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This paper proposed an improved approach to decompose structuring elements of an arbitrary shape. For themodel of thismethod,
we use an improved dilation-union model, adding a new termination criterion, as the sum of 3-by-3 matrix should be less than 5.
Next for the algorithm of this method, we introduced in the restarted simulated annealing particle swarm optimization method.
The experiments demonstrate that our method can find better results than Park’s method, Anelli’s method, Shih’s SGA method,
and Zhang’s MFSGA method. Besides, our method gave the best decomposition tree of different SE shapes including “ship,” “car,”
“heart,” “umbrella,” “vase,” “tree,” “cat,” “V,” “bomb,” and “cup.”

1. Introduction

Mathematical morphology (MM) is a theory and technique
for the analysis and processing of geometrical structures
based on set theory, lattice theory, topology, and random
functions. MM not only is commonly applied to digital
images, but also can be employed to graphs, surface meshes,
solids, and many other spatial structures [1].

In these applications, the inherent strategy in MM is
to explore the characteristics of an object by probing its
microstructure with various forms, known as structuring
element (SE).Most image processing architectures adapted to
morphological operations use SEs of a limited size. However,
implementation becomes difficult when a large-sized SE is
employed. Hence, the techniques for decomposing a large-
sized SE into combined small-sized SEs are of importance [2].

In the last decade, techniques have been proposed
for the decomposition of SE, but they are intricate and

sometimes suffer from indecomposable cases [3]. Hashimoto
and Barrera indicated that traditional algorithms have the
disadvantage of being unable to decompose many simply
connected decomposable SEs [4]. Shih and Wu developed
a method for decomposing arbitrarily shaped binary SEs by
standard genetic algorithm (SGA).The algorithm performed
an iterative process to create new ones that minimize a
predefined fitness function [2]. Zhang and Wu proposed
a recursive model and used the migration fitness scaling
genetic algorithm (MFSGA) for SE decomposition [5].

The abovementioned SGA and MFSGA algorithms are
time-consuming, and they can be easily trapped into local
optimal points, leading to a wrong solution. Particle swarm
optimization (PSO) is an efficient algorithm compared to
SGA [6–8]. Zhang and Wu proposed a restarted simu-
lated annealing PSO (RSAPSO) algorithm [9] for further
improvement. In their paper, they reported that (1) RSAPSO
combined the global search ability of PSO and the local search

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2014, Article ID 272496, 12 pages
http://dx.doi.org/10.1155/2014/272496



2 Mathematical Problems in Engineering

ability of restarted simulated annealing (RSA) algorithm, and
(2) RSAPSO offset the weakness of both PSO and RSA. They
also proved that the RSAPSO is superior to SGA, RSA, and
PSO by six benchmark functions. In this paper, we proposed
to introduce the recursive model and the RSAPSO algorithm
for SE decomposition.

The rest of the paper is organized as follows. Section 2
described the methodology, including the concept of SE
decomposition, the recursive dilation-union model, the
encoding strategy, and the objective function. We also intro-
duced the RSAPSO algorithm. Experiments in Section 3
compared the RSAPSO algorithm with Park’s method, Shih’s
method, Anelli’s SGAmethod, and Zhang’s MFSGAmethod.
Finally, Section 4 is devoted to discussions and conclusions.

2. Methodology

2.1. Concept of SE Decomposition. Suppose 𝐴 denotes a
binary image and 𝑆 denotes a SE. If we decompose 𝑆 into
𝑆
1
⊕ 𝑆
2
⊕ ⋅ ⋅ ⋅ ⊕ 𝑆

𝑘
, the dilation and erosion will become as

follows according to associative law:

𝐴 ⊕ 𝑆 =𝐴 ⊕ (𝑆
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2
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𝑘
) = (((𝐴 ⊕ 𝑆
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2
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(1)

The computational cost (CC) for dilation/erosion operators is
equal to the number of nonzero element of 𝑆. Usually the CC
of 𝑆 is extremely large; however, the sum of CC of 𝑆

1
, 𝑆
2
, . . .

and 𝑆
𝑘
are relatively small. Therefore, the SE decomposition

can dramatically reduce the CC.

