102 research outputs found

    Physical Layer Service Integration in 5G: Potentials and Challenges

    Full text link
    High transmission rate and secure communication have been identified as the key targets that need to be effectively addressed by fifth generation (5G) wireless systems. In this context, the concept of physical-layer security becomes attractive, as it can establish perfect security using only the characteristics of wireless medium. Nonetheless, to further increase the spectral efficiency, an emerging concept, termed physical-layer service integration (PHY-SI), has been recognized as an effective means. Its basic idea is to combine multiple coexisting services, i.e., multicast/broadcast service and confidential service, into one integral service for one-time transmission at the transmitter side. This article first provides a tutorial on typical PHY-SI models. Furthermore, we propose some state-of-the-art solutions to improve the overall performance of PHY-SI in certain important communication scenarios. In particular, we highlight the extension of several concepts borrowed from conventional single-service communications, such as artificial noise (AN), eigenmode transmission etc., to the scenario of PHY-SI. These techniques are shown to be effective in the design of reliable and robust PHY-SI schemes. Finally, several potential research directions are identified for future work.Comment: 12 pages, 7 figure

    Artificial Noise-Aided Biobjective Transmitter Optimization for Service Integration in Multi-User MIMO Gaussian Broadcast Channel

    Full text link
    This paper considers an artificial noise (AN)-aided transmit design for multi-user MIMO systems with integrated services. Specifically, two sorts of service messages are combined and served simultaneously: one multicast message intended for all receivers and one confidential message intended for only one receiver and required to be perfectly secure from other unauthorized receivers. Our interest lies in the joint design of input covariances of the multicast message, confidential message and artificial noise (AN), such that the achievable secrecy rate and multicast rate are simultaneously maximized. This problem is identified as a secrecy rate region maximization (SRRM) problem in the context of physical-layer service integration. Since this bi-objective optimization problem is inherently complex to solve, we put forward two different scalarization methods to convert it into a scalar optimization problem. First, we propose to prefix the multicast rate as a constant, and accordingly, the primal biobjective problem is converted into a secrecy rate maximization (SRM) problem with quality of multicast service (QoMS) constraint. By varying the constant, we can obtain different Pareto optimal points. The resulting SRM problem can be iteratively solved via a provably convergent difference-of-concave (DC) algorithm. In the second method, we aim to maximize the weighted sum of the secrecy rate and the multicast rate. Through varying the weighted vector, one can also obtain different Pareto optimal points. We show that this weighted sum rate maximization (WSRM) problem can be recast into a primal decomposable form, which is amenable to alternating optimization (AO). Then we compare these two scalarization methods in terms of their overall performance and computational complexity via theoretical analysis as well as numerical simulation, based on which new insights can be drawn.Comment: 14 pages, 5 figure

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Game theory-based resource allocation for secure WPCN multiantenna multicasting systems

    Get PDF
    This paper investigates a secure wireless-powered multiantenna multicasting system, where multiple power beacons (PBs) supply power to a transmitter in order to establish a reliable communication link with multiple legitimate users in the presence of multiple eavesdroppers. The transmitter has to harvest radio frequency (RF) energy from multiple PBs due to the shortage of embedded power supply before establishing its secure com- munication. We exploit a novel and practical scenario that the PBs and the transmitter may belong to different operators and a hierarchical energy interaction between the PBs and the transmitter is considered. Specifically, the monetary incentives are required for the PBs to assist the transmitter for secure communications. This leads to the formulation of a Stackelberg game for the secure wireless-powered multiantenna multicasting system, where the transmitter and the PB are modelled as leader and follower, respectively, each maximizing their own utility function. The closed-form Stackelberg equilibrium of the formulated game is then derived where we study various scenarios of eavesdroppers and legitimate users that can have impact on the optimality of the derived solutions. Finally, numerical results are provided to validate our proposed schemes

    Game theory-based resource allocation for secure WPCN multiantenna multicasting systems

    Get PDF
    This paper investigates a secure wireless-powered multiantenna multicasting system, where multiple power beacons (PBs) supply power to a transmitter in order to establish a reliable communication link with multiple legitimate users in the presence of multiple eavesdroppers. The transmitter has to harvest radio frequency (RF) energy from multiple PBs due to the shortage of embedded power supply before establishing its secure com- munication. We exploit a novel and practical scenario that the PBs and the transmitter may belong to different operators and a hierarchical energy interaction between the PBs and the transmitter is considered. Specifically, the monetary incentives are required for the PBs to assist the transmitter for secure communications. This leads to the formulation of a Stackelberg game for the secure wireless-powered multiantenna multicasting system, where the transmitter and the PB are modelled as leader and follower, respectively, each maximizing their own utility function. The closed-form Stackelberg equilibrium of the formulated game is then derived where we study various scenarios of eavesdroppers and legitimate users that can have impact on the optimality of the derived solutions. Finally, numerical results are provided to validate our proposed schemes

    Outage Constrained Robust Secure Transmission for MISO Wiretap Channels

    Full text link
    In this paper we consider the robust secure beamformer design for MISO wiretap channels. Assume that the eavesdroppers' channels are only partially available at the transmitter, we seek to maximize the secrecy rate under the transmit power and secrecy rate outage probability constraint. The outage probability constraint requires that the secrecy rate exceeds certain threshold with high probability. Therefore including such constraint in the design naturally ensures the desired robustness. Unfortunately, the presence of the probabilistic constraints makes the problem non-convex and hence difficult to solve. In this paper, we investigate the outage probability constrained secrecy rate maximization problem using a novel two-step approach. Under a wide range of uncertainty models, our developed algorithms can obtain high-quality solutions, sometimes even exact global solutions, for the robust secure beamformer design problem. Simulation results are presented to verify the effectiveness and robustness of the proposed algorithms

    User cooperation for IRS-aided secure MIMO systems

    Get PDF
    An intelligent reflecting surface (IRS) is proposed to enhance the physical layer security in the Rician fading channel wherein the angular direction of the eavesdropper (ED) is aligned with a legitimate user. A two-phase communication system under active attacks and passive eavesdropping is considered in this scenario. The base station avoids direct transmission to the attacked user in the first phase, whereas other users cooperate in forwarding signals to the attacked user in the second phase, with the help of IRS and energy harvesting technology. Under the occurrence of active attacks, an outage-constrained beamforming design problem is investigated under the statistical cascaded channel error model, which is solved by using the Bernstein-type inequality. An average secrecy rate maximization problem for the passive eavesdropping is formulated, which is then addressed by a low-complexity algorithm. The numerical results of this study reveal that the negative effect of the ED's channel error is larger than that of the legitimate user

    Joint Secure Communication and Radar Beamforming: A Secrecy-Estimation Rate-Based Design

    Full text link
    This paper considers transmit beamforming in dual-function radar-communication (DFRC) system, where a DFRC transmitter simultaneously communicates with a communication user and detects a malicious target with the same waveform. Since the waveform is embedded with information, the information is risked to be intercepted by the target. To address this problem, physical-layer security technique is exploited. By using secrecy rate and estimation rate as performance measure for communication and radar, respectively, three secrecy rate maximization (SRM) problems are formulated, including the SRM with and without artificial noise (AN), and robust SRM. For the SRM beamforming, we prove that the optimal beamformer can be computed in closed form. For the AN-aided SRM, by leveraging alternating optimization similar closed-form solution is obtained for the beamformer and the AN covariance matrix. Finally, the imperfect CSI of the target is also considered under the premise of a moment-based random phase-error model on the direction of arrival at the target. Simulation results demonstrate the efficacy and robustness of the proposed designs.Comment: 14 page
    corecore