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Abstract: The autopilot market for small and research UAVs offers several products, but most of them,  
although widely configurable or even open-source, do not constitute a practical and safe development system 
for custom guidance, navigation and control systems. The ICARO project aims at providing the small UAV 
community with a valid autopilot alternative. The ICARO autopilot exploits rapid control system prototyping 
techniques and immersive manned simulation with the possibility of testing the autopilot using the Hardware-
In-the-Loop (HIL) approach. This paper describes the hardware-in-the-loop and man-in-the-loop simulator for 
the ICARO II platform together with the synchronization protocol we developed to keep simulator and 
autopilot synchronized. Experimental evidence of the effectiveness of  the synchronization protocol is given.  
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1. Introduction 
The autopilot market for small and research UAVs 
offers several products; the Micropilot  MP2028, the 
CloudCap Piccolo II, the Procerus Kestrel 
Autopilot, the Mavionics MINC Autopilot System 
are just examples of widely known and used 
autopilots. Recently open-source experiments like 
the ArduPilot project arose. The above mentioned 
autopilots have similar input output interfaces, serial 
ports, digital and analog I/Os, pulse width 
modulation generation and capture. All of them 
were born, even if with possibilities of 
parameterization of their functions, as monolithic 
systems with little possibilities of real 
customization. All the open-source projects instead 
offer full customization but the community 
development process often  led to code difficult to 
modify and maintain; in addition safety of operation 
is a relevant concern since no real validation and 
qualification of the various software releases is ever 
done. Recently, pushed both by market 
requirements, and by research needs (most 
customers of those autopilots are universities or 
research centers) autopilot producers are opening 
their products a little so that users can customize 
them with external routines, and additional 
functions. Some of them are starting to provide 
hardware in the loop functionalities. The main 
limitation of these autopilots is that they are not 
sufficiently open as platforms for implementation 

and development of custom guidance, navigation 
and control (GNC) system; furthermore testing, for 
instance, of advanced algorithms like fault detection 
and accommodation system within one of these 
commercial autopilots, becomes almost impossible; 
another relevant issue is that hardware redundancy 
is only little exploited as a mean for safety as, 
instead, is standard practice in the aerospace field. 
Commercial autopilots offers a proprietary 
configuration system which requires several time to 
become familiar with; on the contrary, Computer 
Aided Control System Design (CACSD) tools like 
Mathworks Matlab and Simulink are widely used 
and appreciated amongst the community of 
researchers working in GNC systems design. In 
addition, they often offer rapid prototyping of 
control systems by automatically generating 
software for a large variety of targets, from generic 
C code, to specific RT-Linux code (in several of its 
variants) or even directly for CPUs of the embedded 
world like automotive PowerPCs, DSPs etc. that do 
not require an Operating System to run. 
Furthermore, modern unmanned vehicles require 
advanced functionalities that are not limited 
anymore to stability augmentation or reference 
command tracking but their increasing autonomy 
requires implementation of very complex 
functionalities; examples are coordination 
algorithms for swarming [1] or formation flight [2-
4], obstacle detection and avoidance [5-6],  vision 
based navigation [7-9] etc. The algorithmic 
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complexity of these functionalities requires 
extensive tests in off-line simulation; but, when real-
time performance is required, implementation issues 
and timing interaction with the other functionalities 
become relevant as well. An Hardware-In-the-Loop 
(HIL) simulator  is thus necessary in order to test the 
actual operational software when running in the 
dedicated hardware. Another relevant issue for 
unmanned systems operation is human-machine 
interface design. In order to test all the system 
functionalities in complete safety, from standard 
operations like enabling/disabling certain control 
loops, switching operational mode (for instance 
from manual control to aided or fully autonomous 
control), to engaging shared control strategies like 
recent haptic piloting support systems [10-13][5-6], 
it is necessary to provide the pilot with the same 
input/output interfaces that will be used in 
operations, and to feed him/her with a realistic 
synthetic environment[14], and to let him operate 
the actual remote control system (i.e. the autopilot) 
with, possibly, the same communications delay of 
real operations [15-16]. Thus a  Man-In-the-Loop 
(MIL) simulator is needed. Upon these 
considerations, we started in 2007 the ICARO 
project [17]: the development of a new autopilot 
capable of overcoming all these limitations and of 
providing a development environment completely 
open and based on Matlab and Simulink, capable of 
real-time HIL and MIL simulation to support  
designers in the development phase. ICARO 
Autopilot is now at its second generation and the 
third is coming soon. This paper presents the 
development of the hardware-software infrastructure 
of a real-time distributed simulator for the complete 
system: simulated vehicle dynamics, 3D realistic 
view  for man-in-the-loop simulation and the actual 
autopilot hardware connected via a communication 
bus with the rest of the system. Within this 
framework thus, the device under test will be the 
autopilot hardware. The goal of the system is 
twofold: to test and debug the control and high level 
management algorithms after their automatic 
implementation on the autopilot hardware, and to 
allow the pilot to train to operate the vehicle and test 
any operational mode, even in early development 
stages, in complete safety. 

