222,554 research outputs found

    Applications of recurrent neural networks in batch reactors. Part II: Nonlinear inverse and predictive control of the heat transfer fluid temperature

    Get PDF
    Although nonlinear inverse and predictive control techniques based on artificial neural networks have been extensively applied to nonlinear systems, their use in real time applications is generally limited. In this paper neural inverse and predictive control systems have been applied to the real-time control of the heat transfer fluid temperature in a pilot chemical reactor. The training of the inverse control system is carried out using both generalised and specialised learning. This allows the preparation of weights of the controller acting in real-time and appropriate performances of inverse neural controller can be achieved. The predictive control system makes use of a neural network to calculate the control action. Thus, the problems related to the high computational effort involved in nonlinear model-predictive control systems are reduced. The performance of the neural controllers is compared against the self-tuning PID controller currently installed in the plant. The results show that neural-based controllers improve the performance of the real plant.Publicad

    Decision-making and control with metasurface-based diffractive neural networks

    Full text link
    The ultimate goal of artificial intelligence is to mimic the human brain to perform decision-making and control directly from high-dimensional sensory input. All-optical diffractive neural networks provide a promising solution for implementing artificial intelligence with high-speed and low-power consumption. To date, most of the reported diffractive neural networks focus on single or multiple tasks that do not involve interaction with the environment, such as object recognition and image classification. In contrast, the networks that can perform decision-making and control, to our knowledge, have not been developed yet. Here, we propose using deep reinforcement learning to implement diffractive neural networks that imitate human-level decision-making and control capability. Such networks allow for finding optimal control policies through interaction with the environment and can be readily realized with the dielectric metasurfaces. The superior performances of these networks are verified by engaging three types of classic games, Tic-Tac-Toe, Super Mario Bros., and Car Racing, and achieving the same or even higher levels comparable to human players. Our work represents a solid step of advancement in diffractive neural networks, which promises a fundamental shift from the target-driven control of a pre-designed state for simple recognition or classification tasks to the high-level sensory capability of artificial intelligence. It may find exciting applications in autonomous driving, intelligent robots, and intelligent manufacturing

    Artificial neural networks and their applications to intelligent fault diagnosis of power transmission lines

    Get PDF
    Over the past thirty years, the idea of computing based on models inspired by human brains and biological neural networks emerged. Artificial neural networks play an important role in the field of machine learning and hold the key to the success of performing many intelligent tasks by machines. They are used in various applications such as pattern recognition, data classification, stock market prediction, aerospace, weather forecasting, control systems, intelligent automation, robotics, and healthcare. Their architectures generally consist of an input layer, multiple hidden layers, and one output layer. They can be implemented on software or hardware. Nowadays, various structures with various names exist for artificial neural networks, each of which has its own particular applications. Those used types in this study include feedforward neural networks, convolutional neural networks, and general regression neural networks. Increasing the number of layers in artificial neural networks as needed for large datasets, implies increased computational expenses. Therefore, besides these basic structures in deep learning, some advanced techniques are proposed to overcome the drawbacks of original structures in deep learning such as transfer learning, federated learning, and reinforcement learning. Furthermore, implementing artificial neural networks in hardware gives scientists and engineers the chance to perform high-dimensional and big data-related tasks because it removes the constraints of memory access time defined as the von Neuman bottleneck. Accordingly, analog and digital circuits are used for artificial neural network implementations without using general-purpose CPUs. In this study, the problem of fault detection, identification, and location estimation of transmission lines is studied and various deep learning approaches are implemented and designed as solutions. This research work focuses on the transmission lines’ datasets, their faults, and the importance of identification, detection, and location estimation of them. It also includes a comprehensive review of the previous studies to perform these three tasks. The application of various artificial neural networks such as feedforward neural networks, convolutional neural networks, and general regression neural networks for identification, detection, and location estimation of transmission line datasets are also discussed in this study. Some advanced methods based on artificial neural networks are taken into account in this thesis such as the transfer learning technique. These methodologies are designed and applied on transmission line datasets to enable the scientist and engineers with using fewer data points for the training purpose and wasting less time on the training step. This work also proposes a transfer learning-based technique for distinguishing faulty and non-faulty insulators in transmission line images. Besides, an effective design for an activation function of the artificial neural networks is proposed in this thesis. Using hyperbolic tangent as an activation function in artificial neural networks has several benefits including inclusiveness and high accuracy

    Artificial biochemical networks.

