41,179 research outputs found

    C-tests revisited: back and forth with complexity

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-21365-1_28We explore the aggregation of tasks by weighting them using a difficulty function that depends on the complexity of the (acceptable) policy for the task (instead of a universal distribution over tasks or an adaptive test). The resulting aggregations and decompositions are (now retrospectively) seen as the natural (and trivial) interactive generalisation of the C-tests.This work has been partially supported by the EU (FEDER) and the Spanish MINECO under grants TIN 2010-21062-C02-02, PCIN-2013-037 and TIN 2013-45732-C4-1-P, and by Generalitat Valenciana PROMETEOII 2015/013.Hernández Orallo, J. (2015). C-tests revisited: back and forth with complexity. En Artificial General Intelligence 8th International Conference, AGI 2015, AGI 2015, Berlin, Germany, July 22-25, 2015, Proceedings. Springer International Publishing. 272-282. https://doi.org/10.1007/978-3-319-21365-1_28S272282Bellemare, M.G., Naddaf, Y., Veness, J., Bowling, M.: The arcade learning environment: An evaluation platform for general agents. Journal of Artificial Intelligence Research 47, 253–279 (2013)Hernández-Orallo, J.: Beyond the Turing Test. J. Logic, Language & Information 9(4), 447–466 (2000)Hernández-Orallo, J.: Computational measures of information gain and reinforcement in inference processes. AI Communications 13(1), 49–50 (2000)Hernández-Orallo, J.: On the computational measurement of intelligence factors. In: Meystel, A. (ed.) Performance metrics for intelligent systems workshop, pp. 1–8. National Institute of Standards and Technology, Gaithersburg (2000)Hernández-Orallo, J.: AI evaluation: past, present and future (2014). arXiv preprint arXiv:1408.6908Hernández-Orallo, J.: On environment difficulty and discriminating power. Autonomous Agents and Multi-Agent Systems, 1–53 (2014). http://dx.doi.org/10.1007/s10458-014-9257-1Hernández-Orallo, J., Dowe, D.L.: Measuring universal intelligence: Towards an anytime intelligence test. Artificial Intelligence 174(18), 1508–1539 (2010)Hernández-Orallo, J., Dowe, D.L., Hernández-Lloreda, M.V.: Universal psychometrics: Measuring cognitive abilities in the machine kingdom. Cognitive Systems Research 27, 50–74 (2014)Hernández-Orallo, J., Minaya-Collado, N.: A formal definition of intelligence based on an intensional variant of Kolmogorov complexity. In: Proc. Intl. Symposium of Engineering of Intelligent Systems (EIS 1998), pp. 146–163. ICSC Press (1998)Hibbard, B.: Bias and no free lunch in formal measures of intelligence. Journal of Artificial General Intelligence 1(1), 54–61 (2009)Legg, S., Hutter, M.: Universal intelligence: A definition of machine intelligence. Minds and Machines 17(4), 391–444 (2007)Li, M., Vitányi, P.: An introduction to Kolmogorov complexity and its applications, 3 edn. Springer-Verlag (2008)Schaul, T.: An extensible description language for video games. IEEE Transactions on Computational Intelligence and AI in Games PP(99), 1–1 (2014)Solomonoff, R.J.: A formal theory of inductive inference. Part I. Information and control 7(1), 1–22 (1964

    The 2013 Multi-objective Physical Travelling Salesman Problem Competition

    Get PDF
    This paper presents the game, framework, rules and results of the Multi-objective Physical Travelling Salesman Problem (MO-PTSP) Competition, that was held at the 2013 IEEE Conference on Computational Intelligence in Games (CIG). The MO-PTSP is a real-time game that can be seen as a modification of the Travelling Salesman Problem, where the player controls a ship that must visit a series of waypoints in a maze while minimizing three opposing goals: Time spent, fuel consumed and damage taken. The rankings of the competition are computed using multi-objective concepts, a novel approach in the field of game artificial intelligence competitions. The winning entry of the contest is also explained in detail. This controller is based on the Monte Carlo Tree Search algorithm, and employed Covariance Matrix Adaptation Evolution Strategy (CMA-ES) for parameter tuning

    AI Researchers, Video Games Are Your Friends!

    Full text link
    If you are an artificial intelligence researcher, you should look to video games as ideal testbeds for the work you do. If you are a video game developer, you should look to AI for the technology that makes completely new types of games possible. This chapter lays out the case for both of these propositions. It asks the question "what can video games do for AI", and discusses how in particular general video game playing is the ideal testbed for artificial general intelligence research. It then asks the question "what can AI do for video games", and lays out a vision for what video games might look like if we had significantly more advanced AI at our disposal. The chapter is based on my keynote at IJCCI 2015, and is written in an attempt to be accessible to a broad audience.Comment: in Studies in Computational Intelligence Studies in Computational Intelligence, Volume 669 2017. Springe

    'Ephemerality’ in game development: opportunitiees and challenges

    Get PDF
    Ephemeral Computation (Eph-C) is a newly created computation paradigm, the purpose of which is to take advantage of the ephemeral nature (limited lifetime) of computational resources. First we speak of this new paradigm in general terms, then more specifically in terms of videogame development. We present possible applications and benefits for the main research fields associated with videogame development. This is a preliminary work which aims to investigate the possibilities of applying ephemeral computation to the products of the videogame industry. Therefore, as a preliminary work, it attempts to serve as the inspiration for other researchers or videogame developers.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Is swarm intelligence able to create mazes?

    Get PDF
    In this paper, the idea of applying Computational Intelligence in the process of creation board games, in particular mazes, is presented. For two different algorithms the proposed idea has been examined. The results of the experiments are shown and discussed to present advantages and disadvantages

    Deep learning for video game playing

    Get PDF
    In this article, we review recent Deep Learning advances in the context of how they have been applied to play different types of video games such as first-person shooters, arcade games, and real-time strategy games. We analyze the unique requirements that different game genres pose to a deep learning system and highlight important open challenges in the context of applying these machine learning methods to video games, such as general game playing, dealing with extremely large decision spaces and sparse rewards
    • …
    corecore