a). C-Net
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Figure 4.4. Each factor’s proportion of contribution to the improvement of C-Net and K-Net over the CAP 
encoder. We ignore factors with no explicit improvement.

We first analyse the results on C-Net. It indicates that contrastive learning provides each 
factor with a relatively balanced improvement, with an average of 12.5% performance gain. 
This is reasonable since we expect contrast to fully leverage label information of each factor 
and extract their class-specific features. Compared to K-Net, contrastive learning also boosts 
more factors to gain solid improvement. It further shows that contrastive learning can uni-
versally increase the performance of each class. For labels with fewer training samples such 
as Decision, K-Net and KC-Net based models significantly outperform other models, with an 
average of over 20% performance gain. We believe the infusion of mental state knowledge 
has great benefit for lack of samples, and supervised contrastive learning can fully leverage 
the limited label information.

For mental state knowledge infusion, things are quite different. In contrast with C-Net, 
K-Net provides more imbalanced performance improvement, with an average of 16.6% per-
formance gain and over 60% coming from the factor ‘Decision’. We notice that the ‘Decision’ 
factor in the training set has the lowest proportion of sample numbers (less than 5%), which 
means the model receives less information from ‘Decision’ category during the training pro-
cess. Nevertheless, we believe the infusion of COMET knowledge provides clear clues of 
mental states of the speakers, which are especially useful for low-resource categories in short 
post datasets, such as ’decision’ in SAD. Therefore, we believe this advantage of K-Net is 
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Depression_Mixed Dreaddit
Model P R F1 P R F1

KC-Net+RoBERTa 93.8 93.7 93.7 82.9 82.6 82.7
– All Knowledge Modules 93.5 93.3 93.5(↓ 0.2) 82.8 82.3 82.5(↓ 0.2)
– Mentalisation Module 93.4 92.7 93.0(↓ 0.7) 81.5 82.0 81.7(↓ 1.0)
– Contrast Module 93.1 93.1 93.1(↓ 0.6) 82.5 82.1 82.4(↓ 0.3)
RoBERTa 93.3 92.4 92.9(↓ 0.8) 81.2 81.3 81.3(↓ 1.4)

KC-Net 95.4 95.3 95.4 83.6 83.3 83.5
– All Knowledge Modules 94.4 94.4 94.3(↓ 1.1) 82.4 82.2 82.3(↓ 1.2)
– Mentalisation Module 94.4 93.6 94.0(↓ 1.4) 81.9 82.0 81.9(↓ 1.6)
– Contrast Module 95.0 94.6 94.7(↓ 0.7) 83.2 82.6 83.0(↓ 0.5)
CAP Encoder 93.5 93.0 93.3(↓ 2.1) 81.9 81.8 81.9(↓ 1.6)

Table 4.5. The results of ablation study.

Depression_Mixed Dreaddit SAD
Model P R F1 P R F1 P R F1

K-Net+RoBERTa 93.3 92.8 93.2 81.7 81.8 81.7 75.7 76.2 75.8
KC-Net+RoBERTa 92.9 93.3 93.0 81.4 82.8 82.1 75.8 75.2 75.6

K-Net 94.3 93.9 94.1 82.1 82.0 82.1 76.0 76.7 76.2
KC-Net 93.4 94.9 94.4 82.8 83.4 83.2 77.7 76.2 77.0

Table 4.6. The results of our methods with all nine knowledge aspects attended.

worth further exploration in few-shot learning scenarios.

4.7.3 Ablation Study

We perform ablation study of our model on both Depression_Mixed and Dreaddit datasets. 
‘All Knowledge Modules’ denotes the removal of both mental state feature extraction and 
mentalisation module. ‘-Mentalisation Module’ only removes the mentalisation module while 
keeping the mental state knowledge, and uses the average of the five knowledge-enhanced 
post embeddings for emotion disorders detection. ‘-Contrast Module’ discards the contrastive 
learning module. Note that each “-” operation separately removes the corresponding mod-
ule and there are no overlaps between operations. The results are shown on Table 4.5. The 
performance drops with each of the components removed. Especially, with the mentalisation 
module removed, the models consistently perform worse than the removal of all knowledge-
related modules, which shows the importance of mentalisation in selecting the most relevant 
aspects of knowledge, instead of equally considering all aspects. Without the mentalisation 
process, the model is unable to filter out the noise brought by COMET or focus on the most 
useful aspects.

