
Distributed Real-Time Hardware- and Man-in-the-loop Simulation for
the ICARO II Unmanned Systems Autopilot

LORENZO POLLINI*, VALERIA PARNENZINI, MARIO INNOCENTI

Department of Electrical and Computer Engineering
University of Pisa

Via Diotisalvi, 2 56100 Pisa
ITALY

*lpollini@dsea.unipi.it http://www.dsea.unipi.it

Abstract: The autopilot market for small and research UAVs offers several products, but most of them,
although widely configurable or even open-source, do not constitute a practical and safe development system
for custom guidance, navigation and control systems. The ICARO project aims at providing the small UAV
community with a valid autopilot alternative. The ICARO autopilot exploits rapid control system prototyping
techniques and immersive manned simulation with the possibility of testing the autopilot using the Hardware-
In-the-Loop (HIL) approach. This paper describes the hardware-in-the-loop and man-in-the-loop simulator for
the ICARO II platform together with the synchronization protocol we developed to keep simulator and
autopilot synchronized. Experimental evidence of the effectiveness of the synchronization protocol is given.

Key-Words: Distributed real-time simulation, hardware-in-the-loop, Man-in-the-Loop, Unmanned systems

1. Introduction
The autopilot market for small and research UAVs
offers several products; the Micropilot MP2028, the
CloudCap Piccolo II, the Procerus Kestrel
Autopilot, the Mavionics MINC Autopilot System
are just examples of widely known and used
autopilots. Recently open-source experiments like
the ArduPilot project arose. The above mentioned
autopilots have similar input output interfaces, serial
ports, digital and analog I/Os, pulse width
modulation generation and capture. All of them
were born, even if with possibilities of
parameterization of their functions, as monolithic
systems with little possibilities of real
customization. All the open-source projects instead
offer full customization but the community
development process often led to code difficult to
modify and maintain; in addition safety of operation
is a relevant concern since no real validation and
qualification of the various software releases is ever
done. Recently, pushed both by market
requirements, and by research needs (most
customers of those autopilots are universities or
research centers) autopilot producers are opening
their products a little so that users can customize
them with external routines, and additional
functions. Some of them are starting to provide
hardware in the loop functionalities. The main
limitation of these autopilots is that they are not
sufficiently open as platforms for implementation

and development of custom guidance, navigation
and control (GNC) system; furthermore testing, for
instance, of advanced algorithms like fault detection
and accommodation system within one of these
commercial autopilots, becomes almost impossible;
another relevant issue is that hardware redundancy
is only little exploited as a mean for safety as,
instead, is standard practice in the aerospace field.
Commercial autopilots offers a proprietary
configuration system which requires several time to
become familiar with; on the contrary, Computer
Aided Control System Design (CACSD) tools like
Mathworks Matlab and Simulink are widely used
and appreciated amongst the community of
researchers working in GNC systems design. In
addition, they often offer rapid prototyping of
control systems by automatically generating
software for a large variety of targets, from generic
C code, to specific RT-Linux code (in several of its
variants) or even directly for CPUs of the embedded
world like automotive PowerPCs, DSPs etc. that do
not require an Operating System to run.
Furthermore, modern unmanned vehicles require
advanced functionalities that are not limited
anymore to stability augmentation or reference
command tracking but their increasing autonomy
requires implementation of very complex
functionalities; examples are coordination
algorithms for swarming [1] or formation flight [2-
4], obstacle detection and avoidance [5-6], vision
based navigation [7-9] etc. The algorithmic