2.1.1. Dilation Model. Dilation model is to decompose SE by
only dilation operator. Suppose 𝑆 is decomposed into 𝑆

1
⊕𝑆
2
⊕

⋅ ⋅ ⋅⊕𝑆
𝑘
; the serial computational cost (SCC) of dilationmodel

is equal to the sum of CC of 𝑆
1
, 𝑆
2
, and 𝑆

𝑘
.

Consider
min SCC = CC (𝑆

1
) + CC (𝑆

2
) + ⋅ ⋅ ⋅ + CC (𝑆

𝑘
)

s.t. 𝑆 = 𝑆
1
⊕ 𝑆
2
⊕ ⋅ ⋅ ⋅ ⊕ 𝑆

𝑘
.

(2)

Figure 1 shows three examples.The first decomposes a square
SE of size 3 × 3 into a row vector of size 1 × 3 and a column
vector of size 3 × 1. The SCC decreases from 9 to 3 + 3 = 6.
The second decomposes a square SE of size 5×5 into two row
vectors of size 1 × 3 and two column vectors of size 3 × 1,
and the SCC decreases from 25 to 3 + 2 + 3 + 2 = 10. The
third example decomposes a diamond SE of diameter 7 into
three small SEs of size 3× 3, and the SCC decrease from 25 to
5 + 4 + 4 = 13.

2.1.2. Dilation-Union Model. Dilation-union model is to
decompose SE by both dilation and union operators. There
are two types of computational cost for dilation-unionmodel:
the SCC and the parallel computational cost (PCC).

Consider
PCC = max (CC (𝑆
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3
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Figure 1: Examples of SE decomposition based on dilation model:
(a) 3 × 3 square; (b) 5 × 5 square; (c) 7 × 7 diamond.
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Figure 2: An example of SE decomposition based on dilation-union
model.

Suppose 𝑆 can be decomposed into the union of 𝑆
1
⊕ 𝑆
2
and

𝑆
3
; then the SCC is equal to the sum of CC of 𝑆

1
, 𝑆
2
, and 𝑆

3
;

the PCC is equal to the maximal value of CC(𝑆
1
) + CC(𝑆

2
)

andCC(𝑆
3
). Figure 2 gives an example; here the subscript (−1,

−1) denotes that this square matrix should be translated −1 at
both the 𝑥-axis and the 𝑦-axis. The SCC decreases from 14 to
3+4+2 = 9.The PCC decreases from 14 tomax (3+4, 2) = 7.

2.1.3. Recursive Dilation-Union Model. Let 𝑆
𝑁𝑁

denote a SE
of size𝑁 × 𝑁. The first level decomposition is written as

𝑆
𝑁𝑁

= 𝑉
(𝑁−2)(𝑁−2)

⊕ 𝐹
33

∪ 𝑅
𝑁𝑁

. (4)

Here we use the dilation-union model: 𝑉 denotes the
variable-size matrix, 𝐹 denotes the fixed-size prime com-
ponent, and 𝑅 denotes the residue component. The 𝑅 can
be easily decomposed into union of factors of size 3 × 3

because the size 3×3 is the golden standard as the elementary
structuring component for decomposition in the literature.
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Consider

𝑆
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] .
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Here 𝑛 denotes the number of 3-by-3 residual matrix. The
subscript (𝑥

𝑖
, 𝑦
𝑖
) denotes that the 𝑅

𝑖 should be translated by
(𝑥
𝑖
, 𝑦
𝑖
). Therefore, the iteration continues until the termina-

tion criteria are satisfied. In Zhang and Wu’s paper [5], they
defined the termination criteria (TC) as that the size of 𝑆 is
smaller than or equal to 3 × 3:

TC1: size (𝑆) ≤ 3. (6)

However, this is not perfect because the 3 × 3 binary SE can
be decomposed further as shown in Figure 1(a). So our new
criterion is set as

TC2: size (𝑆) ≤ 3, sum (𝑆) ≤ 5. (7)

We improved the TC by adding the rule sum(𝑆) ≤ 5.
The reason is that any 3-by-3 SE with less than five 1𝑠 is
indecomposable.