We also notice that in both datasets, compared with ‘-All Knowledge Modules’ the per-
formance drops more on KC-Net+RoBERTa when contrastive learning is removed (-Contrast 
Module), while on KC-Net the performance drops more when all knowledge modules is re-
moved (-All Knowledge Modules). This proves that a higher level of domain expertise in 
the CAP encoder helps in both post embedding and mentalisation processes. On RoBERTa, 
the performance relies more on contrastive learning in understanding complex semantics and 
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extracting class-specific features. Besides, though KC-Net performs well on both encoders, 
the performance drops more on CAP encoder when KC-Net is completely removed. These 
results further indicate that the knowledge infusion and contrastive learning module could 
benefit more from encoders with rich domain-specific knowledge.

4.7.4 Empirical Analysis of Knowledge Aspects Selection

Though we have provided persuasive reasons for the selection of knowledge aspects, we per-
form empirical analysis by also testing our methods on three datasets with all nine aspects 
attended. The results are listed in Table 4.6. According to the results, all methods with all 
knowledge aspects attended perform slightly worse than ones with carefully chosen five as-
pects. A possible reason is that the remaining aspects are not closely relevant to mental state 
modelling, which brings noise to the mentalisation process. Specifically, short posts in SAD 
also do not convey enough information for complicated mental state reasoning of nine as-
pects, and the generative knowledge source may produce incorrect knowledge regarding the 
added aspects.

4.8 Discussion

In this chapter, though our proposed KC-Net achieves new state-of-the-art results on three 
datasets, there remains room for improvement. Therefore, we perform error analysis on the 
worst-performing dataset SAD. Now with a more explicable model architecture, we also eval-
uate the effect of each introduced module by analysing the outcomes from multiple different 
views.

School

Finance

Family

Social

Work

Health

Emotion

Other

Decision

Predictions

True Labels

Figure 4.5. The confusion matrix on SAD dataset.
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4.8.1 Error Analysis

Though our model achieves a new state-of-the-art result on the SAD dataset in stress fac-
tors recognition, the F1 scores are still below 80%. We present the confusion matrix of one 
random test result of KC-Net on the SAD dataset in Figure 4.5.

The confusion matrix indicates that our model is able to correctly classify most of the 
stress factors, while the errors mainly come from the Other category. Both mis-classifications 
to and from Other severely affect model performance. We believe one cause is that Other
contains a complex set with all unidentified factors, where some of the factors even cannot be 
determined by human annotators. Another reason could be that some of the factors in Other
lie close to the listed factors in SAD. We also observe that the number of mis-classifications 
of each factor to Other is almost in reverse proportion to their correct classification numbers. 
As an example, with the fewest correctly classified samples, Decision has the highest number 
of mis-classifications to Other. We infer that the larger amount of correctly classified samples 
denote a more accurate extraction of the key class-specific features, which helps the model 
distinguish these factors from those of Other.

Figure 4.6. The UMAP visualization results of CAP encoder and C-Net on Dreaddit and SAD.
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4.8.2 Qualitative Analysis of Contrastive Learning

Our experimental results demonstrate that supervised contrastive learning boosts the per-
formance on all three datasets. We owe this performance to the mutually repelling process 
between embeddings with different labels, which enforces the model to focus on fine-grained 
semantics and key features. To further evaluate this inference, we utilise UMAP [195] to 
visualize the distribution of high-dimensional post representations obtained by training with 
and without supervised contrastive loss. To analyse the outcome of datasets with different 
categories numbers, we present the results on both Dreaddit and SAD, which are shown in 
Figure 4.6.

When contrastive loss is not used, the CAP encoder is trained solely on cross-entropy loss. 
The overlapping of both Dreaddit and SAD samples is relatively high, especially for factors 
with fewer samples in SAD, which increases the difficulty to the knowledge selection process 
of mentalisation and the learning of decision boundaries. When the CAP encoder is jointly 
trained with contrastive loss (C-Net), we can observe that the coupling of different classes 
has been distinctively enlarged, and samples of the same class gradually cohesive. On SAD, 
the effect shows more apparently with factors with more samples, while factors with fewer 
samples also have some degrees of decoupling with each other.

