26 research outputs found

    Co-design of forward-control and force-feedback methods for teleoperation of an unmanned aerial vehicle

    Full text link
    The core hypothesis of this ongoing research project is that co-designing haptic-feedback and forward-control methods for shared-control teleoperation will enable the operator to more readily understand the shared-control algorithm, better enabling him or her to work collaboratively with the shared-control technology.} This paper presents a novel method that can be used to co-design forward control and force feedback in unmanned aerial vehicle (UAV) teleoperation. In our method, a potential field is developed to quickly calculate the UAV's risk of collision online. We also create a simple proxy to represent the operator's confidence, using the swiftness with which the operator sends commands the to UAV. We use these two factors to generate both a scale factor for a position-control scheme and the magnitude of the force feedback to the operator. Currently, this methodology is being implemented and refined in a 2D-simulated environment. In the future, we will evaluate our methods with user study experiments using a real UAV in a 3D environment.Accepted manuscrip

    Distributed Real-Time Hardware- and Man-in-the-loop Simulation for the ICARO II Unmanned Systems Autopilot

    Get PDF
    The autopilot market for small and research UAVs offers several products, but most of them, although widely configurable or even open-source, do not constitute a practical and safe development system for custom guidance, navigation and control systems. The ICARO project aims at providing the small UAV community with a valid autopilot alternative. The ICARO autopilot exploits rapid control system prototyping techniques and immersive manned simulation with the possibility of testing the autopilot using the Hardware- In-the-Loop (HIL) approach. This paper describes the hardware-in-the-loop and man-in-the-loop simulator for the ICARO II platform together with the synchronization protocol we developed to keep simulator and autopilot synchronized. Experimental evidence of the effectiveness of the synchronization protocol is given

    Assisted Control for Semi-Autonomous Power Infrastructure Inspection using Aerial Vehicles

    Full text link
    This paper presents the design and implementation of an assisted control technology for a small multirotor platform for aerial inspection of fixed energy infrastructure. Sensor placement is supported by a theoretical analysis of expected sensor performance and constrained platform behaviour to speed up implementation. The optical sensors provide relative position information between the platform and the asset, which enables human operator inputs to be autonomously adjusted to ensure safe separation. The assisted control approach is designed to reduced operator workload during close proximity inspection tasks, with collision avoidance and safe separation managed autonomously. The energy infrastructure includes single vertical wooden poles and crossarm with attached overhead wires. Simulated and real experimental results are provided.Comment: to appear in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2018

    Attentiveness Map Estimation for Haptic Teleoperation of Mobile Robot Obstacle Avoidance and Approach

    Full text link
    Haptic feedback can improve safety of teleoperated robots when situational awareness is limited or operators are inattentive. Standard potential field approaches increase haptic resistance as an obstacle is approached, which is desirable when the operator is unaware of the obstacle but undesirable when the movement is intentional, such as when the operator wishes to inspect or manipulate an object. This paper presents a novel haptic teleoperation framework that estimates the operator's attentiveness to obstacles and dampens haptic feedback for intentional movement. A biologically-inspired attention model is developed based on computational working memory theories to integrate visual saliency estimation with spatial mapping. The attentiveness map is generated in real-time, and our system renders lower haptic forces for obstacles that the operator is estimated to be aware of. Experimental results in simulation show that the proposed framework outperforms haptic teleoperation without attentiveness estimation in terms of task performance, robot safety, and user experience.Comment: Accepted by IEEE RA-

    Semi-Autonomous trajectory generation for mobile robots with integral haptic shared control

    Get PDF
    A new framework for semi-Autonomous path planning for mobile robots that extends the classical paradigm of bilateral shared control is presented. The path is represented as a B-spline and the human operator can modify its shape by controlling the motion of a finite number of control points. An autonomous algorithm corrects in real time the human directives in order to facilitate path tracking for the mobile robot and ensures i) collision avoidance, ii) path regularity, and iii) attraction to nearby points of interest. A haptic feedback algorithm processes both human's and autonomous control terms, and their integrals, to provide an information of the mismatch between the path specified by the operator and the one corrected by the autonomous algorithm. The framework is validated with extensive experiments using a quadrotor UAV and a human in the loop with two haptic interfaces

    Evaluation of Haptic and Visual Cues for Repulsive or Attractive Guidance in Nonholonomic Steering Tasks.

    Get PDF
    Remote control of vehicles is a difficult task for operators. Support systems that present additional task information may assist operators, but their usefulness is expected to depend on several factors such as 1) the nature of conveyed information, 2) what modality it is conveyed through, and 3) the task difficulty. In an exploratory experiment, these three factors were manipulated to quantify their effects on operator behavior. Subjects ( n=15n = {{15}}) used a haptic manipulator to steer a virtual nonholonomic vehicle through abstract environments, in which obstacles needed to be avoided. Both a simple support conveying near-future predictions of the trajectory of the vehicle and a more elaborate support that continuously suggests the path to be taken were designed (factor 1). These types of information were offered either with visual or haptic cues (factor 2). These four support systems were tested in four different abstracted environments with decreasing amount of allowed variability in realized trajectories (factor 3). The results show improvements for the simple support only when this information was presented visually, but not when offered haptically. For the elaborate support, equally large improvements for both modalities were found. This suggests that the elaborate support is better: additional information is key in improving performance in nonholonomic steering tasks

    Haptic Feedback Effects on Human Control of a UAV in a Remote Teleoperation Flight Task

    Get PDF
    The remote manual teleoperation of an unmanned aerial vehicle (UAV) by a human operator creates a human-in-the loop system that is of great concern. In a remote teleoperation task, a human pilot must make control decisions based upon sensory information provided by the governed system. Often, this information consists of limited visual feedback provided by onboard cameras that do not provide an operator with an accurate portrayal of their immediate surroundings compromising the safety of the mobile robot. Due to this shortfall, haptic force feedback is often provided to the human in an effort to increase their perceptual awareness of the surrounding world. To investigate the effects of this additional sensory information provided to the human op-erator, we consider two haptic force feedback strategies. They were designed to provide either an attractive force to influence control behavior towards a reference trajectory along a flight path, or a repulsive force directing operators away from obstacles to prevent collision. Subject tests were con-ducted where human operators manually operated a remote UAV through a corridor environment under the conditions of the two strategies. For comparison, the conditions of no haptic feedback and the liner combination of both attractive and repulsive strategies were included in the study. Experi-mental results dictate that haptic force feedback in general (including both attractive and repulsive force feedback) improves the average distance from surrounding obstacles up to 21%. Further statis-tical comparison of repulsive and attractive feedback modalities reveal that even though a repulsive strategy is based directly on obstacles, an attractive strategy towards a reference trajectory is more suitable across all performance metrics. To further examine the effects of haptic aides in a UAV teleoperation task, the behavior of the human system as part of the control loop was also investigated. Through a novel device placed on the end effector of the haptic device, human-haptic interaction forces were captured and further analyzed. With this information, system identification techniques were carried out to determine the plausibility of deriving a human control model for the system. By defining lateral motion as a one-dimensional compensatory tracking task the results show that general human control behavior can be identified where lead compensation in invoked to counteract second-order UAV dynamics
    corecore