The flowchart of the recursive dilation-union model
is depicted in Figure 3, which indicates that we record 4
variables (𝑉

𝑘
, 𝐹
𝑘
, 𝑅
𝑘
, and 𝑃

𝑘
) at each iteration level 𝑘, and the

decomposition tree can be depicted via those variables. The
following task is to develop an effective method to perform
formulas (4) and (5).

2.2. Optimization Problem. The SE decomposition problem
can be transformed into an optimization problem with the
help of dilation-union model. In what follows we will briefly
discuss the encoding strategy and the objective function of
the optimization problem.

2.2.1. Encoding Strategy. Formula (4) or formula (5) can
be regarded as an optimization problem. We transform the
prime component 𝐹

𝑘
into a row vector string of chromo-

somes. For any SE at any iteration, the𝐹
𝑘
is a 3-by-3 two-value

image; therefore, the chromosome can be written as

𝜉 = vector (𝐹) = 𝑓
1
𝑓
2
⋅ ⋅ ⋅ 𝑓
9
. (8)

Here 𝜉 denotes the chromosome and 𝑓
𝑖
denotes the locus.

Figure 4(a) illustrates the numbering scheme for 𝜉, namely,
from left to right and then from top to bottom. Two examples
are shown in Figures 4(b)-4(c), and their 1D strings of
chromosomes are “001001101” and “101110101,” respectively.

2.2.2. Objective Function. Since the prime component 𝐹 is
encoded, variable matrix of SE𝑉 and residual matrix 𝑅 can
be obtained through the following formula:

𝑉 = 𝑆 ⊝ 𝐹,

𝑅 = 𝑆 − 𝑉 ⊕ 𝐹.

(9)

Then, we can extract two different types of costs, SCC and
PCC, as follows:

SCC = ∑𝑉 + ∑𝐹 + ∑𝑅,

PCC = max (∑𝑉 + ∑𝐹,∑𝑅) .

(10)

Note that those variables satisfy the equality as 𝑆 = 𝑉⊕𝐹∪𝑅.
In this paper we choose SCC as the objective function, since
the PCC needs pipelined architecture, which is difficult to
implement in practice.

2.3. RSAPSO Algorithm. Now that the encoding strategy and
objective function are established, we employed the RSAPSO
algorithm [9] to search the optimal points. PSO is a method
that optimizes a problem by iteratively improving a candidate
solution with regard to a given measure of quality [10]. It
is commonly known as metaheuristic method as it makes
few or no assumptions about the problem being optimized
and can search very large spaces of candidate solutions.
However, PSO does not use the gradient of the problem
being optimized, which means that PSO does not require the
optimization problem to be differentiable as is required by
classic optimization methods such as gradient descent and
quasi-Newton methods [11]. PSO can therefore also be used
in optimization problems that are partially irregular, noisy,
adaptive, and so forth [12].

Simulated annealing (SA) was chosen as the local search
method. SA comes from annealing in metallurgy [13], a
technique involving heating and controlled cooling of a
material to increase the size of its crystals and reduce their
defects [14]. The heat causes the atoms to become unstuck
from their initial positions (a local minimum of the internal
energy) and wander randomly through states of higher
energy; the slow cooling gives them more chances of finding
configurations with lower internal energy than the initial one
[15]. We introduced the restarted simulated annealing (RSA)
technique to improve the performance of SA.

The proposed algorithm RSAPSO combines both the
exploitation ability fromRSA and the exploration ability from
PSO. It divides the population into two halves: one half runs
PSO and the other half runs RSA. In what follows, we will
describe those three algorithms in depth.