    Get PDF
    Connectionist approaches to Artificial Intelligence are almost always based on Artificial Neural Networks. However, there is another route towards Parallel Distributed Processing, taking as its inspiration the intelligence displayed by single celled creatures called Protoctists (Protists). This is based on networks of interacting proteins. Such networks may be used in Pattern Recognition and Control tasks and are more flexible than most neuron models. In this paper they are demonstrated in Image Recognition applications and in Legged Robot control. They are trained using a Genetic Algorithm and Back Propagation

    Application of Neural Networks and Machine Learning in Image Recognition

    Get PDF
    Artificial neural networks find extensive applications in various fields, including complex robotics, computer vision, and classification tasks. They are designed to mimic the highly complex, nonlinear, and parallel computational abilities of the human brain. Just like neurons in the brain, artificial neural networks can be organized to perform rapid and specific computations, such as perception and motor control. Drawing insights from the behavior of biological neural networks and their learning and adaptive capabilities, these technical counterparts have been developed to simulate the properties of biological systems. This paper concentrates on two main areas. Firstly, it explores the approximation of image recognition for healthy individuals using artificial neural networks. Secondly, it investigates the identification of kidney conditions associated with common kidney diseases that affect the global population. Specifically, the paper examines polycystic kidney disease, kidney cysts, and kidney cancer. The ultimate goal is to utilize machine learning algorithms to aid in diagnosing kidney diseases by analyzing various samples

    Efficient Computation in Adaptive Artificial Spiking Neural Networks

    Get PDF
    Artificial Neural Networks (ANNs) are bio-inspired models of neural computation that have proven highly effective. Still, ANNs lack a natural notion of time, and neural units in ANNs exchange analog values in a frame-based manner, a computationally and energetically inefficient form of communication. This contrasts sharply with biological neurons that communicate sparingly and efficiently using binary spikes. While artificial Spiking Neural Networks (SNNs) can be constructed by replacing the units of an ANN with spiking neurons, the current performance is far from that of deep ANNs on hard benchmarks and these SNNs use much higher firing rates compared to their biological counterparts, limiting their efficiency. Here we show how spiking neurons that employ an efficient form of neural coding can be used to construct SNNs that match high-performance ANNs and exceed state-of-the-art in SNNs on important benchmarks, while requiring much lower average firing rates. For this, we use spike-time coding based on the firing rate limiting adaptation phenomenon observed in biological spiking neurons. This phenomenon can be captured in adapting spiking neuron models, for which we derive the effective transfer function. Neural units in ANNs trained with this transfer function can be substituted directly with adaptive spiking neurons, and the resulting Adaptive SNNs (AdSNNs) can carry out inference in deep neural networks using up to an order of magnitude fewer spikes compared to previous SNNs. Adaptive spike-time coding additionally allows for the dynamic control of neural coding precision: we show how a simple model of arousal in AdSNNs further halves the average required firing rate and this notion naturally extends to other forms of attention. AdSNNs thus hold promise as a novel and efficient model for neural computation that naturally fits to temporally continuous and asynchronous applications

    DIRECT INVERSE CONTROL OF TWO-TANK SYSTEM USING NEURAL NETWORKS

    Get PDF
    Abstract and Figures In this paper, the implementation of the controller based on neural networks for controlling two-tank system is presented. A ready-made mathematical model of the Amira DTS200 system, which is a typical example of a slow nonlinear process, is used. Among the most important applications of artificial neural networks is their application in the control of nonlinear processes. The applied controlling structure represents Direct Inverse Control. Experimental results of the obtained process response for a given reference input using implemented inverse controller are given

    Modeling the Drying Kinetics of Green Bell Pepper in a Heat Pump Assisted Fluidized Bed Dryer

    Get PDF
    In this research, green bell pepper was dried in a pilot plant fluidized bed dryer equipped with a heat pump humidifier using three temperatures of 40, 50 and 60C and two airflow velocities of 2 and 3m/s in constant air moisture. Three modeling methods including nonlinear regression technique, Fuzzy Logic and Artificial Neural Networks were applied to investigate drying kinetics for the sample. Among the mathematical models, Midilli model with R=0.9998 and root mean square error (RMSE)=0.00451 showed the best fit with experimental data. Feed-Forward-Back-Propagation network with Levenberg-Marquardt training algorithm, hyperbolic tangent sigmoid transfer function, training cycle of 1,000 epoch and 2-5-1 topology, deserving R=0.99828 and mean square error (MSE)=5.5E-05, was determined as the best neural model. Overall, Neural Networks method was much more precise than two other methods in prediction of drying kinetics and control of drying parameters for green bell pepper. Practical Applications: This article deals with different modeling approaches and their effectiveness and accuracy for predicting changes in the moisture ratio of green bell pepper enduring fluidized bed drying, which is one of the most concerning issues in food factories involved in drying fruits and vegetables. This research indicates that although efficiency of mathematical modeling, Fuzzy Logic controls and Artificial Neural Networks (ANNs) were all acceptable, the modern prediction methods of Fuzzy Logic and especially ANNs were more productive and precise. Besides, this report compares our findings with previous ones carried out with the view of predicting moisture quotients of other food crops during miscellaneous drying procedures. © 2016 Wiley Periodicals, Inc
    • …
    corecore