584 research outputs found

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Transmit design for MIMO wiretap channel with a malicious jammer

    Full text link
    In this paper, we consider the transmit design for multi-input multi-output (MIMO) wiretap channel including a malicious jammer. We first transform the system model into the traditional three-node wiretap channel by whitening the interference at the legitimate user. Additionally, the eavesdropper channel state information (ECSI) may be fully or statistically known, even unknown to the transmitter. Hence, some strategies are proposed in terms of different levels of ECSI available to the transmitter in our paper. For the case of unknown ECSI, a target rate for the legitimate user is first specified. And then an inverse water-filling algorithm is put forward to find the optimal power allocation for each information symbol, with a stepwise search being used to adjust the spatial dimension allocated to artificial noise (AN) such that the target rate is achievable. As for the case of statistical ECSI, several simulated channels are randomly generated according to the distribution of ECSI. We show that the ergodic secrecy capacity can be approximated as the average secrecy capacity of these simulated channels. Through maximizing this average secrecy capacity, we can obtain a feasible power and spatial dimension allocation scheme by using one dimension search. Finally, numerical results reveal the effectiveness and computational efficiency of our algorithms.Comment: 2015 IEEE 81st Vehicular Technology Conference (VTC Spring

    Power Allocation and Time-Domain Artificial Noise Design for Wiretap OFDM with Discrete Inputs

    Full text link
    Optimal power allocation for orthogonal frequency division multiplexing (OFDM) wiretap channels with Gaussian channel inputs has already been studied in some previous works from an information theoretical viewpoint. However, these results are not sufficient for practical system design. One reason is that discrete channel inputs, such as quadrature amplitude modulation (QAM) signals, instead of Gaussian channel inputs, are deployed in current practical wireless systems to maintain moderate peak transmission power and receiver complexity. In this paper, we investigate the power allocation and artificial noise design for OFDM wiretap channels with discrete channel inputs. We first prove that the secrecy rate function for discrete channel inputs is nonconcave with respect to the transmission power. To resolve the corresponding nonconvex secrecy rate maximization problem, we develop a low-complexity power allocation algorithm, which yields a duality gap diminishing in the order of O(1/\sqrt{N}), where N is the number of subcarriers of OFDM. We then show that independent frequency-domain artificial noise cannot improve the secrecy rate of single-antenna wiretap channels. Towards this end, we propose a novel time-domain artificial noise design which exploits temporal degrees of freedom provided by the cyclic prefix of OFDM systems {to jam the eavesdropper and boost the secrecy rate even with a single antenna at the transmitter}. Numerical results are provided to illustrate the performance of the proposed design schemes.Comment: 12 pages, 7 figures, accepted by IEEE Transactions on Wireless Communications, Jan. 201

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Physical Layer Service Integration in 5G: Potentials and Challenges

    Full text link
    High transmission rate and secure communication have been identified as the key targets that need to be effectively addressed by fifth generation (5G) wireless systems. In this context, the concept of physical-layer security becomes attractive, as it can establish perfect security using only the characteristics of wireless medium. Nonetheless, to further increase the spectral efficiency, an emerging concept, termed physical-layer service integration (PHY-SI), has been recognized as an effective means. Its basic idea is to combine multiple coexisting services, i.e., multicast/broadcast service and confidential service, into one integral service for one-time transmission at the transmitter side. This article first provides a tutorial on typical PHY-SI models. Furthermore, we propose some state-of-the-art solutions to improve the overall performance of PHY-SI in certain important communication scenarios. In particular, we highlight the extension of several concepts borrowed from conventional single-service communications, such as artificial noise (AN), eigenmode transmission etc., to the scenario of PHY-SI. These techniques are shown to be effective in the design of reliable and robust PHY-SI schemes. Finally, several potential research directions are identified for future work.Comment: 12 pages, 7 figure

    Secrecy Sum-Rates for Multi-User MIMO Regularized Channel Inversion Precoding

    Full text link
    In this paper, we propose a linear precoder for the downlink of a multi-user MIMO system with multiple users that potentially act as eavesdroppers. The proposed precoder is based on regularized channel inversion (RCI) with a regularization parameter α\alpha and power allocation vector chosen in such a way that the achievable secrecy sum-rate is maximized. We consider the worst-case scenario for the multi-user MIMO system, where the transmitter assumes users cooperate to eavesdrop on other users. We derive the achievable secrecy sum-rate and obtain the closed-form expression for the optimal regularization parameter αLS\alpha_{\mathrm{LS}} of the precoder using large-system analysis. We show that the RCI precoder with αLS\alpha_{\mathrm{LS}} outperforms several other linear precoding schemes, and it achieves a secrecy sum-rate that has same scaling factor as the sum-rate achieved by the optimum RCI precoder without secrecy requirements. We propose a power allocation algorithm to maximize the secrecy sum-rate for fixed α\alpha. We then extend our algorithm to maximize the secrecy sum-rate by jointly optimizing α\alpha and the power allocation vector. The jointly optimized precoder outperforms RCI with αLS\alpha_{\mathrm{LS}} and equal power allocation by up to 20 percent at practical values of the signal-to-noise ratio and for 4 users and 4 transmit antennas.Comment: IEEE Transactions on Communications, accepted for publicatio

    On the Secrecy Degress of Freedom of the Multi-Antenna Block Fading Wiretap Channels

    Full text link
    We consider the multi-antenna wiretap channel in which the transmitter wishes to send a confidential message to its receiver while keeping it secret to the eavesdropper. It has been known that the secrecy capacity of such a channel does not increase with signal-to-noise ratio when the transmitter has no channel state information (CSI) under mild conditions. Motivated by Jafar's robust interference alignment technique, we study the so-called staggered multi-antenna block-fading wiretap channel where the legitimate receiver and the eavesdropper have different temporal correlation structures. Assuming no CSI at transmitter, we characterize lower and upper bounds on the secrecy degrees of freedom (s.d.o.f.) of the channel at hand. Our results show that a positive s.d.o.f. can be ensured whenever two receivers experience different fading variation. Remarkably, very simple linear precoding schemes provide the optimal s.d.o.f. in some cases of interest.Comment: to appear in Proc. of IEEE International Symposium on Information Theory (ISIT2010

    Optimal Beamforming for Gaussian MIMO Wiretap Channels with Two Transmit Antennas

    Full text link
    A Gaussian multiple-input multiple-output wiretap channel in which the eavesdropper and legitimate receiver are equipped with arbitrary numbers of antennas and the transmitter has two antennas is studied in this paper. Under an average power constraint, the optimal input covariance to obtain the secrecy capacity of this channel is unknown, in general. In this paper, the input covariance matrix required to achieve the capacity is determined. It is shown that the secrecy capacity of this channel can be achieved by linear precoding. The optimal precoding and power allocation schemes that maximize the achievable secrecy rate, and thus achieve the capacity, are developed subsequently. The secrecy capacity is then compared with the achievable secrecy rate of generalized singular value decomposition (GSVD)-based precoding, which is the best previously proposed technique for this problem. Numerical results demonstrate that substantial gain can be obtained in secrecy rate between the proposed and GSVD-based precodings.Comment: Accepted for publication in IEEE Transactions on Wireless Communication
    corecore