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Abstract

This paper investigates a secure wireless-powered multiantenna multicasting system, where multiple power

beacons (PBs) supply power to a transmitter in order to establish a reliable communication link with multiple

legitimate users in the presence of multiple eavesdroppers. The transmitter has to harvest radio frequency (RF)

energy from multiple PBs due to the shortage of embedded power supply before establishing its secure com-

munication. We exploit a novel and practical scenario that the PBs and the transmitter may belong to different

operators and a hierarchical energy interaction between the PBs and the transmitter is considered. Specifically, the

monetary incentives are required for the PBs to assist the transmitter for secure communications. This leads to

the formulation of a Stackelberg game for the secure wireless-powered multiantenna multicasting system, where

the transmitter and the PB are modelled as leader and follower, respectively, each maximizing their own utility

function. The closed-form Stackelberg equilibrium of the formulated game is then derived where we study various

scenarios of eavesdroppers and legitimate users that can have impact on the optimality of the derived solutions.

Finally, numerical results are provided to validate our proposed schemes.

Index Terms

Wireless powered communication networks (WPCN), Physical layer security, SWIPT, Multicasting, Stackelberg

game

I. INTRODUCTION

Wireless multicast media streaming is anticipated to be a significant component of the forthcoming

5G systems, motivated by the consumers’ desire to take advantage of high quality multimedia wireless
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devices (e.g., 4k hand-held devices, 3D augmented reality) [1]–[3]. Energy efficiency and security are

major critical issues that must be addressed in the design of such systems.

Radio frequency (RF) energy harvesting and transfer techniques have recently been considered as a

promising solution to the energy-constrained wireless networks [4]–[6]. As a recent application of RF

energy harvesting and transfer techniques, wireless powered communication networks (WPCNs) have

become a novel technology in wireless networking and attracted more and more attention [7]. A “harvest-

then-transmit” protocol was proposed for WPCNs in [8], where the wireless users harvest power from the

RF signals broadcast by an access point in the downlink (DL), and then send information to the AP in

the uplink (UL) by employing the harvested energy. Cooperative protocols for WPCNs were developed

based on different models [9]–[11]. In [12], an intermediate self-sustainable relay was employed to enable

cooperation between a wireless energy transfer (WET) network and a wireless information transfer (WIT)

network to guarantee secure communications subject to outage probability constraints. A different approach

consists of deploying a dedicated WET network with multiple power beacons (PBs) to provide wireless

charging services to the wireless terminals via the RF energy transfer technique [13], [14]. Since the

PBs do not require any backhaul link, the associated cost of PBs deployment is much lower, hence, it

is feasible to deploy the PBs densely to guarantee network coverage for a wide range of mobile devices

[15].

Security in data transmission can be addressed either by traditional crypto methods, or more fun-

damentally, in terms of information theoretic secure rates. The latter approach, commonly referred to

as “physical-layer security,” was initially developed for the wiretap channel [16], [17], i.e., a broadcast

channel with one transmitter and two sets of receivers: legitimate users and eavesdroppers. Multiantenna

wiretap channels have been widely investigated in terms of secure rate region [18]–[22]. Some state-of-art

techniques, such as artificial noise (AN) and cooperative jammer (CJ), have been designed for multiantenna

transceivers, in order to introduce more interference at the eavesdroppers [23]–[30]. In [23], rank-one

solution properties were exploited with semidefinite programming (SDP) relaxation for secure transmit

beamforming. AN-assisted transmit optimization has been presented in [24], where the spatially selective

AN embedded with secure transmit beamforming was designed to obtain the optimal power allocation.

In [25], CJ from an external node is exploited in order to create interference at the eavesdroppers and

achieve the desired target secure rate. However, it is not always possible to have an own CJ to improve

the secrecy rates. Another option could be to employ a private CJ by paying a price for the jamming

services. This strategy was investigated in [25], [26], where a CJ releases its jamming service depending

interference caused to the eavesdropper, while the transmitter pays a certain amount to guarantee its

secure communication. In this strategy, a Stackelberg game can be formulated to obtain the optimal power



allocation. In addition, cooperative cognitive radio (CR) combined with secure communications could

also be modelled as a Stackelberg game to determine the optimal resource allocations [27]. In [28]–[30],

the secrecy rate optimization problem was posed in terms of outage secrecy rates, due to the fact that

the channels are not perfectly known and are subject to random fading with known statistics. Physical-

layer security techniques have also been recently developed in radio frequency identification (RFID). The

design of RFID systems is a challenge due to the broadcast nature of backscatter communication, which

is vulnerable to eavesdropping [31]. Simultaneous wireless information and power transfer (SWIPT) has

emerged as one of most promising approaches to provide power for communication devices. SWIPT has

been considered in combination with physical-layer security in a number of recent works (e.g., [32]–[35]).

It is worth pointing out that the transmit power is constant in the above secure communication systems.

However, the use of WET effectively makes the available transmit power a system variable in order to

achieve secure communications. Thus, this research gap motivates the work in this paper.

We investigate a WPCN-assisted multiantenna secure multicasting system, in which a multicast service

provider (i.e., the transmitter) guarantees secure communication with legitimate users in the presence of

multiple eavesdroppers by utilizing the harvested energy from the PBs that are deployed by different

service operators. We exploit this energy interaction between the PBs and transmitter and formulate this

for the considered PB-assisted secure WPCN as a game theory framework. The contributions of this paper

are highlighted as follows:

1) Game theory based WPCN-aided multiantenna secure multicasting system: We investigate a scenario

where the PBs and the transmitter belong to different service operators, both of which want to

maximize their own benefit. Thus, incentives are required for the PBs to assist the transmitter to

guarantee the secure multicasting communications, which is known as ‘energy trading’. Particularly,

an energy price must be paid by the transmitter in order to induce the PBs to provide sufficient

energy. We develop an energy trading framework for the wireless powered secure multiantenna

multicasting systems, where the strategic behavior of the transmitter and the PBs is modeled as a

Stackelberg game. The transmitter acts as a leader that buys energy service from the PBs, which

optimizes the energy price and the energy transfer time to maximize its utility function, defined as

the weighted difference between revenues (proportional to the achievable secrecy rate) and costs

of the purchased energy. The PBs are the followers that determine their optimal transmit powers

based on the energy price offered by the transmitter to maximize their own profits, defined as the

difference between the payment received from the transmitter and their energy production cost.