2. The ICARO II autopilot  

University of Pisa started the project ICARO in 
2007: an internally funded project which aims at 
developing a general purpose embedded computing 
unit, with native support for several kind of data 
buses, and thus for a large number of sensors and 

payloads, with a certain degree of redundancy, 
designed with rapid prototyping of new guidance, 
navigation and control ideas in mind, relatively low-
cost but yet reliable and powerful, and not 
specifically dependent on any sensor suite.  In fact 
the ICARO autopilot hardware is flexible enough to 
be employed in a range of unmanned systems 
applications: we already employed the family of 
ICARO autopilots onboard aircraft, quadrotor and 
multi-rotor helicopter, small off-road vehicles.   

 
Figure 1. ICARO II autopilot with a GPS and 
an Analog Devices 6-DOF IMU mounted on.  

The ICARO autopilot is capable both of working as 
a highly configurable autopilot system, similarly to 
other autopilots which allow in-flight configuration 
of gains in pre-defined control loops, and as a 
completely open system which allows to build a 
complete guidance, navigation and control system 
either from scratch or with the aid of predefined 
building. Thus ICARO must be regarded as an open 
platform to develop all kind of research about 
UAVs, and not only as an autopilot. The first 
generation of autopilots were based on an 
automotive PowerPC architecture (with floating 
point unit and several internal peripherals and 
communication devices) [17].  The second family 
called ICARO II, or ICARO Light was designed to 
be smaller, lighter and cheaper with a modern and 
powerful DSP (300 MFLOPS) as computing core. 
The system, as the previous generation, is not linked 
to a specific sensor suite (inertial, GPS, etc.) or 
communications channels but may be connected via 
its I/O peripherals to any device, provided that low 
level code C is written as interface. ICARO II 
interfaces are: UART, SPI, I2C, Analog/Digital 
I/Os, PWM generation/capture, and finally 
CANBUS. This latter interface will be used as a 
high speed communication channel for the fast 
exchange of the data needed to implement the HIL 
simulator and to keep the various elements of the 
distributed simulation synchronized. UART is 
probably the most common type of serial line (RS-
232, TTL or LVTTL) and almost all sensors have 
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UART as an option.  I2C, known as two-wire 
interface, is a common bus used by many devices 
and integrated circuits (and also by many MEMS 
gyroscopes, accelerometers and magnetometers). 
SPI is a very common serial interface used at system 
level as interface between CPUs and devices. The 
output signals of the autopilot, namely its 
commands to external devices like actuators or 
payloads, is provided by PWM signals, commonly 
used to drive control surfaces servomotors, some 
simple digital I/O lines, or all the other bi-
directional interfaces (UARTs, I2C, SPI). The 
ICARO II CPU can be programmed by any 
compiler which supports it; standard C language is 
the choice for low level programming and full 
access to hardware resources; alternatively a rapid-
prototyping tool can be used. The DSP we used, for 
instance, is fully supported by the Mathworks 
Embedded Coder known in the past as RealTime- 
Workshop (RTW). With the aid of RTW, the GNC 
algorithms, developed under Simulink, can be 
simulated first on Matlab/Simulink, and then they 
can be compiled, downloaded and run in real-time 
on the actual CPU. This solution makes the 
development and prototyping of algorithms much 
faster and more intuitive. The power of the rapid 
software prototyping approach is that we were able 
to port the core autopilot functionalities we 
developed for the first ICARO autopilot, based on 
the PowerPC architecture to the ICARO Light 
family with minimal efforts; basically only the 
software interfaces toward the hardware peripherals 
(serial ports, canbus, digital and analog I/Os) had to 
be hand coded while all the GNC components 
needed no modification. The flexibility of the 
proposed autopilot will allow extending its usage to 
stabilize and control other systems [18,19]. 

