541 research outputs found

    Application of Artificial Bee Colony Algorithm in Vehicle Routing Problem With Time Windows

    Get PDF
    In order to improve the accuracy of the artificial bee colony algorithm (ABC) on vehicle routing problem with time window (VRPTW),This paper makes the following improvements to the ABC :We introduce three kinds of neighborhood search methods,In the leader bee and follower bee search stage,we changing the single search mode into a three-way search method,which improves the optimization depth of the algorithm.Conducting multiple neighborhood searches of new food sources generated by the scouter bee and proceeding to the next iteration has enhanced the survival of new food sources and increased the diversity of populations. The global optimal solution is recorded by setting and updating the bulletin board. Simulation experiments show that the improved discrete ABC algorithm has obvious advantages in solving large-scale VRPTW. Therefore, the improved discrete ABC algorithm has great potential and application value in solving VRPTW

    A hybrid algorithm for a vehicle routing problem with realistic constraints

    Get PDF
    Proliferation of multi-national corporations and extremely competitive business environments have led to an unprecedented demand for third-party logistics services. However, recent studies on the vehicle routing problem (VRP) have considered only simple constraints. They also do not scale well to real-world problems that are encountered in the logistics industry. In this paper, we introduce a novel vehicle routing problem with time window and pallet loading constraints; this problem accounts for the actual needs of businesses in the logistics industry such as the delivery of consumer goods and agricultural products. To solve this new VRP, we propose a hybrid approach by combining Tabu search and the artificial bee colony algorithm. A new benchmark data set is generated to verify the performance of the proposed algorithm because the proposed VRP has never been reported in the literature. Experiments are performed for a data set of Solomon's 56 vehicle routing problem with time windows. Our approach is superior to a number of other heuristic algorithms in a comparison on Solomon's VRPTW instances. © 2017 Elsevier Inc

    Improved Ant Colony Optimization for Seafood Product Delivery Routing Problem

    Get PDF
    This paper deals with a real-life vehicle delivery routing problem, which is a seafood product delivery routing problem. Considering the features of the seafood product delivery routing problem, this paper formulated this problem as a multi-depot open vehicle routing problem. Since the multi-depot open vehicle routing problem is a very complex problem, a method is used to reduce the complexity of the problem by changing the multi-depot open vehicle routing problem into an open vehicle routing problem with a dummy central depot in this paper. Then, ant colony optimization is used to solve the problem. To improve the performance of the algorithm, crossover operation and some adaptive strategies are used. Finally, the computational results for the benchmark problems of the multi-depot vehicle routing problem indicate that the proposed ant colony optimization is an effective method to solve the multi-depot vehicle routing problem. Furthermore, the computation results of the seafood product delivery problem from Dalian, China also suggest that the proposed ant colony optimization is feasible to solve the seafood product delivery routing problem

    Optimising the climate resilience of shipping networks

    Get PDF
    Climate catastrophes (e.g. hurricane, flooding and heat waves) are generating increasing impact on port operations and hence configuration of shipping networks. This paper formulates the routing problem to optimise the resilience of shipping networks, by taking into account the disruptions due to climate risks to port operations. It first describes a literature review with the emphasis on environmental sustainability, port disruptions due to climate extremes and routing optimisation in shipping operations. Second, a centrality assessment of port cities by a novel multi-centrality-based indicator is implemented. Third, a climate resilience model is developed by incorporating the port disruption days by climate risks into shipping route optimisation. Its main contribution is constructing a novel methodology to connect climate risk indices, centrality assessment, and shipping routing to observe the changes of global shipping network by climate change impacts

    Autonomous Vehicles an overview on system, cyber security, risks, issues, and a way forward

