2,473 research outputs found

    Emergent situations for smart cities: A survey

    Get PDF
    A smart city is a community that uses communication and information technology to improve sustainability, livability, and feasibility. As any community, there are always unexpected emergencies, which must be treated to preserve the regular order. However, a smart system is needed to be able to respond effectively to these emergent situations. The contribution made in this survey is twofold. Firstly, it provides a comprehensive exhaustive and categorized overview of the existing surveys for smart cities.  The categorization is based on several criteria such as structures, benefits, advantages, applications, challenges, issues, and future directions. Secondly, it aims to analyze several studies with respect to emergent situations and management to smart cities. The analysis is based on several factors such as the challenges and issues discussed, the solutions proposed, and opportunities for future research. The challenges include security, privacy, reliability, performance, scalability, heterogeneity, scheduling, resource management, and latency. Few studies have investigated the emergent situations of smart cities and despite the importance of latency factor for smart city applications, it is rarely discussed

    Smart Cities: An In-Depth Study of AI Algorithms and Advanced Connectivity

    Get PDF
    The goal of smart city development is to improve the quality of life by incorporating technology into daily activities. Artificial intelligence (AI) is critical to the ongoing development of future smart cities. The Internet of Things (IoT) idea connects every internet-enabled device for improved access and control. AI in various domains has changed ordinary towns into highly equipped smart cities. Machine learning and deep learning algorithms have proven indispensable in a variety of industries, and they are now being implemented into smart city concepts to automate and improve urban activities and operations on a large scale. IoT and machine learning technology are frequently used in smart cities to collect data from various sources. This article delves deeply into the significance, scope, and developments of AI-based smart cities. It also addresses some of the difficulties and restrictions associated with smart cities powered by AI. The goal of the study is to inspire and encourage academics to create original smart city solutions based on AI technologies

    Bio-inspired computation for big data fusion, storage, processing, learning and visualization: state of the art and future directions

    Get PDF
    This overview gravitates on research achievements that have recently emerged from the confluence between Big Data technologies and bio-inspired computation. A manifold of reasons can be identified for the profitable synergy between these two paradigms, all rooted on the adaptability, intelligence and robustness that biologically inspired principles can provide to technologies aimed to manage, retrieve, fuse and process Big Data efficiently. We delve into this research field by first analyzing in depth the existing literature, with a focus on advances reported in the last few years. This prior literature analysis is complemented by an identification of the new trends and open challenges in Big Data that remain unsolved to date, and that can be effectively addressed by bio-inspired algorithms. As a second contribution, this work elaborates on how bio-inspired algorithms need to be adapted for their use in a Big Data context, in which data fusion becomes crucial as a previous step to allow processing and mining several and potentially heterogeneous data sources. This analysis allows exploring and comparing the scope and efficiency of existing approaches across different problems and domains, with the purpose of identifying new potential applications and research niches. Finally, this survey highlights open issues that remain unsolved to date in this research avenue, alongside a prescription of recommendations for future research.This work has received funding support from the Basque Government (Eusko Jaurlaritza) through the Consolidated Research Group MATHMODE (IT1294-19), EMAITEK and ELK ARTEK programs. D. Camacho also acknowledges support from the Spanish Ministry of Science and Education under PID2020-117263GB-100 grant (FightDIS), the Comunidad Autonoma de Madrid under S2018/TCS-4566 grant (CYNAMON), and the CHIST ERA 2017 BDSI PACMEL Project (PCI2019-103623, Spain)

    IoT in smart communities, technologies and applications.

    Get PDF
    Internet of Things is a system that integrates different devices and technologies, removing the necessity of human intervention. This enables the capacity of having smart (or smarter) cities around the world. By hosting different technologies and allowing interactions between them, the internet of things has spearheaded the development of smart city systems for sustainable living, increased comfort and productivity for citizens. The Internet of Things (IoT) for Smart Cities has many different domains and draws upon various underlying systems for its operation, in this work, we provide a holistic coverage of the Internet of Things in Smart Cities by discussing the fundamental components that make up the IoT Smart City landscape, the technologies that enable these domains to exist, the most prevalent practices and techniques which are used in these domains as well as the challenges that deployment of IoT systems for smart cities encounter and which need to be addressed for ubiquitous use of smart city applications. It also presents a coverage of optimization methods and applications from a smart city perspective enabled by the Internet of Things. Towards this end, a mapping is provided for the most encountered applications of computational optimization within IoT smart cities for five popular optimization methods, ant colony optimization, genetic algorithm, particle swarm optimization, artificial bee colony optimization and differential evolution. For each application identified, the algorithms used, objectives considered, the nature of the formulation and constraints taken in to account have been specified and discussed. Lastly, the data setup used by each covered work is also mentioned and directions for future work have been identified. Within the smart health domain of IoT smart cities, human activity recognition has been a key study topic in the development of cyber physical systems and assisted living applications. In particular, inertial sensor based systems have become increasingly popular because they do not restrict users’ movement and are also relatively simple to implement compared to other approaches. Fall detection is one of the most important tasks in human activity recognition. With an increasingly aging world population and an inclination by the elderly to live alone, the need to incorporate dependable fall detection schemes in smart devices such as phones, watches has gained momentum. Therefore, differentiating between falls and activities of daily living (ADLs) has been the focus of researchers in recent years with very good results. However, one aspect within fall detection that has not been investigated much is direction and severity aware fall detection. Since a fall detection system aims to detect falls in people and notify medical personnel, it could be of added value to health professionals tending to a patient suffering from a fall to know the nature of the accident. In this regard, as a case study for smart health, four different experiments have been conducted for the task of fall detection with direction and severity consideration on two publicly available datasets. These four experiments not only tackle the problem on an increasingly complicated level (the first one considers a fall only scenario and the other two a combined activity of daily living and fall scenario) but also present methodologies which outperform the state of the art techniques as discussed. Lastly, future recommendations have also been provided for researchers