We derive a closed-form solution for the Stackelberg equilibrium, in which both the PBs and the

transmitter come to an agreement on the energy price, transmit power and energy time allocation.



2) Conic Convex Reformulation: In the formulated Stackelberg game, the multicasting transmit beam-

forming vector leads to the nonconvexity of the leader game. To circumvent this issue, we propose a

conic convex reformulation to solve the optimal multicasting transmit beamforming vector directly.

We first propose a novel reformulation based on matrix transformations and convex conic opti-

mization techniques, yielding a second-order cone programming (SOCP) solution which is optimal

when the SDP relaxed solution satisfies the rank-one conditions. In addition, a special case with

single legitimate user and eavesdropper is investigated, where we derive a closed-form optimal

solution based on the dual problem and Karush-Kuhn-Tucker (KKT) conditions. Then, we propose

a successive convex approximation (SCA) based SOCP scheme, which is performed iteratively to

obtain the optimal transmit beamformer directly for any general case. Numerical results confirm

that our proposed SCA based SOCP scheme outperforms the SDP randomization scheme.

This paper differs from the related works in [8], [14], [23], [36]–[39] in terms of problem formulation

and mathematical solutions as follows:

• Problem formulation: This paper investigates a secure WPCN multicasting system, while [36] con-

sidered a secure WPCN system with one legitimate user and one eavesdropper. Note that in the

existing literatures (e.g., [14], [36]), it was assumed that the dedicated PBs are deployed by the same

service operator with the existing WIT network. In this case, the network can provide both wireless

access and wireless charging services [8], [14], or support the secrecy communication by utilizing

the harvested energy [36]. However, in this paper, we take into account a practical and novel scenario

that both PBs and the communication transmitter belong to different service providers, each aims to

maximize their own utility. For this scenario, the conventional approaches addressing the security by

maximizing the secrecy rate [36] or secrecy outage probability [37] subject to transmit power budget

cannot be applied. In fact, in the proposed approach we use hierarchical energy interaction (i.e.,

energy trading) framework through Stackeberg game to address the security when multiple providers

operate in a competitive manner. This approach is novel and has not been treated in previous literature.

• Mathematical solutions: In [23], [36], semidefinite programming (SDP) relaxation was employed

to relax both power minimization and secrecy rate maximization problems for the case of single

legitimate user only. However, this approach will not always guarantee a rank-one solution when

extending to the case of multiple legitimate users. Therefore, the rank-one feasible solution for the

original beamforming problem can only be achieved via the rank reduction methods (i.e., random-

ization techniques [1]), with no optimality guarantee (see, e.g., [38], [39]). In this paper, we study

a more comprehensive scheme than its counterparts in [23], [38], [39] by covering both scenarios

of when the rank-one condition is satisfied and when it is not. In particular, we employ an SCA



based method which can be applied to the general case when the rank-one condition is not satisfied.

In this way, the transmit beamforming vector can be solved directly by using the SOCP, in which

the conventional SDP randomization solution would not be able to provide the optimal solution. In

addition, the proposed SOCP approach allows a closed-form solution to be achieved for the special

case of single legitimate user and single eavesdropper.

The rest of the paper is organized as follows. Section II presents our system model. Section III

investigates the game theory based secure WPCN multiantenna multicasting system. Section IV provides

simulation results to validate the theoretical derivations. Finally, Section V concludes the paper.

A. Notations

We use the upper case boldface letters for matrices and lower case boldface letters for vectors. (·)T

and (·)H denote the transpose and conjugate transpose respectively. Tr(·) and E{·} stand for trace of a

matrix and the statistical expectation for random variables. %max(∗) represents the maximum eigenvalue,

whereas vmax(∗) denotes the eigenvector associated with the maximum eigenvalue. A � 0 indicates that

A is a positive semidefinite matrix. ‖ ∗ ‖ denotes the Euclidean norm of a vector. I and (·)−1 denote the

identity matrix with appropriate size and the inverse of a matrix respectively. [x]+ represents max{x, 0}.

The notation �Kn denotes the following generalized inequality: a

b

 �Kn 0⇔ ‖b‖ ≤ a,

where a ∈ R+, b ∈ Cn−1 and Kn ⊆ Rn is a proper cone [41].

II. SYSTEM MODEL

In this section, we consider the secure wireless powered multiantenna multicasting system as shown

in Fig. 1, where a transmitter broadcasts the same information to all legitimate users in the presence of

multiple eavesdroppers. It is assumed that the transmitter has not an exogenous energy source and must

harvest energy from a WET network, formed by multiple PBs. This system consists M single antenna

PBs, one multiantenna transmitter equipped with NT transmit antennas, K single antenna legitimate users

and L single antenna eavesdroppers. This secrecy model has some potential applications, such as wireless

sensor networks, device to device (D2D) communication systems, and on-demand video broadcasting. For

example, in recent works of femtocaching, D2D caching networks [42], [43], it is advocated that “helper”

nodes are densely disseminated in a coverage area and serve users’ demands using their own large cached

information. Cache memory at the helpers alleviates the need for a backhaul connection such that these

helper nodes can be placed arbitrarily, even if there is no high-speed data connection. In this case, we



always wish to make such helper nodes truly free from any wired connection, including power. Thus, they

need to harvest energy somewhere, for example, from a WET network. However, there arises a need for

secrecy projection as on-demand broadcasting normally requires a subscription, which means illegitimate

users will not be able to access the content that they do not pay for. In our paper, a harvest-then-transmit

protocol is considered. Specifically, time is divided in periods of duration T . Each period is split into a

WET phase of duration θT, and a WIT phase of duration (1−θ)T, where θ ∈ (0, 1) is a system parameter

that must be optimized. Let hs,k ∈ CNT×1 denote the channel coefficients between the transmitter and

the k-th legitimate user, while he,l ∈ CNT×1 denotes the channel coefficients between the transmitter and

the l-th eavesdropper. Also, gm ∈ C1×NT denotes the channel coefficients between the m-th PB and the

Fig. 1: WPCN for multiantenna secure multicasting system.