    Full text link
    This chapter explores the complex realm of autonomous cars, analyzing their fundamental components and operational characteristics. The initial phase of the discussion is elucidating the internal mechanics of these automobiles, encompassing the crucial involvement of sensors, artificial intelligence (AI) identification systems, control mechanisms, and their integration with cloud-based servers within the framework of the Internet of Things (IoT). It delves into practical implementations of autonomous cars, emphasizing their utilization in forecasting traffic patterns and transforming the dynamics of transportation. The text also explores the topic of Robotic Process Automation (RPA), illustrating the impact of autonomous cars on different businesses through the automation of tasks. The primary focus of this investigation lies in the realm of cybersecurity, specifically in the context of autonomous vehicles. A comprehensive analysis will be conducted to explore various risk management solutions aimed at protecting these vehicles from potential threats including ethical, environmental, legal, professional, and social dimensions, offering a comprehensive perspective on their societal implications. A strategic plan for addressing the challenges and proposing strategies for effectively traversing the complex terrain of autonomous car systems, cybersecurity, hazards, and other concerns are some resources for acquiring an understanding of the intricate realm of autonomous cars and their ramifications in contemporary society, supported by a comprehensive compilation of resources for additional investigation. Keywords: RPA, Cyber Security, AV, Risk, Smart Car

    The AddACO: A bio-inspired modified version of the ant colony optimization algorithm to solve travel salesman problems

    Get PDF
    The Travel Salesman Problem (TSP) consists in finding the minimal-length closed tour that connects the entire group of nodes of a given graph. We propose to solve such a combinatorial optimization problem with the AddACO algorithm: it is a version of the Ant Colony Optimization method that is characterized by a modified probabilistic law at the basis of the exploratory movement of the artificial insects. In particular, the ant decisional rule is here set to amount in a linear convex combination of competing behavioral stimuli and has therefore an additive form (hence the name of our algorithm), rather than the canonical multiplicative one. The AddACO intends to address two conceptual shortcomings that characterize classical ACO methods: (i) the population of artificial insects is in principle allowed to simultaneously minimize/maximize all migratory guidance cues (which is in implausible from a biological/ecological point of view) and (ii) a given edge of the graph has a null probability to be explored if at least one of the movement trait is therein equal to zero, i.e., regardless the intensity of the others (this in principle reduces the exploratory potential of the ant colony). Three possible variants of our method are then specified: the AddACO-V1, which includes pheromone trail and visibility as insect decisional variables, and the AddACO-V2 and the AddACO-V3, which in turn add random effects and inertia, respectively, to the two classical migratory stimuli. The three versions of our algorithm are tested on benchmark middle-scale TPS instances, in order to assess their performance and to find their optimal parameter setting. The best performing variant is finally applied to large-scale TSPs, compared to the naive Ant-Cycle Ant System, proposed by Dorigo and colleagues, and evaluated in terms of quality of the solutions, computational time, and convergence speed. The aim is in fact to show that the proposed transition probability, as long as its conceptual advantages, is competitive from a performance perspective, i.e., if it does not reduce the exploratory capacity of the ant population w.r.t. the canonical one (at least in the case of selected TSPs). A theoretical study of the asymptotic behavior of the AddACO is given in the appendix of the work, whose conclusive section contains some hints for further improvements of our algorithm, also in the perspective of its application to other optimization problems

    Mathematical Methods and Operation Research in Logistics, Project Planning, and Scheduling

    Get PDF
    In the last decade, the Industrial Revolution 4.0 brought flexible supply chains and flexible design projects to the forefront. Nevertheless, the recent pandemic, the accompanying economic problems, and the resulting supply problems have further increased the role of logistics and supply chains. Therefore, planning and scheduling procedures that can respond flexibly to changed circumstances have become more valuable both in logistics and projects. There are already several competing criteria of project and logistic process planning and scheduling that need to be reconciled. At the same time, the COVID-19 pandemic has shown that even more emphasis needs to be placed on taking potential risks into account. Flexibility and resilience are emphasized in all decision-making processes, including the scheduling of logistic processes, activities, and projects

    Binary Structuring Elements Decomposition Based on an Improved Recursive Dilation-Union Model and RSAPSO Method

    Get PDF
    This paper proposed an improved approach to decompose structuring elements of an arbitrary shape. For the model of this method, we use an improved dilation-union model, adding a new termination criterion, as the sum of 3-by-3 matrix should be less than 5. Next for the algorithm of this method, we introduced in the restarted simulated annealing particle swarm optimization method. The experiments demonstrate that our method can find better results than Park's method, Anelli's method, Shih's SGA method, and Zhang's MFSGA method. Besides, our method gave the best decomposition tree of different SE shapes including “ship,” “car,” “heart,” “umbrella,” “vase,” “tree,” “cat,” “V,” “bomb,” and “cup.
    • …
    corecore