Latest Trends in Information Technology

ISBN: 978-1-61804-134-0 420

complexity of these functionalities requires
extensive tests in off-line simulation; but, when real-
time performance is required, implementation issues
and timing interaction with the other functionalities
become relevant as well. An Hardware-In-the-Loop
(HIL) simulator is thus necessary in order to test the
actual operational software when running in the
dedicated hardware. Another relevant issue for
unmanned systems operation is human-machine
interface design. In order to test all the system
functionalities in complete safety, from standard
operations like enabling/disabling certain control
loops, switching operational mode (for instance
from manual control to aided or fully autonomous
control), to engaging shared control strategies like
recent haptic piloting support systems [10-13][5-6],
it is necessary to provide the pilot with the same
input/output interfaces that will be used in
operations, and to feed him/her with a realistic
synthetic environment[14], and to let him operate
the actual remote control system (i.e. the autopilot)
with, possibly, the same communications delay of
real operations [15-16]. Thus a Man-In-the-Loop
(MIL) simulator is needed. Upon these
considerations, we started in 2007 the ICARO
project [17]: the development of a new autopilot
capable of overcoming all these limitations and of
providing a development environment completely
open and based on Matlab and Simulink, capable of
real-time HIL and MIL simulation to support
designers in the development phase. ICARO
Autopilot is now at its second generation and the
third is coming soon. This paper presents the
development of the hardware-software infrastructure
of a real-time distributed simulator for the complete
system: simulated vehicle dynamics, 3D realistic
view for man-in-the-loop simulation and the actual
autopilot hardware connected via a communication
bus with the rest of the system. Within this
framework thus, the device under test will be the
autopilot hardware. The goal of the system is
twofold: to test and debug the control and high level
management algorithms after their automatic
implementation on the autopilot hardware, and to
allow the pilot to train to operate the vehicle and test
any operational mode, even in early development
stages, in complete safety.

2. The ICARO II autopilot

University of Pisa started the project ICARO in
2007: an internally funded project which aims at
developing a general purpose embedded computing
unit, with native support for several kind of data
buses, and thus for a large number of sensors and

payloads, with a certain degree of redundancy,
designed with rapid prototyping of new guidance,
navigation and control ideas in mind, relatively low-
cost but yet reliable and powerful, and not
specifically dependent on any sensor suite. In fact
the ICARO autopilot hardware is flexible enough to
be employed in a range of unmanned systems
applications: we already employed the family of
ICARO autopilots onboard aircraft, quadrotor and
multi-rotor helicopter, small off-road vehicles.

Figure 1. ICARO II autopilot with a GPS and
an Analog Devices 6-DOF IMU mounted on.

The ICARO autopilot is capable both of working as
a highly configurable autopilot system, similarly to
other autopilots which allow in-flight configuration
of gains in pre-defined control loops, and as a
completely open system which allows to build a
complete guidance, navigation and control system
either from scratch or with the aid of predefined
building. Thus ICARO must be regarded as an open
platform to develop all kind of research about
UAVs, and not only as an autopilot. The first
generation of autopilots were based on an
automotive PowerPC architecture (with floating
point unit and several internal peripherals and
communication devices) [17]. The second family
called ICARO II, or ICARO Light was designed to
be smaller, lighter and cheaper with a modern and
powerful DSP (300 MFLOPS) as computing core.
The system, as the previous generation, is not linked
to a specific sensor suite (inertial, GPS, etc.) or
communications channels but may be connected via
its I/O peripherals to any device, provided that low
level code C is written as interface. ICARO II
interfaces are: UART, SPI, I2C, Analog/Digital
I/Os, PWM generation/capture, and finally
CANBUS. This latter interface will be used as a
high speed communication channel for the fast
exchange of the data needed to implement the HIL
simulator and to keep the various elements of the
distributed simulation synchronized. UART is
probably the most common type of serial line (RS-
232, TTL or LVTTL) and almost all sensors have

Latest Trends in Information Technology

ISBN: 978-1-61804-134-0 421

UART as an option. I2C, known as two-wire
interface, is a common bus used by many devices
and integrated circuits (and also by many MEMS
gyroscopes, accelerometers and magnetometers).
SPI is a very common serial interface used at system
level as interface between CPUs and devices. The
output signals of the autopilot, namely its
commands to external devices like actuators or
payloads, is provided by PWM signals, commonly
used to drive control surfaces servomotors, some
simple digital I/O lines, or all the other bi-
directional interfaces (UARTs, I2C, SPI). The
ICARO II CPU can be programmed by any
compiler which supports it; standard C language is
the choice for low level programming and full
access to hardware resources; alternatively a rapid-
prototyping tool can be used. The DSP we used, for
instance, is fully supported by the Mathworks
Embedded Coder known in the past as RealTime-
Workshop (RTW). With the aid of RTW, the GNC
algorithms, developed under Simulink, can be
simulated first on Matlab/Simulink, and then they
can be compiled, downloaded and run in real-time
on the actual CPU. This solution makes the
development and prototyping of algorithms much
faster and more intuitive. The power of the rapid
software prototyping approach is that we were able
to port the core autopilot functionalities we
developed for the first ICARO autopilot, based on
the PowerPC architecture to the ICARO Light
family with minimal efforts; basically only the
software interfaces toward the hardware peripherals
(serial ports, canbus, digital and analog I/Os) had to
be hand coded while all the GNC components
needed no modification. The flexibility of the
proposed autopilot will allow extending its usage to
stabilize and control other systems [18,19].