3. Hardware In the Loop 
Simulation 

Hardware in the loop simulation is a common 
approach for validation and qualification of 
functionalities of pieces of actual hardware 
(eventually with firmware) before installation into 
the operational environment. For the scope of this 
paper, the piece of hardware and associated 
firmware under test is the autopilot. Modern 
unmanned vehicles require advanced functionalities, 
thus the control and mission management software 
may be very complex and difficult to validate and 
qualify; an hardware in the loop simulator  is a 
useful tool since it allows testing of the actual 
hardware/software combination that will be 

employed in operation. An autopilot has several 
sensor interfaces that must be emulated: inertial data 
(from gyroscopes and accelerometers), magnetic 
field data, GPS, atmospheric pressure (for 
measuring altitude) etc.; all these sensorial data 
must be simulated, for both its informative part and 
noise characteristics, and sent to the autopilot 
hardware in a timely manner so that, when the 
autopilot expects to have new sensor data sampled  
from its actual sensors, it finds instead data sent by 
the simulator. After elaboration of sensorial data, 
the autopilot produces an output for its actuators, 
this output may be given to real actuators and, in 
parallel, sent to the simulator so that it performs a 
simulation step (of a simulated aircraft or vehicle in 
general) and produce new sensorial data. In order to 
perform a coherent simulation, the clocks inside the 
autopilot and the simulator must be kept 
synchronized. The next section describes the 
synchronization protocol we developed for this 
particular application.  

3.1.  Synchronization protocol  

The autopilot software is constituted mainly by a 
rate monotonic scheduler that, using the a system 
timer, schedules the various tasks that implement 
guidance, navigation, control, and mission 
management algorithms, and guarantees that each 
task runs synchronized with the real time. Currently 
the ICARO II firmware is made of 5 tasks (running 
at 500, 200, 100, 20 and 5 Hz), and 12 Interrupt 
handlers (that implements low level 
communications with peripherals, i.e. perform the 
functions of the device drivers in an Operating 
System) with re-entrant asynchronous code. The 
simulator instead is a PC program, that simulates the 
vehicle dynamics: reads autopilot actuator 
commands, simulates the system (actuators, vehicle 
dynamics, external disturbances, and sensors 
dynamics),  and produces a simulated sensorial 
output for every sensor of the autopilot. In order to 
have a coherent simulation, that is with time flowing 
at the same rate in both systems, the autopilot clock 
and the simulator’s clock must be kept synchronized 
for the entire simulation duration. There are several 
options for performing this task[14], the choice of 
the best one depends mainly on the specific 
problem; it is usually unadvisable to run the two 
systems with two different clocks and synchronize 
them at single instants of time (like when starting 
the simulation) due two unavoidable clock drifts. If 
one of the two systems to be kept synchronized does 
not have the need to run its own clock, it is 
advisable to synchronize both on the same 
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clock[14]. This is the case of typical HIL 
configurations were the real part (the hardware)  has 
its own intrinsic clock and the simulated part instead 
may be slowed down to run at the same pace of the 
hardware;  this should be done at the maximum 
possible frequency. When, as in our case, data must 
be exchanged with a communication channel 
between the two systems, these communications 
may serve as both data exchange and 
synchronization point. Figure 2  depicts the 
communication scheme implemented in the 
presented HIL simulator: Autopilot and Simulator 
communicate via CANbus. The Reception (RX) 
block inside the Simulator is where synchronization 
takes place. The rationale of the proposed 
synchronization scheme can be described as:  

“Given two bi-directional communicating systems, 
system A that runs with its own real-time clock and 
cannot be slowed down, and system B without a real 
time clock; send data from A at a constant rate (this 
data will be deterministically sent at time instants 
equally spaced by ∆T), block execution of B until 
reception of data from A, advance time of B by ∆T, 
perform any operations, then loop. If B is fast 
enough, the two systems will be synchronized with 
an accuracy of ∆T seconds.” 