transmitter. First, each PB transfers the energy to the transmitter, the harvested energy during the WET

phase of θT at the transmitter can be written as

EB = ξ
M∑
m=1

pm‖gm‖2θT, (1)

where pm denotes the transmit power of the m-th PB, and 0 < ξ ≤ 1 is the efficiency for converting the

harvested energy to the electrical energy to be stored, which is assumed to be ξ = 1 in this paper. During

the WIT phase of (1− θ)T , the received signal at the k-th legitimate user and the l-th eavesdropper are



given by

ys,k =

√
EB

(1− θ)T
hHs,kvs+ ns,k, k = 1, ..., K,

ye,l =

√
EB

(1− θ)T
hHe,lvs+ ne,l, l = 1, ..., L,

where s denotes the Gaussian distributed transmit signal with unit norm, v ∈ CNT×1 is the normalized

transmit beamformer with E{‖v‖2} = 1, ns,k and ne,l are additive white Gaussian noises (AWGNs) at

the k-th legitimate user and the l-th eavesdropper with variance σ2
s and σ2

e . Hence, the channel capacity

of the k-th legitimate user and the l-th eavesdropper can be expressed as [36]

Rs,k = (1− θ) log

(
1 +

θ
∑M

m=1 pm‖gm‖2|hHs,kv|2

(1− θ)σ2
s

)
, ∀k, (2)

and

Re,l = (1− θ) log

(
1 +

θ
∑M

m=1 pm‖gm‖2|hHe,lv|2

(1− θ)σ2
e

)
, ∀l, (3)

respectively. For this secure multicasting system, we have the following definition:

Definition 1: Multicast secrecy rate of a multicasting system with K users is defined as [39]

RK = min
k∈[1,K]

[Rs,k − max
l∈[1,L]

Re,l]
+ = min

k∈[1,K]
(1− θ)

[
log

(
1 +

θ
∑M

m=1 pm‖gm‖2|hHs,kv|2

(1− θ)σ2
s

)
− max

l∈[1,L]
log

(
1 +

θ
∑M

m=1 pm‖gm‖2|hHe,lv|2

(1− θ)σ2
e

)]+

. (4)

III. GAME THEORY BASED SECURE WPCN MULTIANTENNA MULTICASTING SYSTEM

In this section, we consider the scenario where the transmitter and the PBs are from two different

service providers. Both parties want to maximize their own benefit. To model this scenario, we assume

that the transmitter will have to pay for the energy services from the PBs, whereas the PBs will consider

this payment as incentives to provide wireless energy transfer service. Obviously, being able to decide

what price to pay for the energy service, the transmitter can take a leading role in dictating the energy

trading interaction. This fits very well the model of a Stackelberg game, which motivates us to use this

game theory to optimize both parties’ benefit. We assume that the channel state information (CSI) between

the transmitter and k-th user as well as l-th eavesdropper (i.e., hs,k, ∀k and he,l, ∀l) is available at the

transmitter. This can be achieved through different methods such as the local oscillator power leakage

from the eavesdropper receivers’ RF frontend [44] or even the CSI feedback method [45]. For example, in

a video broadcasting system there may be legitimate users that are entitled to receive the content and other

users who have not subscribed to this content, but are still part of the system. These users obey the basic

physical-layer protocol rules, which includes feeding back CSI to enable beamforming. Hence, in this



case, it is practical to assume that the CSI of the eavesdroppers is known at the transmitter. In this game

model, the transmitter (leader) first pays for the harvested energy with an energy price to maximize its

utility function. Then, the PBs (followers) optimize their transmit powers based on their released energy

price to maximize their individual utility function.

A. Stackelberg Game Formulation

Let λ denote the energy price that the transmitter will pay to the PBs. The total payment of the

transmitter to the M PBs, donoted by QM , is written as

QM = λθT
M∑
m=1

pm‖gm‖2, (5)

where pm denotes the transmit power of the mth PB. Without loss of generality, we can assume T = 1.

We now define the utility function of the transmitter as follows:

UM = µRK −QM , (6)

where µ > 0 is the weight per a unit of secrecy throughput, by which the transmitter uses to convert the

achievable secrecy rate RK into the equivalent revenue. Therefore, the leader game for the transmitter can

be formulated as

max
λ,θ,v

UM , s.t. 0 < θ < 1, λ ≥ 0. (7)

At the same time, each PB can be modelled as a follower that wants to maximize its own revenue function,

which is defined as follows:

UPB,m = θ(λpm‖gm‖2 −Fm(pm)), (8)

where Fm(pm) is used to model the cost of the m-th PB per unit time for wirelessly charging the

transmitter with the transmit power pm. In this paper, we consider the following quadratic model1 for the

cost function of the PBs:

Fm(x) = Amx
2 +Bmx (9)

where Am > 0 and Bm > 0 are the constants that can be different for each PB. Thus, the follower game

of m-th PB is given by

max
pm

UPB,m, s.t. pm ≥ 0. (10)

Both (7) and (10) form a Stackelberg game for this secure WPCN multiantenna multicasting system, where

the transmitter (leader) announces an energy price, and then the PBs (followers) optimize the transmit

1The quadratic model has been commonly used in the energy market to model the energy cost [46].



power based on the released energy price to maximize their individual revenue functions. The solution of

this Stackelberg game can be obtained by investigating the Stackelberg equilibrium, where the transmitter

and the PBs come to an agreement on the energy price, the transmit power of each PB and the time

fraction of energy transfer duration. Note that the deviation of either the transmitter or the PBs from the

Stackelberg equilibrium will introduce a loss in their revenue functions.

B. Stackelberg Equilibrium

In order to derive the solution of this game, the well-known Stackelberg equilibrium concept can be

defined as follows:

Definition 2: Let (θopt, λopt) denote the solutions of problem (7) while {popt
m } represents the solution of

problem (10) (here, the brackets {} indicate a vector that include all pm’s with ∀m). Then, the triple-

variable set (θopt, λopt, popt
m ) is a Stackelberg equilibrium of the formulated game provided that the following

conditions are satisfied

UM(θopt, λopt, {popt
m }) ≥ UM(θ, λ, {popt

m }), (11)

UPB,m(θopt, λopt, popt
m ) ≥ UPB,m(θopt, λopt, pm), ∀m. (12)

for 0 < θ < 1, λ ≥ 0, and pm ≥ 0, ∀m.

C. Solution of The Follower Game

First, it can be observed that problem (10) is convex with respect with pm for given values of λ and θ.