3. Hardware In the Loop
Simulation

Hardware in the loop simulation is a common
approach for validation and qualification of
functionalities of pieces of actual hardware
(eventually with firmware) before installation into
the operational environment. For the scope of this
paper, the piece of hardware and associated
firmware under test is the autopilot. Modern
unmanned vehicles require advanced functionalities,
thus the control and mission management software
may be very complex and difficult to validate and
qualify; an hardware in the loop simulator is a
useful tool since it allows testing of the actual
hardware/software combination that will be

employed in operation. An autopilot has several
sensor interfaces that must be emulated: inertial data
(from gyroscopes and accelerometers), magnetic
field data, GPS, atmospheric pressure (for
measuring altitude) etc.; all these sensorial data
must be simulated, for both its informative part and
noise characteristics, and sent to the autopilot
hardware in a timely manner so that, when the
autopilot expects to have new sensor data sampled
from its actual sensors, it finds instead data sent by
the simulator. After elaboration of sensorial data,
the autopilot produces an output for its actuators,
this output may be given to real actuators and, in
parallel, sent to the simulator so that it performs a
simulation step (of a simulated aircraft or vehicle in
general) and produce new sensorial data. In order to
perform a coherent simulation, the clocks inside the
autopilot and the simulator must be kept
synchronized. The next section describes the
synchronization protocol we developed for this
particular application.

3.1. Synchronization protocol

The autopilot software is constituted mainly by a
rate monotonic scheduler that, using the a system
timer, schedules the various tasks that implement
guidance, navigation, control, and mission
management algorithms, and guarantees that each
task runs synchronized with the real time. Currently
the ICARO II firmware is made of 5 tasks (running
at 500, 200, 100, 20 and 5 Hz), and 12 Interrupt
handlers (that implements low level
communications with peripherals, i.e. perform the
functions of the device drivers in an Operating
System) with re-entrant asynchronous code. The
simulator instead is a PC program, that simulates the
vehicle dynamics: reads autopilot actuator
commands, simulates the system (actuators, vehicle
dynamics, external disturbances, and sensors
dynamics), and produces a simulated sensorial
output for every sensor of the autopilot. In order to
have a coherent simulation, that is with time flowing
at the same rate in both systems, the autopilot clock
and the simulator’s clock must be kept synchronized
for the entire simulation duration. There are several
options for performing this task[14], the choice of
the best one depends mainly on the specific
problem; it is usually unadvisable to run the two
systems with two different clocks and synchronize
them at single instants of time (like when starting
the simulation) due two unavoidable clock drifts. If
one of the two systems to be kept synchronized does
not have the need to run its own clock, it is
advisable to synchronize both on the same

Latest Trends in Information Technology

ISBN: 978-1-61804-134-0 422

clock[14]. This is the case of typical HIL
configurations were the real part (the hardware) has
its own intrinsic clock and the simulated part instead
may be slowed down to run at the same pace of the
hardware; this should be done at the maximum
possible frequency. When, as in our case, data must
be exchanged with a communication channel
between the two systems, these communications
may serve as both data exchange and
synchronization point. Figure 2 depicts the
communication scheme implemented in the
presented HIL simulator: Autopilot and Simulator
communicate via CANbus. The Reception (RX)
block inside the Simulator is where synchronization
takes place. The rationale of the proposed
synchronization scheme can be described as:

“Given two bi-directional communicating systems,
system A that runs with its own real-time clock and
cannot be slowed down, and system B without a real
time clock; send data from A at a constant rate (this
data will be deterministically sent at time instants
equally spaced by ∆T), block execution of B until
reception of data from A, advance time of B by ∆T,
perform any operations, then loop. If B is fast
enough, the two systems will be synchronized with
an accuracy of ∆T seconds.”