2.3.1. Particle Swarm Optimization. PSO is a population
based stochastic optimization technique, which simulates the
social behavior of a swarm of bees, a flock of birds, or a
school of fish. By randomly initializing the algorithm with
candidate solutions, the PSO successfully leads to a global
optimum [16]. This is achieved by an iterative procedure
based on the processes of movement and intelligence in an
evolutionary system [17]. Figure 5(a) shows the flow chart of
a PSO algorithm.

In PSO, each potential solution is represented as a parti-
cle. Two properties (position 𝑥 and velocity V) are associated
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Figure 3: Flowchart of recursive dilation-union model.
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Figure 4: (a) Encoding order: left to right and then top to bottom;
(b) an example of “001001101”; (c) an example of “101110101.”

with each particle. Suppose that 𝑥 and V of the 𝑖th particle are
given as

𝑥 = (𝑥
𝑖1
, 𝑥
𝑖2
, . . . , 𝑥

𝑖𝑁
) ,

V = (V
𝑖1
, V
𝑖2
, . . . , V

𝑖𝑁
) ,

(11)

where 𝑁 stands for the dimensions of the problem. In each
iteration, a fitness function is evaluated for all the particles
in the swarm [18]. The velocity of each particle is updated
by keeping track of the two best positions: one is the best
position a particle has traversed so far and is called “𝑝Best”
and the other is the best position that any neighbor of a
particle has traversed so far. It is a neighborhood best called
“𝑛Best.” When a particle takes the whole population as its
neighborhood, the neighborhood best becomes the global
best and is accordingly called “𝑔Best.” Hence, a particle’s
velocity and position are updated as follows:

V = 𝜔 ⋅ V + 𝑐
1
𝑟
1
(𝑝Best − 𝑥) + 𝑐

2
𝑟
2
(𝑛Best − 𝑥) ,

𝑥 = 𝑥 + VΔ𝑡,

(12)

where 𝜔 is called the “inertia weight” that controls the impact
of the previous velocity of the particle on its current one.

The parameters 𝑐
1
and 𝑐
2
are positive constants, called “accel-

eration coefficients.” The parameters 𝑟
1
and 𝑟

2
are random

numbers that are uniformly distributed in the interval [0, 1].
These random numbers are updated every time when they
occur. The parameter Δ𝑡 stands for the given time step. The
population of particles is then moved according to (12) and
tends to cluster together from different directions. However,
a maximum velocity Vmax should not be exceeded by any
particle to keep the search within a meaningful solution
space [19]. The PSO algorithm runs through these processes
iteratively until the termination criterion is satisfied [20–22].

2.3.2. Restarted Simulated Annealing. SA algorithm is a prob-
abilistic hill-climbing technique that is based on the anneal-
ing/cooling process of metals [23]. This annealing process
occurs after the heat source is removed from a molten metal
and its temperature starts to decrease. As the temperature
decreases, the energy of the metal molecules reduces, and
the metal becomes more rigid.The procedure continues until
the metal temperature has reached the surrounding ambient
temperature, at which stage the energy has reached its lowest
value and the metal is perfectly solid [24].

The SA procedure begins by generating an initial solution
at random. At initial stages, a small random change is made
in the current solution 𝑋

𝑐
. The new solution is called 𝑋

𝑛
.

The perturbation depends on a temperate parameter 𝑇 and
a scaling constant 𝑘.

Consider

pert (𝑇) = 𝑘 × 𝑇 × 𝑟
3
. (13)

Here 𝑟
3
is a random value between 0 and 1 with uniform

distribution.The temperature𝑇 decreases with each iteration
of the algorithm, thus reducing the size of the perturbations
as the search progresses. This mechanism produces large
perturbation in the initial stages of the search and ensures that
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Figure 5: Flowchart of the (a) PSO; (b) RSA; and (c) RSAPSO.

the resulting parameters are fine-tuned towards the end of the
optimization [25].