Thus, the solution of (10) is immediately obtained by setting the derivative w.r.t. pm to zero as follows:

popt
m =


λ‖gm‖2−Bm

2Am
, λ > Bm

‖gm‖2

0, λ ≤ Bm

‖gm‖2 .
(13)

Based on (13), we can deduce the following remark:

Remark 1: From (13), it is observed that the optimal power allocation popt
m can only be obtained (i.e.,

solution pm is positive) under the condition that the energy price λ is greater than threshold Bm

‖gm‖2 . Thus,

in order to guarantee the sufficient energy harvested by the transmitter, we divide these PBs into two

sets, namely, the active PB set and the non-active PB set. The PBs who can transfer the energy to the

transmitter and help determine the achievable secrecy rate by using the harvested energy are called the

active PB set, who satisfies the first equation in (13). The remaining ones are the non-active PB set (i.e.,

their power popt
m is zero). In our paper, we assume that from M available PBs there are M̄ active PBs

(M̄ ≤M ). Hereafter, we consider this set of active PBs only and re-index the mth PB to be one of this

set (i.e., m = 1, 2, · · · , M̄).



D. Solution of The Leader Game

By exploiting Remark 1, we replace pm in (7) with (13), so that problem (7) becomes

max
λ,θ,v

µ(1− θ)

[
min
k

log

[
1 +

θ(
∑M̄

m=1 p
opt
m ‖gm‖2)|hHs,kv|2

(1− θ)σ2
s

]
−max

l
log

[
1 +

θ(
∑M̄

m=1 p
opt
m ‖gm‖2)|hHe,lv|2

(1− θ)σ2
e

]]

− λθ
M̄∑
m=1

pm‖gm‖2

s.t. 0 < θ < 1, λ ≥ 0. (14)

The problem is not convex in terms of normalized transmit beamfoming vector v, the energy transfer

price λ, and the energy time allocation θ, which cannot be solved directly.

1) Solution for Transmit Beamforming Vector: Thus, for given λ and θ, we first achieve the optimal

solution for v by solving the following optimization problem:

max
v

min
k

log

[
1 +

θ(
∑M̄

m=1 p
opt
m ‖gm‖2)|hHs,kv|2

(1− θ)σ2
s

]
−max

l
log

[
1 +

θ(
∑M̄

m=1 p
opt
m ‖gm‖2)|hHe,lv|2

(1− θ)σ2
e

]
,

s.t. ‖v‖2 ≤ 1. (15)

Problem (15) is not convex due to its objective function. In order to circumvent this issue, we relax this

problem as

max
w,R

R,

s.t. log

[
1 +

θ(
∑M̄

m=1 p
opt
m ‖gm‖2)|hHs,kw|2

(1− θ)σ2
s

]
− log

[
1 +

θ(
∑M̄

m=1 p
opt
m ‖gm‖2)|hHe,lw|2

(1− θ)σ2
e

]
≥ R, ∀ (k, l),

‖w‖2 ≤ P, (16)

where w =
√
Pv, P =

∑M̄
m=1 p

opt
m ‖gm‖2. Problem (16) is still non-convex and, thus, is not likely to be

solved efficiently. To make the problem tractable, we first decompose (16) into a sequence of following

minimization problems, one for each target rate R > 0:

min
w
‖w‖2,

s.t. log

[
1 +

θ(
∑M̄

m=1 p
opt
m ‖gm‖2)|hHs,kw|2

(1− θ)σ2
s

]
− log

[
1 +

θ(
∑M̄

m=1 p
opt
m ‖gm‖2)|hHe,lw|2

(1− θ)σ2
e

]
≥ R, ∀ (k, l).

(17)

Problem (17) can be reformulated as

min
w
‖w‖2

s.t. log

(
1 +
|hHs,kw|2

σ̄2
s

)
− log

(
1 +
|hHe,lw|2

σ̄2
e

)
≥ R, ∀ (k, l), (18)



where σ̄2
s = (1−θ)σ2

s

θ
, σ̄2

e = (1−θ)σ2
e

θ
.

Algorithm 1: Bisection method

1) Choose ε > 0 (termination parameter), Rlb and Rub such that Ropt lies in [Rlb, Rub];

2) R = (Rlb +Rub)/2;

3) Check the feasibility of problem (18) with R. If infeasible, let Rub = R, and go to step 4; otherwise,

go to step 5.

4) Check ‖w‖2 ≤ P . If it is satisfied, set Rlb = R; otherwise, Rub = R;

5) Until Rub −Rlb ≤ ε; else go to step 2.

Obviously, the optimal objective value of the problem (17) is monotonically increasing with respect to

R. Thus, by solving problem (17) with different R and using a bisection search over R as described in

Algorithm 1, the optimal secrecy rate R and the associated normalized transmit beamforming vector v

can be obtained. Therefore, we will focus on solving (17) in the following.

The problem (18) is not convex in terms of w, and still cannot be solved efficiently. In order to

circumvent this non-convex issue, we introduce a new rank-one semidefinite matrix Qs = wwH . By

relaxing the rank-one constraint, we can arrive at the following convex relaxation:

min
Qs�0

Tr(Qs),

s.t.
1

σ2
s

Tr(hs,khHs,kQs)−
2R

σ2
e

Tr(he,lhHe,lQs) ≥ 2R − 1, ∀(k, l). (19)

The above problem is convex by dropping the non-convex constraint rank(Qs) = 1 and can be solved

by using interior-point methods [41]. It is not always possible to expect that the optimal solution of (19)

attains the optimum of the original problem (18). However, the SDP relaxation is tight if the optimal

solution of (19) has rank one. The rank of the solution of (19) is characterized by the following result:

Proposition 1: [38, Theorem 1] Provided the problem (19) is feasible, the optimal solution of (19)

must satisfy the following rank inequality:

rank(Qs) ≤ min(K,
√
KL) (20)

With Proposition 1, we are able to identify the tightness of SDP relaxed solution via the following lemma

Lemma 1: [38, Corollary 1] Provided the problem (19) feasible, it is guaranteed that (19) can yield a

rank-one solution which exactly solves the problem (18) when either one of the two following conditions

is satisfied:

1) K = 1 and L ≥ 1.

2) 1 < K ≤ 3, and L = 1.

By exploiting Proposition 1 and Lemma 1, if rank(Qs) satisfies the rank-one condition in Lemma 1, we

can employ the eigen-decomposition for Qs to obtain the optimal transmit beamformer w. Otherwise, we



need to use a rank reduction algorithm to tackle this problem [47]. However, when the rank-one condition

in Lemma 1 is satisfied, we can also consider the following theorem to directly solve the problem (18).

