11 research outputs found

    TOWARDS A UNIFIED VIEW OF METAHEURISTICS

    Get PDF
    This talk provides a complete background on metaheuristics and presents in a unified view the main design questions for all families of metaheuristics and clearly illustrates how to implement the algorithms under a software framework to reuse both the design and code. The key search components of metaheuristics are considered as a toolbox for: - Designing efficient metaheuristics (e.g. local search, tabu search, simulated annealing, evolutionary algorithms, particle swarm optimization, scatter search, ant colonies, bee colonies, artificial immune systems) for optimization problems. - Designing efficient metaheuristics for multi-objective optimization problems. - Designing hybrid, parallel and distributed metaheuristics. - Implementing metaheuristics on sequential and parallel machines

    Artificial Intelligence and Machine Learning Approaches to Energy Demand-Side Response: A Systematic Review

    Get PDF
    Recent years have seen an increasing interest in Demand Response (DR) as a means to provide flexibility, and hence improve the reliability of energy systems in a cost-effective way. Yet, the high complexity of the tasks associated with DR, combined with their use of large-scale data and the frequent need for near real-time de-cisions, means that Artificial Intelligence (AI) and Machine Learning (ML) — a branch of AI — have recently emerged as key technologies for enabling demand-side response. AI methods can be used to tackle various challenges, ranging from selecting the optimal set of consumers to respond, learning their attributes and pref-erences, dynamic pricing, scheduling and control of devices, learning how to incentivise participants in the DR schemes and how to reward them in a fair and economically efficient way. This work provides an overview of AI methods utilised for DR applications, based on a systematic review of over 160 papers, 40 companies and commercial initiatives, and 21 large-scale projects. The papers are classified with regards to both the AI/ML algorithm(s) used and the application area in energy DR. Next, commercial initiatives are presented (including both start-ups and established companies) and large-scale innovation projects, where AI methods have been used for energy DR. The paper concludes with a discussion of advantages and potential limitations of reviewed AI techniques for different DR tasks, and outlines directions for future research in this fast-growing area

    A Comprehensive Review of Bio-Inspired Optimization Algorithms Including Applications in Microelectronics and Nanophotonics

    Get PDF
    The application of artificial intelligence in everyday life is becoming all-pervasive and unavoidable. Within that vast field, a special place belongs to biomimetic/bio-inspired algorithms for multiparameter optimization, which find their use in a large number of areas. Novel methods and advances are being published at an accelerated pace. Because of that, in spite of the fact that there are a lot of surveys and reviews in the field, they quickly become dated. Thus, it is of importance to keep pace with the current developments. In this review, we first consider a possible classification of bio-inspired multiparameter optimization methods because papers dedicated to that area are relatively scarce and often contradictory. We proceed by describing in some detail some more prominent approaches, as well as those most recently published. Finally, we consider the use of biomimetic algorithms in two related wide fields, namely microelectronics (including circuit design optimization) and nanophotonics (including inverse design of structures such as photonic crystals, nanoplasmonic configurations and metamaterials). We attempted to keep this broad survey self-contained so it can be of use not only to scholars in the related fields, but also to all those interested in the latest developments in this attractive area

    Evolutionary Computation

    Get PDF
    This book presents several recent advances on Evolutionary Computation, specially evolution-based optimization methods and hybrid algorithms for several applications, from optimization and learning to pattern recognition and bioinformatics. This book also presents new algorithms based on several analogies and metafores, where one of them is based on philosophy, specifically on the philosophy of praxis and dialectics. In this book it is also presented interesting applications on bioinformatics, specially the use of particle swarms to discover gene expression patterns in DNA microarrays. Therefore, this book features representative work on the field of evolutionary computation and applied sciences. The intended audience is graduate, undergraduate, researchers, and anyone who wishes to become familiar with the latest research work on this field

    Theoretical foundations of artificial immune systems

    Get PDF
    Artificial immune systems (AIS) are a special class of biologically inspired algorithms, which are based on the immune system of vertebrates. The field constitutes a relatively new and emerging area of research in Computational Intelligence that has achieved various promising results in different areas of application, e.g., learning, classification, anomaly detection, and (function) optimization. An increasing and often stated problem of the field is the lack of a theoretical basis for AIS as most work so far only concentrated on the direct application of immune principles. In this thesis, we concentrate on optimization applications of AIS. It can easily be recognized that with respect to this application area, the work done previously mainly covers convergence analysis. To the best of our knowledge this thesis constitutes the first rigorous runtime analyses of immune-inspired operators and thus adds substantially to the demanded theoretical foundation of AIS. We consider two very common aspects of AIS. On one hand, we provide a theoretical analysis for different hypermutation operators frequently employed in AIS. On the other hand, we examine a popular diversity mechanism named aging. We compare our findings with corresponding results from the analysis of other nature-inspired randomized search heuristics, in particular evolutionary algorithms. Moreover, we focus on the practical implications of our theoretical results in order to bridge the gap between theory and practice. Therefore, we derive guidelines for parameter settings and point out typical situations where certain concepts seem promising. These analyses contribute to the understanding of how AIS actually work and in which applications they excel other randomized search heuristics
    corecore