A move is made to the new solution 𝑋
𝑛
if it has smaller

energy F or if the probability function has a higher value than
a randomly generated number. Otherwise a new solution is
generated, evaluated, and compared again. The probability 𝑝

of accepting a new solution 𝑋
𝑛
which is called “Metropolis

law” is given as follows:

𝑝 =

{{

{{

{

1, if 𝐹 (𝑋
𝑛
) < 𝐹 (𝑋

𝑐
) ,

exp(
𝐹 (𝑋
𝑐
) − 𝐹 (𝑋

𝑛
)

𝑇
) , otherwise.

(14)

In order to avoid getting trapped at local extrema points, the
reduction rate of 𝑇 should be slow enough. In this study the
following method to reduce the temperature has been used:

𝑇
𝑛
= 𝑇
0
× 𝛽
𝑛
. (15)

Here𝑇
0
is the initial temperature, 𝛽 is the reduction constant,

and 𝑛 is the number of iterations. In general, most worsening
moves may be accepted at initial stages, but at the final stage
only improving ones are likely to be allowed. This can help
the procedure jump out of a local minimum.

However, sometimes it is better to move back to a
former solution that was significantly better rather than
always moving from the current state. This process is called
“restarting” of SA [26]. To do this we set the temperature to a
former value and restart the annealing schedule.The decision
to restart can be based on several criteria, includingwhether a
fixed number of steps had passed, whether the current energy
is too high comparedwith the best obtained so far, or whether
the random number falls within prescribed range (randomly
restart). In this paper, we restart the SA when the current
energy is too high compared with the best energy because it
performs best among all criterions [27].The flowchart of RSA
is shown in Figure 5(b).

2.3.3. Pseudocodes of RSAPSO. Traditional PSO algorithm
suffers from getting trapped at the early stage [28]. On the
other hand, RSA accepts a worse solution so it can escape
from a local minimum, resist premature convergence, and
increase the diversity [12]. Therefore, a new hybrid strategy
was proposed and referred to as RSAPSO [9]. The proposed
RSAPSO algorithm offsets the weaknesses of PSO and RSA.
The main idea lies in the fact that it divides the population
into two halves: one half runs PSO and the other half runs
RSA. During each step, the results are combined and updated
by the best result that is picked up from thewhole population.
The flowchart of RSAPSO is depicted in Figure 5(c), and its
pseudocodes are given as follows.

Step 1 (initialization). Generate the population randomly.

Step 2 (evaluation). Evaluate each particle’s objective func-
tion 𝑓.

Step 3 (segmentation). Halve the population randomly: one
half was updated by PSO according to formula (12) and the
other half was updated by RSA according to formulas (13) and
(14).

Step 4 (update). Update𝑝Best and𝑔Best; update𝑇 according
to formula (15).

Step 5 (repeat). Repeat Step 2 to Step 4 until the termination
criterion is satisfied.

Step 6 (output). Output the final results.

3. Experiments and Discussions

The experiments were carried out on the platform of P4 IBM
with 2.2GHz Intel Core i3-2330M CPU and 6GB RAM,
running under 64-bitWindows 7 operating system.The algo-
rithm was in-house developed via the global optimization
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Table 1: Parameters setting.

Algorithm Parameters
SGA N = 20, 𝑃

𝐶
= 0.8, 𝑃

𝑀
= 0.1

MFSGA N = 20, 𝑃
𝐶
= 0.8, 𝑃

𝑀
= 0.1, 𝑀

𝐼
= 10, 𝑀

𝑅
= 2

RSAPSO N = 20, 𝜔 = 0.6, 𝑐
1
= 1, 𝑐
2
= 1, 𝑇

0
= 100, 𝛽 = 0.95

toolbox of MATLAB 2013a. Readers can repeat the results of
the experiment on any desktop installing MATLAB.

3.1. Parameters Setting. We compared the proposed method
RSAPSO with Park’s method, Anelli’s method, Shih’s SGA
method, and Zhang’s MFSGA method. Some important
parameters are obtained through trial-and-error method and
listed in Table 1. Here, 𝑁denotes the number of population,
𝑃
𝐶
denotes the crossover probability, 𝑃

𝑀
denotes the muta-

tion probability, 𝑀
𝐼
denotes the migration interval, and 𝑀

𝑅

denotes the migration rate.