Theorem 1: The problem (18) can be reformulated as the following convex optimization when the

rank-one condition in Lemma 1 is satisfied.

min
t≥0,w

t,

s.t.

 t

w

 �K(NT+1)
0,


1
σ̄s

wHhs,k
2
R
2

σ̄e
wHhe,l

(2R − 1)
1
2

 �K3 0, ∀ (k, l). (21)

Proof: The proof can be obtained by using the generalized cone inequality

 a

b

 �Kn 0⇔ ‖b‖ ≤ a.

By exploiting Theorem 1, it is verified that (21) is a convex optimization problem, which can be solved

by using interior-point methods [41]. Thus, the optimal normalized transmit beamforming vector vopt can

be easily achieved. Now, we consider the computation complexity of solving problem (21). According to

the analysis of the basic complexity elements in [48], problem (21) includes one second-order cone (SOC)

constraint with dimension NT + 1, KL SOC constraints with dimension NT , and one linear constraint.

Thus, its computation complexity can be given by O
(√

2KL+ 3n[KLN2
T + (NT + 1)2 + 1 +n2]

)
ln(1

ε
),

where n = O(NT + 1), and ε > 0 denotes the accuracy requirement.

A special case: Consider the case with a single legitimate user and a single eavesdropper only. The closed-

form solution can be derived by exploiting Lagrange dual problem and Karush-Kuhn-Tucker (KKT)

conditions2. For notational convenience, we replace the channel notations hs,k and he,l by hs and he,

respectively. The following lemma is introduced:

Lemma 2: The optimal solution to (18) with only single legitimate user and single eavesdropper is

given by

wopt =
√
P optvopt, vopt =

w̄

‖w̄‖2

, w̄ = vmax(
1

σ̄2
s

hsh
H
s −

2R

σ̄2
e

heh
H
e ),

P opt = αopt(2R − 1), αopt =
1

%max(
1
σ̄2
s
hshHs − 2R

σ̄2
e
hehHe )

. (22)

Proof: See Appendix A.

2For this special case, a related work in [49] aimed at maximizing the secrecy rate subject to a transmit power constraint, in which the

optimal beamforming vector is obtained based on Rayleigh quotient approach. Our work obtained a closed-form solution of the joint design

of the optimal time allocation and the optimal transmit beamforming vector via the dual problem and the KKT condition. Note that our

work can also be extended to the problem of minimization of the transmitter’s transmit power.



Now, a natural question is how to tackle problem (18) when the rank-one condition of Lemma 1 is not

satisfied. For this scenario, SDP relaxed method may result in poor performance or even fail to obtain the

optimal beamforming vector when SDP relaxed method returns high-rank solutions. This phenomenon is

very common in multicast scenario even without security constraint [1]. For this purpose, we consider

an SCA based scheme to reformulate the problem (18) for any general case, yielding an SOCP. We

equivalently rewrite the problem (18) by introducing a new set of variables (xs,k, ys,k, bs,k), ∀k as

min
w,bs,k

‖w‖2,

s.t. x2
s,k + y2

s,k ≥ bs,k, (23a)

(2R − 1)σ̄2
s +

2Rσ̄2
s

σ̄2
e

|wHhe,l|2 ≤ bs,k, (23b)

xs,k = <
{
wHhs,k

}
, ys,k = =

{
wHhs,k

}
, (23c)

where (xs,k, ys,k, bs,k) ∈ R, ∀k In the above reformulation, it is observed that both constraint (23a) and

(23b) are still not convex while (23c) are linear constraints. In order to further process these non-convex

constraints, we first introduce iterative successive approximation methods to tackle (23a). Specifically,

set qs,k = [xs,k ys,k]
T , and denote the value of this vector at the n-th iteration as q

(n)
s,k . We consider the

first-order Taylor series to approximate the left hand side of (23a) as

x2
s,k + y2

s,k = qTs,kqs,k ≈ ‖u
(n)
s,k‖

2 + 2
2∑
i=1

u
(n)
s,k (i)[qs,k(i)− u

(n)
s,k (i)], (24)

where the parameter vector u
(n)
s,k (i) can be updated u

(n+1)
s,k = q

(n)
s,k , ∀k at the (n + 1)-th iteration, and

qs,k(i) denotes the ith element of qs,k. It depends on the optimization variables obtained as a solution to

(23) at n-th iteration. Thus, (24) can be given by

‖u(n)
s,k‖

2 + 2
2∑
i=1

u
(n)
s,k (i)[qs,k(i)− u

(n)
s,k (i)] ≥ bs,k. (25)

To proceed, the constraint (23b) can be equivalently reformulated into the following SOC constraint∥∥∥∥∥∥
 (2R − 1)

1
2 σ̄s

2
R
2 σ̄s
σ̄e

wHhe,l

∥∥∥∥∥∥
2

≤ bs,k ⇒

∥∥∥∥∥∥∥∥∥


(2R − 1)

1
2 σ̄s

2
R
2 σ̄s
σ̄e

wHhe,l
(bs,k−1)

2


∥∥∥∥∥∥∥∥∥ ≤

(bs,k + 1)

2
. (26)

Remark 2: The convexity of the term qTs,kqs,k and the first-order Taylor approximation ensures that

the right hand side in (24) bounds the left side in each iterative procedure. In other words, the optimal

solution of the problem with the approximated constraint in (24) definitely belongs to the feasible set of

the original optimization problem at each iteration. Also, due to the above update, the approximation in

(24) holds with equality at the (n + 1)-th iteration. In addition, the gradients of both sides in (24) (i.e.,



left hand side x2
s,k + y2

s,k or qTs,kqs,k, and right hand side ‖u(n)
s,k‖2 + 2

∑2
i=1 u

(n)
s,k (i)[qs,k(i)− u

(n)
s,k (i)]) with

respect to qs,k are the same at the (n + 1)-th iteration, which shows that this approximation algorithm

converges to a KKT point, and the solution of the iterative procedure satisfies the KKT conditions [50,

Theorem 1].

By exploiting Remark 2, the problem (18) takes the following form at the n-th iteration

min
w,bs,k

‖w‖2,

s.t. (25), (26), (23c), ∀(k, l). (27)

Based on the above discussion, an iterative algorithm to solve the problem in (18) is summarized in

Algorithm 2.

Algorithm 2: Successive convex approximation to solve (18)

1) Initialization: Randomly generate u
(0)
s,k, ∀k to make (27) feasible

2) Repeat

a) Solve (27).

b) Set u
(n+1)
s,k = q

(n)
s,k , ∀k.

c) Set n := n+ 1.