The macro-operations for both systems, as seen,
from a communication/synchronization standpoint,
are three: reception of data, elaboration of data, and
transmission of the results. Thus, declination of this
concept into our HIL environment leads to the
following algorithms, presented as pseudo-code:

//Autopilot code (system A)
While (1)
 S = GetSensorData();
 C = ElaborateData(S);
 SendCommandData(C);
 WaitForRTSync();

//Simulator code (system B)
While (1)
 While (data_not_received ||
timeout)
 C = GetCommandData();
 S = SimVehicleAndSensors(C);
 SendSensorData(S);

According to the actual speed of execution of the
second system (B), two different synchronization
variants exists. Two cases are possible:
1. System B is fast enough to run completely in

the idle time of system A;

2. System B execution time is less then ∆T but is
not fast enough;

In the first case, it is possible to let B wait for A to
send input data, and then work on freshly received
data; the net result is that SimVehicleAnd
Sensors always executes after
ElaborateData. Thus the autopilot always find
“fresh” data at the next GetSensorData call.
When the simulator hardware is not fast enough to
execute completely in the idle time of the autopilot,
or simply the amount of autopilot idle time is too
little, it is advisable to insert an artificial but
deterministic delay between the data used by the
autopilot and the data sent by the simulator. This
can be simply achieved by double buffering the data
that is received by GetSensorData. This means
that the simulator may take up to an entire time step
to elaborate the data; it is sufficient, in order to
maintain synchronization, that it sends sensors data
before the next call to GetSensorData.

Figure 2. Sample communication scheme.

Although this solution may appear worse than the
first synchronization variant, it is often not, but
instead may also produce a more realistic
simulations of the sensors. For instance, the ICARO
II Autopilot, in its most complete configuration has
two different inertial units (that guarantee a certain
degree of safety to fault of one of the two); both are
sampled at 500 Hz, one via SPI, the other via I2C;
the I2C bus, in our case, runs at 400 Kbits and bus
load is near to 70%, this means that the
communication time is close to 1/500th of seconds.
Active wait for the complete read cycle for all the
sensors on the I2C bus is obviously impractical,
thus it is necessary to use interrupts to perform all
the communications with the inertial sensors. In
order to avoid incoherency of the data, when an
elaboration data starts, it uses the data collected by
interrupts arrived during the previous time step, thus
it uses data with 1 sample time of delay, exactly as it
would happen with the second synchronization
variant. The semantic of the GetSensorData
function then becomes:
• copy buffered sensor data, acquired during the

previous time step, into S;

Latest Trends in Information Technology

ISBN: 978-1-61804-134-0 423

• trigger a new cycle of interrupt-driven
acquisitions that will lead to a new S for the next
sample time.

Figure 4 shows the execution flow and timing of the
synchronization algorithm.

Figure 4. Execution flow and timing of the
synchronization algorithm.

4. Man-In-the-Loop Simulation

Within the context of autopilot HIL simulation, a
relevant issue is the man-machine interface that
must allow an immersive experience for the pilot so
that he can test effectively all the functionalities of
the system like switching between different control
modes, haptic support systems [5-6][10-13], delays
due to communications etc. It is advisable then to let
the pilot use the actual input device of the vehicle
and to create a realistic synthetic environment of the
operational area of interest. With respect to the input
device, since this is usually directly connected to the
autopilot, no particular actions are needed when
performing HIL simulations: the operator will use
the real input device, connected to the autopilot with
the real communication channel, and not a virtual
reproduction of it. As for the synthetic environment,
we found experimental evidence of the importance
of using sceneries that are representative of real
places on earth as opposed too imaginary non-
existent places: full immersion sensation and focus
on the tasks is higher when the pilot is presented
with a 3D scenery of a place he knows, and the
same place is represented in 2D (map view) on the
ground station screen. Thus we designed a complex
communication architecture that uses Dynamic
HTML tools and the UDP/IP protocol to interface
GoogleEarth with our simulator in real-time. At the

same time, in order to fulfill the exigency of having
a clean 3D view (without clutter from textured
background and building) with superimposed
telemetry data, we build a second synthetic
environment, to be used for engineering analysis,
using DynaWORLDS[14]. Another important
component of the simulation environment is the
ground station; since we are performing an HIL
simulation, there is no need to use a mock-up of it
but the actual Ground Station hardware, software
and communication channels may be used. Figure 5
shows a block diagram of the complete simulation
environment.