3.2. Comparison with Park’s Method. The SE in Figure 6 is
indecomposable by Park’s algorithm [4]. Its original SCC
is 21. We ran our RSAPSO method 20 times, and all runs
obtained the optimal decomposition shown in Figure 6(a)
with SCC as 10. Besides, we ran SGA and MFSGA 20 times
for comparison. Their results were shown in Table 2. The
second row shows the result of all 20 runs. Take SGA as an
example; “19(10) + 1(11)” represents that 19 runs obtained
SCC as 10 and the left one run obtained SCC as 11. The
third row “Averaged SCC” shows either the averaged SCC
result of heuristic methods or the SCC result of deterministic
methods. Table 2 shows that SGA obtained optimal result
(10) 19 times and one suboptimal result (11) as shown in
Figure 6(b). MFSGA obtained optimal result (10) 19 times
and one suboptimal result (11) as shown in Figure 6(c). The
SCC of the two suboptimal SE decomposition results was 11.
The averaged SCC of SGA,MFSGA, and RSAPSOwere 10.05,
10.05, and 10, respectively.

3.3. Comparison with Anelli’s Method. We compared the
proposed RSAPSO with Anelli’s method [29], SGA, and
MFSGA.We ran SGA, MFSGA, and RSAPSO 20 times, since
the distribution of their initial population is random. Figures
7(a) and 7(b) show two successful decomposition trees of
Anelli’s SE, and both of their SCC are 18. Figures 7(c) and 7(d)
show two failed decomposition trees, of which their SCC are
22 and 23, respectively.

The comparison results are shown in Table 3. The SCC
of original SE was 41. Anelli’s method reduced it to 22,
and the corresponding decomposition tree can be found in
[29]. Among 20 runs, SGA obtained 15 times of optimal
results, MFSGA obtained 17 times of optimal results, while
the proposed RSAPSO method obtained all 20 successful
runs.The averaged SCC of SGA, MFSGA, and RSAPSO were
19.05, 18.6, and 18, respectively.

3.4. Comparison with SGA. Shih’s paper proclaimed that the
optimal SCC results of decomposed trees for “ship” and “car”

shapes by SGA were 47 and 46, respectively. After searching
by RSAPSO, we obtained better results (see Table 5). For the
“ship” shape, the original SCC was 125, the optimal SCC
found by SGA was 47, and our method found better SCC
result as 44 (see 2nd row in Table 4). For the “car” shape, the
original SCC was 168, the optimal SCC by SGA was 46, and
our method achieved better SCC as 43 (see the 3rd row in
Table 4).

3.5. Comparison withMFSGA. In what follows, we compared
the proposed RSAPSO with MFSGA method. Zhang et al.
proclaimed that the optimal SCC for “heart” and “umbrella”
by MFSGA were 32 and 44, respectively. Using RSAPSO, we
obtained better results. For SE of “heart,” the original SCC
was 142.MFSGAminimized SCC to 32.Ourmethod obtained
better SCC result as 30. For SE of “umbrella,” the original SCC
was 94.MFSGAminimized SCC to 44. Ourmethod obtained
better result as 41.

3.6. Other Examples. We used the RSAPSO for six other
benchmarks SEs of different shapes, such as vase, tree, cat,
V, bomb, and cup. The results were shown in Table 6. For the
“vase” shape, the SCC of the original and decomposed SE was
149 and 32, respectively. For the “tree” shape, the SCC of the
original and decomposed SE was 73 and 26, respectively. For
the “cat” shape, the SCC of the original and decomposed SE
was 102 and 30, respectively. For letter “V,” the SCC of the
original and decomposed SE was 94 and 34, respectively. For
the “bomb” shape, the SCC of the original and decomposed
SEwas 91 and 26, respectively. For the “cup” shape, the SCC of
the original and decomposed SE was 113 and 25, respectively.