4.8.3 Case Study of Knowledge Infusion

We provide more insights on the effect of the mental state knowledge infusion and the mental-
isation process by introducing two cases from the testing process of Dreaddit and Depression 
Mixed datasets, which are shown in Figure 4.7. Part of the post, the golden labels and predic-
tions of CAP encoder, K-Net and KC-Net are listed. We also show the extracted mental state 
knowledge and the corresponding mentalisation attention scores. We provide key parts of the 
posts, the golden labels, and the predictions of different models on the post to show the effect 
of different modules directly. We utilised the final-layer hidden states of the COMET encoder 
as mental state knowledge, which is not convenient for the case study. Therefore, we leverage 
the COMET decoder to decode the hidden states and obtain the actual knowledge phrases, 
and record the corresponding knowledge-aware dot-product attention scores as evidence of 
which aspects the mentalisation process focuses on. For the case on Depression_Mixed, the 
CAP encoder failed to predict the post as depressed, since it was not aware of the negative 
mental states of the speaker. With the mental state knowledge, K-Net and KC-Net both cor-
rectly detected the depression by focusing on key knowledge aspects such as speaker reaction 
Feel sad and speaker intent To be understood. We also notice that compared with K-Net, 
KC-Net filtered out unrelated aspects such as effect on others Gets asked to leave, but pay 
more attention to implicit yet useful mental states: the speaker hopes to Talk to someone, 
which requires higher mentalisation ability to understand the relations between depression 
and loneliness. As a whole, in 476 test samples, K-Net corrects around 21 false negative 
samples by CAP encoder on average in Depression_Mixed with five random runs. We also 
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notice that these posts possess 20.7% less token numbers on average, which shows that part 
of the benefits of mental state knowledge comes from enriching the contexts.

For the case on Dreaddit, both the CAP encoder and K-Net fail to detect stress on the post. 
We notice that the attention scores of K-Net have high perplexity, which indicates that K-Net 
was not able to clearly distinguish important information from others. For KC-Net, we ob-
serve a much lower perplexity on attention scores. The model clearly focuses more on speaker 
reaction Feel upset, which directly reflects negative mental states, and effect on speaker We 
are broke. We believe this focus denotes that KC-Net has possessed some degree of men-
talisation ability to recognize the stress factor Financial Problem, with the awareness that 
financial problems are more likely to be stress factors. To further analyse this hypothesis, we 
calculate the average information entropy8 of the attention weights in the test set of Dreaddit 
for five random runs of both K-Net and KC-Net. The results show that K-Net has an average 
entropy of 1.53, while KC-Net has 1.34. KC-Net achieves over 12.4% decrease in entropy, 
which denotes that the model possesses higher confidence in selecting crucial knowledge as-
pects. Based on this idea, it would also be interesting to explicitly combine stress factors 
detection with mental health conditions detection in future work.

4.8.4 Ethical Considerations

RIS: To be understood

RRS: Feel sad

RRL: Confused

REL: Gets asked to leave

RES: Talk to someone

RIS: To get a loan

RRS: Feel upset

RRL: To help us out

REL: Unhappy

RES: We are broke

Post … There is so much I don't ev** know how to talk about any more. …

Golden Depressed

CAP Encoder Not Depressed

K-Net Depressed

KC-Net Depressed

Post … We tried our best to pay the bills, but there was ju** no way. …

Golden Stressed

CAP Encoder Not Stressed

K-Net Not Stressed

KC-Net Stressed

Case on Depression_Mixed

Case on Dreaddit

Figure 4.7. We provide two cases, each from Depression_Mixed or Dreaddit.