    Water Supply Infrastructure Modeling and Control under Extreme Drought and/or Limited Power Availability

    Get PDF
    abstract: The phrase water-energy nexus is commonly used to describe the inherent and critical interdependencies between the electric power system and the water supply systems (WSS). The key interdependencies between the two systems are the power plant’s requirement of water for the cooling cycle and the water system’s need of electricity for pumping for water supply. While previous work has considered the dependency of WSS on the electrical power, this work incorporates into an optimization-simulation framework, consideration of the impact of short and long-term limited availability of water and/or electrical energy. This research focuses on the water supply system (WSS) facet of the multi-faceted optimization and control mechanism developed for an integrated water – energy nexus system under U.S. National Science Foundation (NSF) project 029013-0010 CRISP Type 2 – Resilient cyber-enabled electric energy and water infrastructures modeling and control under extreme mega drought scenarios. A water supply system (WSS) conveys water from sources (such as lakes, rivers, dams etc.) to the treatment plants and then to users via the water distribution systems (WDS) and/or water supply canal systems (WSCS). Optimization-simulation methodologies are developed for the real-time operation of water supply systems (WSS) under critical conditions of limited electrical energy and/or water availability due to emergencies such as extreme drought conditions, electric grid failure, and other severe conditions including natural and manmade disasters. The coupling between WSS and the power system was done through alternatively exchanging data between the power system and WSS simulations via a program control overlay developed in python. A new methodology for WDS infrastructural-operational resilience (IOR) computation was developed as a part of this research to assess the real-time performance of the WDS under emergency conditions. The methodology combines operational resilience and component level infrastructural robustness to provide a comprehensive performance assessment tool. The optimization-simulation and resilience computation methodologies developed were tested for both hypothetical and real example WDS and WSCS, with results depicting improved resilience for operations of the WSS under normal and emergency conditions.Dissertation/ThesisDoctoral Dissertation Civil, Environmental and Sustainable Engineering 201

    AI Knowledge Transfer from the University to Society

    Get PDF
    AI Knowledge Transfer from the University to Society: Applications in High-Impact Sectors brings together examples from the "Innovative Ecosystem with Artificial Intelligence for Andalusia 2025" project at the University of Seville, a series of sub-projects composed of research groups and different institutions or companies that explore the use of Artificial Intelligence in a variety of high-impact sectors to lead innovation and assist in decision-making. Key Features Includes chapters on health and social welfare, transportation, digital economy, energy efficiency and sustainability, agro-industry, and tourism Great diversity of authors, expert in varied sectors, belonging to powerful research groups from the University of Seville with proven experience in the transfer of knowledge to the productive sector and agents attached to the AndalucĂ­a TECH Campu

    AI explainability and governance in smart energy systems: A review

    Get PDF
    Traditional electrical power grids have long suffered from operational unreliability, instability, inflexibility, and inefficiency. Smart grids (or smart energy systems) continue to transform the energy sector with emerging technologies, renewable energy sources, and other trends. Artificial intelligence (AI) is being applied to smart energy systems to process massive and complex data in this sector and make smart and timely decisions. However, the lack of explainability and governability of AI is a major concern for stakeholders hindering a fast uptake of AI in the energy sector. This paper provides a review of AI explainability and governance in smart energy systems. We collect 3,568 relevant papers from the Scopus database, automatically discover 15 parameters or themes for AI governance in energy and elaborate the research landscape by reviewing over 150 papers and providing temporal progressions of the research. The methodology for discovering parameters or themes is based on “deep journalism,” our data-driven deep learning-based big data analytics approach to automatically discover and analyse cross-sectional multi-perspective information to enable better decision-making and develop better instruments for governance. The findings show that research on AI explainability in energy systems is segmented and narrowly focussed on a few AI traits and energy system problems. This paper deepens our knowledge of AI governance in energy and is expected to help governments, industry, academics, energy prosumers, and other stakeholders to understand the landscape of AI in the energy sector, leading to better design, operations, utilisation, and risk management of energy systems
    • …
    corecore