The macro-operations for both systems, as seen, 
from a communication/synchronization standpoint, 
are three: reception of data, elaboration of data, and 
transmission of the results. Thus, declination of this 
concept into our HIL environment leads to the 
following algorithms, presented as pseudo-code: 
 
//Autopilot code (system A) 
While (1) 
    S = GetSensorData(); 
    C = ElaborateData(S); 
    SendCommandData(C); 
    WaitForRTSync(); 

 

//Simulator code (system B) 
While (1) 
    While (data_not_received || 
timeout)  
        C = GetCommandData(); 
    S = SimVehicleAndSensors(C); 
    SendSensorData(S); 

According to the actual speed of execution of the 
second system (B), two different synchronization 
variants exists. Two cases are possible: 
1. System B is fast enough to run completely in 

the idle time of system A; 

2. System B execution time is less then ∆T but is 
not fast enough; 

In the first case, it is possible to let B wait for A to 
send input data, and then work on freshly received 
data; the net result is that SimVehicleAnd 
Sensors always executes after 
ElaborateData. Thus the autopilot always find 
“fresh” data at the next GetSensorData call. 
When the simulator  hardware is not fast enough to 
execute completely in the idle time of the autopilot, 
or simply the amount of autopilot idle time is too 
little, it is advisable to insert an artificial but 
deterministic delay between the data used by the 
autopilot and the data sent by the simulator. This 
can be simply achieved by double buffering the data 
that is received by GetSensorData. This means 
that the simulator may take up to an entire time step 
to elaborate the data; it is sufficient, in order to 
maintain synchronization, that it sends sensors data 
before the next call to GetSensorData.  

 

Figure 2. Sample communication scheme. 

Although this solution may appear worse than the 
first synchronization variant, it is often not, but 
instead may also produce a more realistic 
simulations of the sensors. For instance, the ICARO 
II Autopilot, in its most complete configuration has 
two different inertial units (that guarantee a certain 
degree of safety to fault of one of the two); both are 
sampled at 500 Hz, one via SPI, the other via I2C; 
the I2C bus, in our case, runs at 400 Kbits and bus 
load is near to 70%, this means that the 
communication time is close to 1/500th of seconds. 
Active wait for the complete read cycle for all the 
sensors on the I2C bus  is obviously impractical, 
thus it is necessary to use interrupts to perform all 
the communications with the inertial sensors. In 
order to avoid incoherency of the data, when an 
elaboration data starts, it uses the data collected by 
interrupts arrived during the previous time step, thus 
it uses data with 1 sample time of delay, exactly as it 
would happen with the second synchronization 
variant. The semantic of the GetSensorData 
function then becomes: 
• copy buffered sensor data, acquired during the 

previous time step, into S;  
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• trigger a new cycle of interrupt-driven 
acquisitions that will lead to a new S for the next 
sample time.  

Figure 4 shows the execution flow and timing of the 
synchronization algorithm. 

 

Figure 4. Execution flow and timing of the 
synchronization algorithm. 

4. Man-In-the-Loop Simulation  

Within the context of autopilot HIL simulation, a 
relevant issue is the man-machine interface that 
must allow an immersive experience for the pilot so 
that he can test effectively all the functionalities of 
the system like switching between different control 
modes, haptic  support systems [5-6][10-13], delays 
due to communications etc. It is advisable then to let 
the pilot use the actual input device of the vehicle 
and to create a realistic synthetic environment of the 
operational area of interest. With respect to the input 
device, since this is usually directly connected to the 
autopilot, no particular actions are needed when 
performing HIL simulations: the operator will use 
the real input device, connected to the autopilot with 
the real communication channel, and not a virtual 
reproduction of it. As for the synthetic environment, 
we found experimental evidence of the importance 
of using sceneries that are representative of real 
places on earth as opposed too imaginary non-
existent places: full immersion sensation and focus 
on the tasks is higher when the pilot is presented 
with a 3D scenery of a place he knows, and the 
same place  is represented in 2D (map view) on the 
ground station screen. Thus we designed a complex 
communication architecture that uses Dynamic 
HTML tools and the UDP/IP protocol to interface 
GoogleEarth with our simulator in real-time. At the 