Our model aims to provide assistance to different stakeholders using social media as a 
source of information for the the early detection of stress and depression for non-clinical use 
(i.e. public health and policy makers, social care workers, etc. who work at the intersection 
of public health and social care and need to be updated on mental health issues related with 
specific topics from social media). The model predictions are not meant to be used as psychi-
atric diagnoses. One reason is that the datasets are either annotated in a weakly supervised 
manner or labelled by non-experts from Amazon Mechanical Turk within the predefined an-

8https://en.wikipedia.org/wiki/Entropy_(information_theory)
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notation rules, which inevitably leads to annotation bias and can not verify an actual diagnosis 
[29]. The model can also make false predictions. Since most of the datasets in mental health 
involve sensitive privacy of the posters, we try to minimise the privacy impact when using 
the datasets and model. Researchers need to follow the strict protocols [37], [196], [197] 
by acquiring an exemption or ethical approval from their Institutional Review Board. More-
over, researchers need to obtain informed consent and protect sensitive data to avoid further 
psychological distress and intrusive treatment. All examples shown in our paper have been 
paraphrased and obfuscated according to the moderate disguise scheme suggested by Bruck-
man [197] to prevent misuse. In addition, we study the datasets in a purely observational 
capacity, with no intervention in user experience.

4.9 Summary

In this chapter, we propose KC-Net, a mental state knowledge-aware and contrastive net-
work for early stress and depression detection on social media. KC-Net first introduces men-
tal state knowledge from a generative knowledge base COMET, which explicitly models the 
mental state of speakers. Then GRU models and knowledge-aware dot-product attention are 
utilised for the mentalisation process, which aids the model in selecting more relevant knowl-
edge aspects. We also use a supervised contrastive learning module to fully leverage label 
information for capturing class-specific features. It’s also expected to better guide the knowl-
edge selection process in mentalisation.

We test our method on three public datasets, which include a depression detection dataset, 
a stress detection dataset and a stress factors recognition dataset. The experiments show that 
our model achieves new state-of-the-art results on all three datasets. Further analysis deter-
mines the effectiveness of each module, their contributions to factor specific improvements, 
and the main causes of errors. We also provide visualizations and analyse cases to show the 
outcomes of each module intuitively. During the analysis, we notice that knowledge infusion 
works exceptionally well on low-resource categories, and the model shows evidence in auto-
matically recognizing stress factors in the stress detection task. We will focus on these two 
observations in our following research.
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Chapter 5

Conclusions

5.1 Contributions

In this thesis, we aim to contribute to the representation learning techniques for applica-
tions in emotion recognition and mental health analysis. We are especially interested in two 
techniques: contrastive learning and knowledge infusion. Supervised contrastive learning is 
employed to distinguish the representations of similar categories, and knowledge infusion is 
utilised to enrich the semantics and facilitate the reasoning process. We design novel architec-
tures to adapt these techniques to the experiment tasks: emotion recognition in conversations 
and stress and depression detection. Comprehensive experiments and analyses are conducted 
for each task to prove the effectiveness of our methods and partially explain the inner mech-
anisms of the proposed modules.

Firstly, we design a new low-dimensional supervised cluster-level contrastive learning 
method for the ERC task. We reduce the high-dimensional supervised contrastive learn-
ing space to a three-dimensional space, Valance-Arousal-Dominance, and incorporate VAD 
prototypes from the emotion lexicon NRC-VAD by proposing the novel SCCL method. In ad-
dition, the pre-trained knowledge adapters are devised to infuse factual and linguistic knowl-
edge into the PLM-based context-aware utterance encoder. Experimental results show that 
our method achieves new state-of-the-art results on three datasets IEMOCAP, MELD, and 
DailyDialog. The ablation study proves the effectiveness of each proposed module, and fur-
ther analysis indicates that VAD space is an appropriate and interpretable space for SCCL. 
Emotion prototypes from NRC-VAD provide helpful quantitative information to guide SCCL, 
which improves model performance and stabilises the training process. The knowledge in-
fused by pre-trained knowledge adapters also enhances the performance of the utterance en-
coder and SCCL.

Secondly, we propose KC-Net, a mental state knowledge-aware and contrastive network 
for early stress and depression detection on social media. KC-Net first introduces mental state 
knowledge from a generative knowledge base COMET, which explicitly models the mental 
state of speakers. Then GRU models and knowledge-aware dot-product attention are utilised 
for the mentalisation process, which aids the model in selecting more relevant knowledge as-
pects. We also use a supervised contrastive learning module to fully leverage label informa-
tion for capturing class-specific features. It is also expected to guide the knowledge selection 
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process in mentalisation better. We test our method on three public datasets: a depression 
detection dataset, a stress detection dataset and a stress factors recognition dataset. The ex-
periments show that our model achieves new state-of-the-art results on all three datasets. 
Further analysis determines the effectiveness of each module, their contributions to factor-
specific improvements, and the leading causes of errors. We also provide visualisations and 
analyse cases to show each module’s outcomes intuitively.