3) Until required accuracy is achieved or the maximum number of iterations is reached.

From Algorithm 2, the initialized vector us,k is given by random generation to guarantee the feasibility

of (27), which can be updated at each iteration until u
(n+1)
s,k = q

(n)
s,k holds when the algorithm converges.

Now, we claim that Algorithm 2 is guaranteed to converge. The optimization variables w, xs,k and ys,k,

for all k belong to both S(n) and S(n+1), where S(n) is the feasible set of optimization problem at n-th

iteration. Therefore, f (n)
S ≥ f

(n+1)
S , where f (n)

S is the objective function at n-th iteration. Since the feasible

set of (27) is convex and compact, this iterative procedure converges to a locally optimum solution [40].

2) Solution for The Energy Price and Energy Time Allocation: In previous subsection, we exploit the

optimal solution for the transmit beamforming vector v. In this subsection, we solve for the optimal

solution to the energy price λ and the energy transfer time allocation θ only in leader level game (14) for



given v, which is written as

max
λ,θ

µ(1− θ)

[
min
k

log

[
1 +

(
λ

M̄∑
m=1

‖gm‖4

2Am
−

M̄∑
m=1

Bm‖gm‖2

2Am

)
ts

]

−min
l

log

[
1 +

(
λ

M̄∑
m=1

‖gm‖4

2Am
−

M̄∑
m=1

Bm‖gm‖2

2Am

)
te

]]

− θλ2

M̄∑
m=1

‖gm‖4

2Am
+ θλ

M̄∑
m=1

Bm‖gm‖2

2Am

s.t. 0 < θ < 1, λ ≥ 0 (28)

where

ts = min
k
ts,k = min

k

θ|hHs,kv|2

(1− θ)σ2
s

, ∀k, te = max
l
te,l = min

l

θ|hHe,lv|2

(1− θ)σ2
e

, ∀l.

The problem (28) is not jointly convex in terms of θ and λ. It is extremely hard to find their optimal

solutions simultaneously due to the complexity of the objective function in (28). In order to address this

issue, we first derive the closed-form solution for the optimal λ with a given value θ. Then, the optimal

value for θ can be achieved through numerical analysis. In order to derive the closed-form solution of λ,

we set CM =
∑M̄

m=1
‖gm‖4
2Am

, DM =
∑M̄

m=1
Bm‖gm‖2

4Am
, and the objective function to (14) can be expressed as

UM(θ, λ) = µ(1− θ)
[
log

[
1 +

(
λCM − 2DM

)
ts

]
− log

[
1 +

(
λCM − 2DM

)
te

]]
− θλ2CM + 2θλDM . (29)

Lemma 3: (29) is a concave function with respect to λ.

Proof: See Appendix B.

By exploiting Lemma 3, we can claim that (14) is a convex problem. Now, we derive the closed-form

solution of λ. In order to obtain the optimal solution to λ, let the first order derivative of (29) equate to

zero, we have

µ(1− θ)tsCM
1 + (λCM −DM)ts −DM ts

− µ(1− θ)teCM
1 + (λCM −DM)te −DM te

− 2θCMλ+ 2θDM = 0. (30)

Set x = λCM −DM , and after a few of mathematical simplifications, we arrive at

x3 + ax2 + bx+ c = 0, (31)

where

a =
(ts + te)− 2DM tste

tste
, b =

(DM ts − 1)(DM te − 1)

tste
, c = −µ(1− θ)CM(ts − te).



It is easily observed that (31) is a cubic equation, which can be solved in terms of closed-form solution

of x by using Cardano’s formula [51],

xopt = ej∠x1 3
√
|x1|+ ej∠x2 3

√
|x2| − a/3, (32)

where ∠ denotes the phase angle of an complex random variable, and

x1 = −q
2

+
√

∆, x2 = −q
2
−
√

∆,

∆ =
p3

27
+
q2

4
, p = −a

2

3
+ b, q =

2a3

27
− ab

3
+ c.

Thus, we obtain the optimal energy price as

λopt =
xopt +DM

CM
. (33)

We have already obtained the optimal energy price of the transmitter for a given θ. Now, the optimal

energy transfer time allocation is derived in the following. We substitute the closed-form expression (33)

into (29), thus, the following optimization problem can be written with respect to θ,

max
θ

UM(θ, λopt) = µ(1− θ)
[
log

(
1 +

θ

1− θ
t̄s

)
− log

(
1 +

θ

1− θ
t̄e

)]
− θΨ,

s.t. 0 < θ < 1, (34)

where

t̄s =
Φ mink |hHs,kv|2

σ2
s

, t̄e =
Φ maxl |hHe,lv|2

σ2
e

,

Φ = λopt
M̄∑
m=1

‖gm‖4

2Am
−

M̄∑
m=1

Bm‖gm‖2

2Am
, Ψ = (λopt)2

M̄∑
m=1

‖gm‖4

2Am
− λopt

M̄∑
m=1

Bm‖gm‖2

2Am
. (35)

Now, we show that the problem (34) is a convex optimization problem with respect to θ for given v and

λopt via the following lemma:

Lemma 4: (34) is a convex problem with respect to θ.

Proof: See Appendix C.

By exploiting Lemma 4, the problem (34) can be efficiently handled by using 1D search to obtain the

optimal energy transfer time solution θopt as follows:

θopt = arg max
θ∈(0,1)

UM(θ, λopt). (36)

We have completed the derivation of the Stackelberg equilibrium (popt
m , λ

opt, θopt) for the formulated

Stackelberg game, which are shown in (13), (32) and (36).



IV. NUMERICAL RESULTS

In this section, we provide the simulation results to validate the proposed schemes. We consider the

secure multiantenna multicasting system that consists of three legitimate receivers (i.e., K = 3) and two

eavesdroppers (L = 5), where the transmitter is wirelessly powered by five PBs (M = 5). It is assumed

that the transmitter is equipped with eight transmit antennas (i.e., NT = 8), whereas the others consist of

single antenna. We employ the path loss channel model
√
Ad−αx [52], [53], where A = 10−3. The path

loss exponent is set to α = 3. Distance variable dx can be replaced with ds, de, and dPB according to

different channel coefficients, representing the distance between the transmitter and the legitimate users,

the eavesdroppers as well as the PBs, respectively. In our simulation, we choose ds = de = 2 m, and

dPB = 5 m unless specified. The target secrecy rate is set to be R = 2 bps/Hz. The noise powers at the

legitimate users and the eavesdroppers are set as σ2
s = σ2

e = 10−8 mW.
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Fig. 2: Comparison of transmit power between the proposed scheme and SDP scheme versus distance between PBs and

transmitter.