same time, in order to fulfill the exigency of having 
a clean 3D view (without clutter from textured 
background and building) with superimposed 
telemetry data, we build a second synthetic 
environment, to be used for engineering analysis, 
using DynaWORLDS[14]. Another important 
component of the simulation environment is the 
ground station; since we are performing an HIL 
simulation, there is no need to use a mock-up of it 
but the actual Ground Station hardware, software 
and communication channels may be used. Figure 5 
shows a block diagram of the complete simulation 
environment. 

 

Figure 5. Block diagram of the complete HIL + 
MIL simulation system. 

5. Application example 

This section presents and application of the 
proposed HIL and MIL simulator; University of 
Pisa has a partnership with an Italian company[20] 
that designs, produces and operates multi-rotor 
vehicles (Fig. 6 shows one of their vehicles), to 
develop guidance, navigation and control systems 
for their vehicles, thus we developed a complete 
HIL+MIL simulator for one of their quadrotor 
vehicles. Figure 7 shows a sample view of the 3D 
synthetic environment. Figure 8 shows a snapshot of 
the ground station software designed at University 
of Pisa. The Autopilot and simulator exchanged 10 
canbus  packets at a rate of 100 Hz: 7 from 
simulator to autopilot for accelerometers, 
gyroscopes, magnetometers, baro-altimeter and GPS 
data, and 3 for autopilot commands and various 
debug data. Quadrotors are unstable vehicles, and 
rely completely on the autopilot to become 
“flyable”. Timing and delay in the data exchange 
simulations would seriously compromise vehicle 
stability since control loops are run by the actual 
autopilot. A stable simulated flight is already a good 
indication of synchronization; but, in order to 
validate the effectiveness of the synchronization 
system, and, at the same time, define a metric for 
distributed simulation fidelity and loss of 
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synchronization, we identified two parameters: the 
actual duration of a simulation step (including the 
active wait) of the simulator, or task execution time 
(TET), and the number of packets NP already in the 
reception buffer of the PC when first starting the 
synchronization loop. It is clear that the ideal value 
for TET is the autopilot communication rate: 10 
milliseconds; while the desired value for NP is 0, 
meaning that the simulator is fast enough, namely it 
elaborated the old data before new one arrived. 

 

Figure 6. A Tecnodrone multi-rotor vehicle. 

 

Figure 7. Synthetic Environment. 

 

Figure 8. Ground Station screen snapshot. 

Figure 9 and 10 show the result of a 200 seconds 
simulation run with high computational load on the 
simulator side: the simulator, ground station and 3D 

environment interface executed on the same PC. 
From the plots, it appears that TET values are 
always very close to 10 ms; a relevant jitter is also 
present and this is due mainly to the fact that the 
simulator runs on the Windows  OS without any 
real-time extensions. The good synchronization 
results can be told also from the NP plot, that is 
99.9% of the times equal to the desired value: 0.  

 

Figure 9. Sample TET values. 

 

Figure 10. Sample NP values. 

Those cases where NP>0 correspond, as expected, 
to the cases where TET>20 ms.  It should be noted 
that  NP goes back to 0 after those events (and TET 
drops to 1-2 ms), indicating that the system can 
quickly re-synchronize with the autopilot; these 
sporadic delays have thus only a minimal and 
temporary effect on the simulation fidelity. 

6. Conclusions 

The paper has presented a methodology for realizing 
a reliable HIL system that was used to implement a 
working simulation environment for the ICARO II 
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autopilot. Particular care was given to realizing a 
simple and effective synchronization algorithm 
between the autopilot and the vehicle simulator; the 
method is general and may be employed in a large 
class of HIL problems. Finally a complete MIL and 
HIL system is presented with experimental results 
that confirm the validity of the proposed 
synchronization approach.   
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