Figure 5. Block diagram of the complete HIL +
MIL simulation system.

5. Application example

This section presents and application of the
proposed HIL and MIL simulator; University of
Pisa has a partnership with an Italian company[20]
that designs, produces and operates multi-rotor
vehicles (Fig. 6 shows one of their vehicles), to
develop guidance, navigation and control systems
for their vehicles, thus we developed a complete
HIL+MIL simulator for one of their quadrotor
vehicles. Figure 7 shows a sample view of the 3D
synthetic environment. Figure 8 shows a snapshot of
the ground station software designed at University
of Pisa. The Autopilot and simulator exchanged 10
canbus packets at a rate of 100 Hz: 7 from
simulator to autopilot for accelerometers,
gyroscopes, magnetometers, baro-altimeter and GPS
data, and 3 for autopilot commands and various
debug data. Quadrotors are unstable vehicles, and
rely completely on the autopilot to become
“flyable”. Timing and delay in the data exchange
simulations would seriously compromise vehicle
stability since control loops are run by the actual
autopilot. A stable simulated flight is already a good
indication of synchronization; but, in order to
validate the effectiveness of the synchronization
system, and, at the same time, define a metric for
distributed simulation fidelity and loss of

Latest Trends in Information Technology

ISBN: 978-1-61804-134-0 424

synchronization, we identified two parameters: the
actual duration of a simulation step (including the
active wait) of the simulator, or task execution time
(TET), and the number of packets NP already in the
reception buffer of the PC when first starting the
synchronization loop. It is clear that the ideal value
for TET is the autopilot communication rate: 10
milliseconds; while the desired value for NP is 0,
meaning that the simulator is fast enough, namely it
elaborated the old data before new one arrived.

Figure 6. A Tecnodrone multi-rotor vehicle.

Figure 7. Synthetic Environment.

Figure 8. Ground Station screen snapshot.

Figure 9 and 10 show the result of a 200 seconds
simulation run with high computational load on the
simulator side: the simulator, ground station and 3D

environment interface executed on the same PC.
From the plots, it appears that TET values are
always very close to 10 ms; a relevant jitter is also
present and this is due mainly to the fact that the
simulator runs on the Windows OS without any
real-time extensions. The good synchronization
results can be told also from the NP plot, that is
99.9% of the times equal to the desired value: 0.

Figure 9. Sample TET values.

Figure 10. Sample NP values.

Those cases where NP>0 correspond, as expected,
to the cases where TET>20 ms. It should be noted
that NP goes back to 0 after those events (and TET
drops to 1-2 ms), indicating that the system can
quickly re-synchronize with the autopilot; these
sporadic delays have thus only a minimal and
temporary effect on the simulation fidelity.

6. Conclusions

The paper has presented a methodology for realizing
a reliable HIL system that was used to implement a
working simulation environment for the ICARO II

Latest Trends in Information Technology

ISBN: 978-1-61804-134-0 425

autopilot. Particular care was given to realizing a
simple and effective synchronization algorithm
between the autopilot and the vehicle simulator; the
method is general and may be employed in a large
class of HIL problems. Finally a complete MIL and
HIL system is presented with experimental results
that confirm the validity of the proposed
synchronization approach.

References:

[1] Passino, K. M., ”Stability Analysis of

Swarms”, IEEE Transactions on Automatic
Control, TR-AC 48, No. 4, April 2003.

[2] Pachter, M., D’Azzo, J. J., & Proud, A. W.,
Tight formation flight control. Journal of
Guidance, Control, and Dynamics, 24(2), 246–
254, 2001.

[3] Giulietti, F., Pollini, L., & Innocenti, M.,
Formation flight control: a behavioral
approach. AIAA Guidance, Navigation and
Control Conference, Montreal, Canada, 2001.

[4] F. Giulietti, L. Pollini, M. Innocenti, M.
Napolitano, "Dynamic and control issues of
formation flight," AEROSPACE SCIENCE
AND TECHNOLOGY, vol. 9, no. 1, 2005.