4. Conclusions

In this paper, a novel decomposition method for arbitrarily
shaped SE was proposed.The SE decomposition problemwas
first transformed into an optimization problem with virtue
of the improved recursive dilation-union model that con-
tains a new termination criterion. Afterwards, the RSAPSO
method was introduced as the searching algorithm. In the
experiments, we compared our method with Park’s method
[4], Anelli’s method [29], Shih’s SGAmethod [2], and Zhang’s
MFSGAmethod [5].The results based on several benchmark
shapes showed that our method was more robust than the
aforementioned algorithms and was able to find the optimal
decomposition tree.

The contribution of the paper lies in the following
4 aspects: (1) we proposed improved termination criteria
for the recursive dilation-union model, adding the rule
“sum(𝑆) ≤ 5”; (2) we used the serial computational time
as the objective function; (3) we introduced the RSAPSO
algorithm and proved it is superior to Park’s method, Anelli’s
method, SGA, and MFSGA for SE decomposition applica-
tion; and (4) we gave the best decomposition results for the
shapes “heart,” “ship,” and “car” among all the state-of-the-art
SE decomposition methods.

The future tentative research will focus on other opti-
mization algorithms, such as cuckoo search [30], harmony
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Table 2: Decomposition of Park’s SE (20 runs).

Original Park’s SGA MFSGA RSAPSO
SCC 19 (10) + 1 (11) 19 (10) + 1 (11) 20 (10)
Averaged SCC 21 21 10.05 10.05 10

Table 3: Decomposition of Anelli’s SE (20 runs).

Original Anelli’s SGA MFSGA RSAPSO
SCC 15 (18) + 4 (22) + 1 (23) 17 (18) + 3 (22) 20 (18)
Averaged SCC 41 22 19.05 18.6 18
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Figure 6: Decomposition tree of Park’s SE (SCC = 21): (a) a successful run (SCC = 10); (b) a failed run by SGA (SCC = 11); and (c) a failed
run by MFSGA (SCC = 11).
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Figure 7: Decomposition tree of Anelli’s SE (SCC = 41): (a) a successful run (SCC = 18); (b) another successful run (time = 18); (c) a failed
run (SCC = 22); and (d) a failed run (SCC = 23).
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Table 6: Six-SE decomposition examples by our RSAPSO method.

Name Original Decomposition
SE SCC Tree SCC

Vase 149

(     )

(     )

(     )

(     )

(     )

(−4, −1) (4, −1)

(−3, −1) (3, −1)

(−1, 2) (−1, 1)

⋃

⋃

⋃

⋃

⋃

⋃

⨁

⨁

⨁

⨁

⨁

⨁

32

Tree 73

(     )

(     )

(     )

(     )

(−1, 6)

(−1, −5)

(0, 4)

(−1, 1)

⋃

⋃

⋃

⋃

⨁

⨁

⨁

⨁

⨁

26

Cat 102

(     )

(     )

(     )

(     )

(     )

⋃

⋃

⋃

⋃

⋃

⋃ ⋃

⋃

⋃⨁

⨁

⨁

⨁
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V 94

(     )
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Table 6: Continued.

Name Original Decomposition
SE SCC Tree SCC

Bomb 91

(     )

(     )

(     )

(     )

⋃ ⋃ ⋃

⋃

⋃ ⋃

⨁

⨁

⨁

⨁

⨁

(−3, 5) (−1, 4) (1, 5)

(−1, 4)

(0, −1) (0, −2)

26

Cup 113

(     )

(     )

(     )

(     )

⋃

⋃

⋃ ⋃

⨁

⨁

⨁

⨁

⨁

(0, −3)

(−1, 2)

(1, −1) (−1, 1)

25

search [31], genetic pattern research [32], Tabu search [33],
firefly algorithm [34], honey bee mating [35], and artificial
bee colony [36, 37].Wewill also try other termination criteria
[38] and check the effectiveness of the new SE decomposition
methods.
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