2 research outputs found

    Cartographie, localisation et planification simultaneĢes ā€˜en ligneā€™, aĢ€ long terme et aĢ€ grande eĢchelle pour robot mobile

    Get PDF
    Pour eĢ‚tre en mesure de naviguer dans des endroits inconnus et non structureĢs, un robot doit pouvoir cartographier lā€™environnement afin de sā€™y localiser. Ce probleĢ€me est connu sous le nom de cartographie et localisation simultaneĢes (ou SLAM pour Simultaneous Localization and Mapping). Une fois la carte de lā€™environnement creĢeĢe, des taĢ‚ches requeĢrant un deĢplacement dā€™un endroit connu aĢ€ un autre peuvent ainsi eĢ‚tre planifieĢes. La charge de calcul du SLAM est deĢpendante de la grandeur de la carte. Un robot a une puissance de calcul embarqueĢe limiteĢe pour arriver aĢ€ traiter lā€™information ā€˜en ligneā€™, cā€™est-aĢ€-dire aĢ€ bord du robot avec un temps de traitement des donneĢes moins long que le temps dā€™acquisition des donneĢes ou le temps maximal permis de mise aĢ€ jour de la carte. La navigation du robot tout en faisant le SLAM est donc limiteĢe par la taille de lā€™environnement aĢ€ cartographier. Pour reĢsoudre cette probleĢmatique, lā€™objectif est de deĢvelopper un algorithme de SPLAM (Simultaneous Planning Localization and Mapping) permettant la navigation peu importe la taille de lā€™environment. Pour geĢrer efficacement la charge de calcul de cet algorithme, la meĢmoire du robot est diviseĢe en une meĢmoire de travail et une meĢmoire aĢ€ long terme. Lorsque la contrainte de traitement ā€˜en ligneā€™ est atteinte, les endroits vus les moins souvent et qui ne sont pas utiles pour la navigation sont transfeĢreĢes de la meĢmoire de travail aĢ€ la meĢmoire aĢ€ long terme. Les endroits transfeĢreĢs dans la meĢmoire aĢ€ long terme ne sont plus utiliseĢs pour la navigation. Cependant, ces endroits transfeĢreĢs peuvent eĢ‚tre reĢcupeĢreĢes de la meĢmoire aĢ€ long terme aĢ€ la meĢmoire de travail lorsque le le robot sā€™approche dā€™un endroit voisin encore dans la meĢmoire de travail. Le robot peut ainsi se rappeler increĢmentalement dā€™une partie de lā€™environment a priori oublieĢe afin de pouvoir sā€™y localiser pour le suivi de trajectoire. Lā€™algorithme, nommeĢ RTAB-Map, a eĢteĢ testeĢ sur le robot AZIMUT-3 dans une premieĢ€re expeĢrience de cartographie sur cinq sessions indeĢpendantes, afin dā€™eĢvaluer la capaciteĢ du systeĢ€me aĢ€ fusionner plusieurs cartes ā€˜en ligneā€™. La seconde expeĢrience, avec le meĢ‚me robot utiliseĢ lors de onze sessions totalisant 8 heures de deĢplacement, a permis dā€™eĢvaluer la capaciteĢ du robot de naviguer de facĢ§on autonome tout en faisant du SLAM et planifier des trajectoires continuellement sur une longue peĢriode en respectant la contrainte de traitement ā€˜en ligneā€™ . Enfin, RTAB-Map est compareĢ aĢ€ dā€™autres systeĢ€mes de SLAM sur quatre ensembles de donneĢes populaires pour des applications de voiture autonome (KITTI), balayage aĢ€ la main avec une cameĢra RGB-D (TUM RGB-D), de drone (EuRoC) et de navigation inteĢrieur avec un robot PR2 (MIT Stata Center). Les reĢsultats montrent que RTAB-Map peut eĢ‚tre utiliseĢ sur de longue peĢriode de temps en navigation autonome tout en respectant la contrainte de traitement ā€˜en ligneā€™ et avec une qualiteĢ de carte comparable aux approches de lā€™eĢtat de lā€™art en SLAM visuel et avec teĢleĢmeĢ€tre laser. ll en reĢsulte dā€™un logiciel libre deĢployeĢ dans une multitude dā€™applications allant des robots mobiles inteĢrieurs peu couĢ‚teux aux voitures autonomes, en passant par les drones et la modeĢlisation 3D de lā€™inteĢrieur dā€™une maison

    A multiple optical tracking based approach for enhancing hand-based interaction in virtual reality simulations

    Get PDF
    A thesis submitted in partial fulfilment of the requirements of the University of Wolverhampton for the degree of Doctor of Philosophy.Research exploring natural virtual reality interaction has seen significant success in optical tracker-based approaches, enabling users to freely interact using their hands. Optical based trackers can provide users with real-time, high-fidelity virtual hand representations for natural interaction and an immersive experience. However, work in this area has identified four issues: occlusion, field-of-view, stability and accuracy. To overcome the four key issues, researchers have investigated approaches such as using multiple sensors. Research has shown multi-sensor-based approaches to be effective in improving recognition accuracy. However, such approaches typically use statically positioned sensors, which introduce body occlusion issues that make tracking hands challenging. Machine learning approaches have also been explored to improve gesture recognition. However, such approaches typically require a pre-set gesture vocabulary limiting user actions with larger vocabularies hindering real-time performance. This thesis presents an optical hand-based interaction system that comprises two Leap Motion sensors mounted onto a VR headset at different orientations. Novel approaches to the aggregation and validation of sensor data are presented. A machine learning sub-system is developed to validate hand data received by the sensors. Occlusion detection, stability detection, inferred hands and a hand interpolation sub-system are also developed to ensure that valid hand representations are always shown to the user. In addition, a mesh conformation sub-system ensures 3D objects are appropriately held in a userā€™s virtual hand. The presented system addresses the four key issues of optical sessions to provide a smooth and consistent user experience. The MOT system is evaluated against traditional interaction approaches; gloves, motion controllers and a single front-facing sensor configuration. The comparative sensor evaluation analysed the validity and availability of tracking data, along with each sensors effect on the MOT system. The results show the MOT provides a more stable experience than the front-facing configuration and produces significantly more valid tracking data. The results also demonstrated the effectiveness of a 45-degree sensor configuration in comparison to a front-facing. Furthermore, the results demonstrated the effectiveness of the MOT systems solutions at handling the four key issues with optical trackers
    corecore