229 research outputs found

    Artificial development of connections in SHRUTI networks using a multi-objective genetic algorithm

    Get PDF
    SHRUTI is a model of how first-order logic can be represented and reasoned upon using a network of spiking neurons in an attempt to model the brain’s ability to perform reasoning. This paper extends the biological plausibility of the SHRUTI model by presenting a genotype representation of connections in a SHRUTI network using indirect encoding and showing that networks represented in this way can be generated by an evolutionary process

    Evolution of connections in SHRUTI networks

    Get PDF
    SHRUTI is a model of how predicate relations can be represented and reasoned upon using a network of spiking neurons, attempting to model the brain’s ability to perform reasoning using as biologically plausible a means as possible. This paper extends the biological plausibility of the SHRUTI model by presenting a genotype representation of connections in a SHRUTI network using indirect encoding and showing that working networks represented in this way can be produced through an evolutionary process. A multi-objective algorithm is used to minimise the error and the number of weight changes that take place as a network learn

    Artificial Development of Neural-Symbolic Networks

    Get PDF
    Artificial neural networks (ANNs) and logic programs have both been suggested as means of modelling human cognition. While ANNs are adaptable and relatively noise resistant, the information they represent is distributed across various neurons and is therefore difficult to interpret. On the contrary, symbolic systems such as logic programs are interpretable but less adaptable. Human cognition is performed in a network of biological neurons and yet is capable of representing symbols, and therefore an ideal model would combine the strengths of the two approaches. This is the goal of Neural-Symbolic Integration [4, 16, 21, 40], in which ANNs are used to produce interpretable, adaptable representations of logic programs and other symbolic models. One neural-symbolic model of reasoning is SHRUTI [89, 95], argued to exhibit biological plausibility in that it captures some aspects of real biological processes. SHRUTI's original developers also suggest that further biological plausibility can be ascribed to the fact that SHRUTI networks can be represented by a model of genetic development [96, 120]. The aims of this thesis are to support the claims of SHRUTI's developers by producing the first such genetic representation for SHRUTI networks and to explore biological plausibility further by investigating the evolvability of the proposed SHRUTI genome. The SHRUTI genome is developed and evolved using principles from Generative and Developmental Systems and Artificial Development [13, 105], in which genomes use indirect encoding to provide a set of instructions for the gradual development of the phenotype just as DNA does for biological organisms. This thesis presents genomes that develop SHRUTI representations of logical relations and episodic facts so that they are able to correctly answer questions on the knowledge they represent. The evolvability of the SHRUTI genomes is limited in that an evolutionary search was able to discover genomes for simple relational structures that did not include conjunction, but could not discover structures that enabled conjunctive relations or episodic facts to be learned. Experiments were performed to understand the SHRUTI fitness landscape and demonstrated that this landscape is unsuitable for navigation using an evolutionary search. Complex SHRUTI structures require that necessary substructures must be discovered in unison and not individually in order to yield a positive change in objective fitness that informs the evolutionary search of their discovery. The requirement for multiple substructures to be in place before fitness can be improved is probably owed to the localist representation of concepts and relations in SHRUTI. Therefore this thesis concludes by making a case for switching to more distributed representations as a possible means of improving evolvability in the future

    Soft Computing

    Get PDF
    Soft computing is used where a complex problem is not adequately specified for the use of conventional math and computer techniques. Soft computing has numerous real-world applications in domestic, commercial and industrial situations. This book elaborates on the most recent applications in various fields of engineering

    Radical Artificial Intelligence: A Postmodern Approach

    Get PDF

    Radical Artificial Intelligence: A Postmodern Approach

    Get PDF
    The dynamic response of end-clamped monolithic beams and sandwich beams has been measured by loading the beams at mid-span using metal foam projectiles. The AISI 304 stainless-steel sandwich beams comprise two identical face sheets and either prismatic Y-frame or corrugated cores. The resistance to shock loading is quantified by the permanent transverse deflection at mid-span of the beams as a function of projectile momentum. The prismatic cores are aligned either longitudinally along the beam length or transversely. It is found that the sandwich beams with a longitudinal core orientation have a higher shock resistance than the monolithic beams of equal mass. In contrast, the performance of the sandwich beams with a transverse core orientation is very similar to that of the monolithic beams. Three-dimensional finite element (FE) simulations are in good agreement with the measured responses. The FE calculations indicate that strain concentrations in the sandwich beams occur at joints within the cores and between the core and face sheets; the level of maximum strain is similar for the Y-frame and corrugated core beams for a given value of projectile momentum. The experimental and FE results taken together reveal that Y-frame and corrugated core sandwich beams of equal mass have similar dynamic performances in terms of rear-face deflection, degree of core compression and level of strain within the beam

    Radical Artificial Intelligence: A Postmodern Approach

    Get PDF

    Soft Computing

    Get PDF
    Soft computing is used where a complex problem is not adequately specified for the use of conventional math and computer techniques. Soft computing has numerous real-world applications in domestic, commercial and industrial situations. This book elaborates on the most recent applications in various fields of engineering

    A Review of Findings from Neuroscience and Cognitive Psychology as Possible Inspiration for the Path to Artificial General Intelligence

    Full text link
    This review aims to contribute to the quest for artificial general intelligence by examining neuroscience and cognitive psychology methods for potential inspiration. Despite the impressive advancements achieved by deep learning models in various domains, they still have shortcomings in abstract reasoning and causal understanding. Such capabilities should be ultimately integrated into artificial intelligence systems in order to surpass data-driven limitations and support decision making in a way more similar to human intelligence. This work is a vertical review that attempts a wide-ranging exploration of brain function, spanning from lower-level biological neurons, spiking neural networks, and neuronal ensembles to higher-level concepts such as brain anatomy, vector symbolic architectures, cognitive and categorization models, and cognitive architectures. The hope is that these concepts may offer insights for solutions in artificial general intelligence.Comment: 143 pages, 49 figures, 244 reference
    • …
    corecore