With the above outcomes, we can answer the research questions raised in Sec. 1.2. For re-
search question #1, supervised contrastive learning can enhance the representations for ERC 
and stress and depression detection tasks since SCL pushes apart the representations with 
different labels, which forces the model to be aware of the fine-grained features indicating 
the differences and facilitates the discovery of the decision boundary. In addition, VAD infor-
mation from sentiment lexicons enables stable clustering in low-dimensional contrast space, 
further improving SCL’s performance.

For research question #2, task-related knowledge can enrich the representations and ben-
efit the reasoning process for ERC and stress and depression detection task. In stress and 
depression detection, model performance and case studies show that the infusion of mental 
state knowledge enables the model to focus on critical parts of the speaker’s mental state 
and find a clue to make a correct hypothesis. In ERC, factual knowledge incorporated from 
the knowledge adapter provides emotion-related relations and enriches the semantics of the 
utterance representation. Linguistic knowledge provides clear sentence structures on the ut-
terances and helps to model the dialogue. Both knowledge types improve model performance 
in ERC, but linguistic knowledge benefits more significantly.

5.2 Limitations

Though our representation learning methods achieve impressive results in ERC and stress and 
depression detection tasks, several limitations remain. For ERC, the fuzzy emotions that vary 
in VAD levels under different scenarios are not handled with the unified emotion prototypes. 
This limitation directly affects the performance of our model on the dataset EmoryNLP la-
belled with fuzzy emotions. In addition, label imbalance problems still affect the model 
performance on low-resource emotion categories. The model lacks training samples to mine 
functional patterns on these emotions, which leads to low accuracy. Finally, the model per-
formance improves less significantly on the short-context multi-party dataset MELD, which 
shows the importance of context information in multi-party ERC tasks. Though knowledge 
infusion enriches the semantics of each utterance, how to leverage external knowledge to 
enhance short-context scenarios remains unsolved.

For stress and depression detection, the research topic is more sensitive. The most crucial 
concern of the real-world applications is the ethics and the diagnosis standard. The train-
ing data can leak personal information and possess potential bias. Therefore, a fundamental 
solution is to increase the interpretability of the model, which facilitates human supervision 

92



and provides more information for human diagnosis. However, a fundamental limitation of 
the deep learning-based method is the lack of interpretability, as the learnt high-dimensional 
distributed representations are hard to understand. Though we provide a case study and vi-
sualisation in our thesis, more efforts are required to develop more interpretable models. In 
addition, the error analysis shows that the proposed KC-Net also suffers from label imbalance 
in stress factors detection, which leads to bad performance in low-resource categories.

5.3 Future Work

Based on the above limitations, we propose several directions for future work. We will 
leverage more fine-grained supervision signals for ERC to handle fuzzy emotions. In our 
work, we only utilise the NRC-VAD emotion prototypes of the emotion labels, while the 
emotion prototypes of many phrases in the utterances are also provided. Incorporating these 
emotion prototypes is expected to provide fine-grained information to ERC. We will also 
develop more efficient methods to alleviate the label imbalance problem. For example, a more 
appropriate loss function can enforce the model to focus on the low-resource categories during 
training. In addition, we will explore more knowledge infusion methods to solve the lack 
of context problems. For example, new pre-training methods can infuse the contextualised 
commonsense knowledge in the CICERO [89] dataset.

For stress and depression detection, according to the case study, the model shows evidence 
of automatically recognising stress factors in the stress detection task. Therefore, one direc-
tion of future work in improving interpretability is to jointly make a diagnosis and mine the 
decision factors, such as the stress factors. The joint training not only enhances model perfor-
mance in each task but also provides more evidence for the diagnosis. During the analysis, we 
also notice that the mental state knowledge infusion works exceptionally well on low-resource 
categories, which provides a future direction for alleviating the label imbalance problem. For 
example, we can design new knowledge infusion methods to focus more on the low-resource 
categories.
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