First, we evaluate the leader game and particularly problem (17) where we can achieve the minimized

transmit power against the distance between PBs and the transmitter (i.e., dPB). Fig. 2 shows the result in
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Fig. 3: Comparison of transmit power between the SOCP and SDP schemes versus distance between PBs and transmitter.

general case where the rank-one condition in Lemma 1 is not satisfied. One can observe that our proposed

SCA scheme slightly performs better than the SDP randomization scheme3 in [39]. This is owing to the fact

that our proposed scheme can achieve an optimal solution via Algorithm 2, whereas the relaxed solution

for the SDP randomization scheme may not achieve the optimality, which highlights the advantage of our

proposed SCA scheme. However, in the case of the rank-one condition being satisfied, Fig. 3 shows that

the SOCP yields the same performance as that of the proposed SCA scheme and the SDP scheme, which

validates the correctness of Theorem 1. Fig. 4 shows the impact of the energy time allocation. From this

figure, we observe that the proposed SOCP scheme with the fixed time allocation (i.e., θ = 0.5) obviously

requires more transmit power than the proposed SOCP scheme with optimal energy time allocation. This

is owing to a fact that our proposed scheme can achieve an optimal energy time allocation by numerical

search (i.e., θ = θopt). Similar behaviors are observed in Fig. 5 which is obtained for the special case of

single user and single eavesdropper. This figure shows that the derived closed-form solution in Lemma

2 matches well with the numerical results obtained from a convex optimization tool, which validates the

accuracy of this closed-form solution.

3Randomization techniques can be used to construct a rank-one solution to tackle the non rank-one SDP relaxed solution [1], which is a

feasible solution.
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Next, we validate the equilibrium of the proposed Stackelberg game. In order to support the derived

Stackelberg equilibrium, we first evaluate the utility function of the transmitter versus the energy transfer

price λ with a fixed energy transfer time allocation θ in Fig. 6. From this figure, it is observed that the

revenue function is concave, which validates the proof of convexity shown in Lemma 3. In this figure, it

also can be shown that the optimal utility function of the transmitter can be obtained via optimal energy

transfer price λopt in (33) and it matches the numerical search with different given θ, which confirms the

optimal closed-form solution of the energy transfer price λ. Also, as θ increases, the utility function of

the legitimate transmitter is decreasing, and the optimal value λ shifts to the left. In addition, the revenue

function of the transmitter versus energy transfer time allocation (i.e., θ) with optimal energy price λopt

is shown in Fig. 7. From this figure, it is shown that the revenue function is concave with respect to θ,

which validates (36). Moreover, there exists a optimal utility transfer time (i.e., θopt) via numerical search

with the optimal energy price. As µ increases, the optimal value slightly shifts to the left.

Then, we evaluate the transmitter revenue function performance of the proposed Stackelberg game.

Fig. 8 and Fig. 9 show the revenue function of the transmitter versus the number of PBs. From both

figures, we can observe that this utility is improved with increasing of the number of PBs and µ. From
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Fig. 8: The utility function of transmitter UM versus No. of PBs with different number of legitimate users and eavesdroppers

Fig. 8, increasing the number of the eavesdroppers can have more significant impact on the revenue



than increasing the number of the legitimate users. In Fig. 9, the revenue is decreased when the distance

between the source and PBs is increased from 5m to 6.5m. This is because the nearer the PBs to the

transmitter, the higher the transferred energy efficiency between them, which reduces the transmitter’s

payments to the PBs for their wireless energy services. Fig. 10 shows the optimal energy transfer time θ
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Fig. 9: The utility function of transmitter UM versus No. of PBs with different dPB

versus the number of PBs. It is observed that θ decreases as either the number of the PBs or µ increase.

The same behavior is observed when the distance between the source and PBs (i.e., dPB) decreases. Fig.

11 shows the optimal energy price versus the number of PBs. The price decreases as the number of PBs

increases. Besides, the larger µ, the higher optimal energy price needs to be paid. It can also be seen

from this figure that the decrease of the distance between the transmitter and PBs can also reduce the

optimal energy price. This is because the shorter the distance between the source and PBs, the more

energy harvested by the transmitter for the same power transmitted by the PBs, such that a lower energy

price can be paid by the transmitter.

V. CONCLUSION AND FUTURE WORK

In this paper, we developed an energy interaction framework for the PBs-assisted secure wireless-

powered multiantenna multicasting system. Considering the strategic behaviours of the transmitter and
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the PBs, we formulated this energy interaction as a Stackelberg game for the considered network, where

the transmitter plays a leader role and pays a price for the energy services from the PBs to guarantee

the required security, and optimizes the energy price and the energy transfer time to maximize its utility

function. Meanwhile, the PBs are modelled as the followers that determine their optimal transmit powers

based on the released energy price to maximize their own utility function. In addition, conic convex

reformulation was proposed to achieve the optimal transmit beamforming vector for the leader game. The

Stackelberg equilibrium have been derived in terms of closed-form solution, where both the transmitter

and the PBs come to an agreement on the energy price, PB’s transmit power and energy transfer time.

Simulation results have been provided to validate the proposed schemes. For future works, we can consider

a more challenging scenario such that the PBs will not stay silent during the wireless information transfer

phase but rather transmit artificial noise to interfere with the eavesdroppers. This would change the dynamic

of the optimization problems and may require different design/solutions.