[5] S.M.C. Alaimo, L. Pollini, J.P. Bresciani, H.H.
Bülthoff, “Evaluation of Direct and Indirect
Haptic Aiding in an Obstacle Avoidance Task
for Tele-Operated Systems”, IFAC World
Congress 2011, Milan Italy

[6] Lam, T.M., Boschloo, H.W., Mulder, M., Van
Paassen, M.M., “Artificial force field for haptic
feedback in UAV teleoperation”. IEEE
Transactions on Systems, Man and
Cybernetics, Part A. Vol. 39, Issue 6, 2009.

[7] E. Jones and S. Soatto, "Visual-Inertial
Navigation, Mapping and Localization: A
Scalable Real-Time Causal Approach,"
International Journal of Robotics Research,
2010.

[8] F. DiCorato, M.Innocenti, L. Pollini, Combined
Vision–Inertial Navigation for Improved
Robustness, Itzhack Y. Bar-Itzhack Memorial
Symposium on Estimation, Navigation, and
Spacecraft Control, Haifa, Israel, Oct. 2012

[9] F. Di Corato, M. Innocenti, G. Indiveri, and L.
Pollini, "An Entropy-Like Approach to Vision
Based Autonomous Navigation," IEEE
International Conference on Robotics and
Automation, Shanghai, China, 2011.

[10] Lam, T.M., Mulder, M., van Paassen, M.M.,
Mulder, J.A., van Der Helm, F.C.T., “Force-
stiffness feedback in UAV tele-operation with

time delay”. In AIAA Guidance, Navigation,
and Control Conference, Chicago, Aug. 2009.

[11] Farkhatdinov, I., Jee-Hwan Ryu, Jinung An, “A
preliminary experimental study on haptic
teleoperation of mobile robot with variable
force feedback gain” Haptics Symposium, Mar.
2010.

[12] Alaimo, S.M.C., Pollini, L.,Magazzù, A.,
Bresciani, J.P., Robuffo Giordano, P.,
Innocenti, M., Bülthoff, H.H., “Preliminary
evaluation of a haptic aiding concept for
remotely piloted vehicles”. In EuroHaptics
2010 Conference, July 2010.

[13] Alaimo, S.M.C., Pollini, L., Bresciani, J.P.,
Bülthoff, H.H., “A comparison of direct and
indirect haptic aiding for remotely piloted
vehicles”. 19th IEEE International Symposium
in Robot and Human Interactive
Communication, IEEE Ro-Man 2010

[14] Pollini, L. Innocenti, M., “A synthetic
environment for dynamic systems control and
distributed simulation”, IEEE Control Systems
Magazine, Vol 20, Num. 2, pp 49-61, April
2000.

[15] Anderson, R.J., Spong, M.W., ”Bilateral
control of teleoperators with time delay”,
Proceedings of the 27th Conference on
Decision and Control Austin, Texas, December
1988.

[16] Alaimo SMC, Pollini L, Bülthoff HH,
“Admittance-based bilateral teleoperation with
time delay for an Unmanned Aerial Vehicle
involved in an obstacle avoidance task”, AIAA
Modeling and Simulation Technologies
Conference 2011 (MST-2011), American
Institute of Aeronautics and Astronautics,
Portland, Oregon, August, 2011.

[17] L. Pollini, M. Innocenti, F. Di Corato, M.
Cellini, M. Franchi, R. Mati, V. Niccolai, "The
ICARO Autopilot: A flexible Controller for
small Unmanned Air Vehicles", 4th US -
European Workshop and Flight Competition
for Micro Aerial Vhicles (IMAV09),
Pensacola, FL, June 2009.

[18] Di Puccio F., A. Musolino, R. Rizzo, and E.
Tripodi, "A Self-Controlled Maglev System",
Progress In Electromagnetics Research M, Vol.
26, 187-203, 2012.

[19] Di Puccio F., R. Bassani, E. Ciulli, A.
Musolino, and R. Rizzo, "Permanent Magnet
Bearings: Analysis of Plane and Axisymmetric
V-Shaped Element Design" Progress In
Electromagnetics Research M, Vol. 26, 2012.

[20] Tecnodrone, website www.tecnodrone.it

Latest Trends in Information Technology

ISBN: 978-1-61804-134-0 426