APPENDIX

A. Proof of Lemma 2

The power minimization problem (18) with only single legitimate user and eavesdropper can be rewritten

as

min
w

wHw

s.t. log

(
1 +
|hHs w|2

σ̄2
s

)
− log

(
1 +
|hHe w|2

σ̄2
e

)
≥ R. (37)

Now we equivalently modify (37) as

min
v,P

PvHv

s.t.
vH(I + P

σ̄2
s
hsh

H
s )v

vH(I + P
σ̄2
e
hehHe )v

≥ 2R, vHv = 1, P ≥ 0. (38)

In order to achieve the optimal solution (P opt,vopt), we consider the Lagrange dual problem to (37), which

can be expressed as

L(w, α) = wHw + α

[
2R
(

1 +
1

σ̄2
s

wHheh
H
e w

)
−
(

1 +
1

σ̄2
e

wHhsh
H
s w

)]
, (39)

where α ≥ 0 is the Lagrange multiplier associated with the secrecy rate constraint. The corresponding

dual problem can be given by

max
α≥0

α(2R − 1), s.t. Y = I− α
(

1

σ̄2
s

hsh
H
s −

2R

σ̄2
e

heh
H
e

)
� 0. (40)



To proceed, we consider the following problem:

min
Qs

Tr(Qs),

s.t.
1

σ2
s

Tr(hshHs Qs)−
2R

σ2
e

Tr(hehHe Qs) ≥ 2R − 1, (41a)

Qs � 0. (41b)

We investigate the Lagrangian function of the problem (41) as follows:

L(Qs, α1,Z) = Tr(Qs) + α1

[
2R

σ2
e

Tr(hehHe Qs)−
1

σ2
s

Tr(hshHs Qs) + 2R − 1

]
− Tr(QsZ)

= Tr
[(

I +
2Rα1

σ2
e

heh
H
e −

α1

σ2
s

hsh
H
s − Z

)
Qs

]
+ α1(2R − 1), (42)

where α1 ≥ 0 and Z � 0 are the dual variables associated with the constraints (41a) and (41b), respectively.

Thus, the dual problem can be expressed as

max
α1≥0

α1(2R − 1),

s.t. Z = I− α1

(
1

σ̄2
s

hsh
H
s −

2R

σ̄2
e

heh
H
e

)
� 0. (43)

It can be easily observed that the dual problems of (40) and (43) are the same. Thus, we can claim that

these two problems have the same solution. Now, we need to prove that Z in problem (43) has at least

one zero eigenvalue, which means that Y in (40) has at least one zero eigenvalue as well. By exploiting

the following matrix rank property [54]:

rank(A−B) ≥ rank(A)− rank(B), (44)

we have

rank(Z) = rank
(

B− α1

σ̄2
s

hsh
H
s

)
≥ rank(B)− rank

(
α1

σ̄2
s

hsh
H
s

)
, (45)

where

B = I +
α12R

σ2
e

heh
H
e (46)

From (45), one can observe that rank(Z) is either NT or NT − 1. If rank(Z) = NT , it leads to Qs = 0,

which violates R > 0. Thus, we can claim rank(Z) = NT − 1, which means that Z has at least one zero

eigenvalue. Similarly, Y has at least one zero eigenvalue as well. On the other hand, the solution of α

can be the maximum value that satisfies the positive semidefinite constraint in (40), which leads to

αopt =
1

%max(
1
σ̄2
s
hshHs − 2R

σ̄2
e
hehHe )

. (47)



The problem (37) can be formulated as a convex optimization problem. Hence, the strong duality holds

between the original problem (37) and the corresponding dual problem (40). The required minimum power

to achieve the secrecy rate constraint is

P opt = αopt(2R − 1). (48)

On the other hand, it is easily verified that the optimal w lies in the null space of Y

w̄ = vmax

(
1

σ̄2
s

hsh
H
s −

2R

σ̄2
e

heh
H
e

)
, vopt =

w̄

‖w̄‖2

. (49)

Hence, the optimal solution to (37) can be expressed as

wopt =
√
P optvopt. (50)

B. Proof of Lemma 3

We first derive the first-order derivatives of (29), which is written as

∂UM(λ)

∂λ
=

1

ln 2

[
µ(1− θ)tsCM

1 + (λCM − 2DM)ts
− µ(1− θ)teCM

1 + (λCM − 2DM)te

]
− 2CMλ+ 2DM . (51)

Then, the second-order derivatives of (29) is given by

∂2UM(λ)

∂2λ
=

1

ln 2

[
µ(1− θ)C2

M(t2e − t2s)
[1− (λCM − 2DM)ts]2[1− (λCM − 2DM)te]2

]
− 2CM < 0. (52)

The above inequality holds since ts− te > 0 to guarantee the minimum achievable secrecy rate is greater

than zero. Thus, (29) is a concave function.

C. Proof of Lemma 4

In order to show that (34) is a convex problem, which means that we only need to show UM is a

concave function with respect to θ. First, we rewrite UM as follows:

UM = µ(1− θ) log

(
1− θ + θt̄s
1− θ + θt̄e

)
− θΨ. (53)

It is easily observed that the concavity of (53) is only dependent on its first term due to the linear form

of its second term. Thus, let us define

fM = µ(1− θ) log

(
1−θ+θt̄s

1−θ
1−θ+θt̄e

1−θ

)
= µ(1− θ) log

(
θ(t̄s−1)+(1−t̄s)+t̄s

1−θ
θ(t̄e−1)+(1−t̄e)+t̄e

1−θ

)

= µ(1− θ) log

(
(1−t̄s)(1−θ)+t̄s

1−θ
(1−t̄e)(1−θ)+t̄e

1−θ

)
. (54)

The remaining part is to focus on the concavity of fM . Let z = 1− θ, (0 < θ < 1), fM can be rewritten

as

fM(z) = µz log
(1− t̄s)z + t̄s

z
− µz log

(1− t̄e)z + t̄e
z

. (55)



Then, we consider the first derivative of fM ,

∂fM
∂z

=
µ

ln 2

[(
ln

(1− t̄s)z + t̄s
z

+
−t̄s

(1− t̄s)z + t̄s

)
−
(

ln
(1− t̄e)z + t̄e

z
+

−t̄e
(1− t̄e)z + t̄e

)]
. (56)

Furthermore, the second derivative of fM is given by

∂2fM
∂z2

=
µ

ln 2

[
−t̄2s

[(1− t̄s)z + t̄s]2z
− −t̄2e

[(1− t̄e)z + t̄e]2z

]
. (57)

Let g(t) = −t2
[(1−t)z+t]2z , t > 0 the first derivative of g(t) is given by

∂g(t)

∂t
=
−2t[(1− t)z + t] + 2(1− z)t2

[(1− t)z + t]3z
=

−2t

[z + (1− z)t]3
< 0. (58)

It is easily verified that (58) holds since z = 1 − θ ∈ (0, 1). Thus, g(t) is a monotonically decreasing

function of t. Due to t̄s > t̄e > 0, it is easily obtained that ∂2fM (z)
∂z2

< 0. In other words, fM(θ) is a

concave function with respect to θ. Thus, UM is also a concave function with respect to θ.
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