3,061 research outputs found

    Using Provenance to support Good Laboratory Practice in Grid Environments

    Get PDF
    Conducting experiments and documenting results is daily business of scientists. Good and traceable documentation enables other scientists to confirm procedures and results for increased credibility. Documentation and scientific conduct are regulated and termed as "good laboratory practice." Laboratory notebooks are used to record each step in conducting an experiment and processing data. Originally, these notebooks were paper based. Due to computerised research systems, acquired data became more elaborate, thus increasing the need for electronic notebooks with data storage, computational features and reliable electronic documentation. As a new approach to this, a scientific data management system (DataFinder) is enhanced with features for traceable documentation. Provenance recording is used to meet requirements of traceability, and this information can later be queried for further analysis. DataFinder has further important features for scientific documentation: It employs a heterogeneous and distributed data storage concept. This enables access to different types of data storage systems (e. g. Grid data infrastructure, file servers). In this chapter we describe a number of building blocks that are available or close to finished development. These components are intended for assembling an electronic laboratory notebook for use in Grid environments, while retaining maximal flexibility on usage scenarios as well as maximal compatibility overlap towards each other. Through the usage of such a system, provenance can successfully be used to trace the scientific workflow of preparation, execution, evaluation, interpretation and archiving of research data. The reliability of research results increases and the research process remains transparent to remote research partners.Comment: Book Chapter for "Data Provenance and Data Management for eScience," of Studies in Computational Intelligence series, Springer. 25 pages, 8 figure

    Adaptive Workflow Design Based on Blockchain

    Get PDF
    Increasingly, organizational processes have become more complex. There is a need for the design of workflows to focus on how organizations adapt to emergent processes while balancing the need for decentralization and centralization goal. The advancement in new technologies especially blockchain provides organizations with the opportunity to achieve the goal. Using blockchain technology (i.e. smart contract and blocks of specified consensus for deferred action), we leverage the theory of deferred action and a coordination framework to conceptually design a workflow management system that addresses organizational emergence (e-WfMS). Our artifact helps managers to predict and store the impact of deferred actions. We evaluated the effectiveness of our system against a complex adaptive system for utility assessment

    EXPLOITING KASPAROV'S LAW: ENHANCED INFORMATION SYSTEMS INTEGRATION IN DOD SIMULATION-BASED TRAINING ENVIRONMENTS

    Get PDF
    Despite recent advances in the representation of logistics considerations in DOD staff training and wargaming simulations, logistics information systems (IS) remain underrepresented. Unlike many command and control (C2) systems, which can be integrated with simulations through common protocols (e.g., OTH-Gold), many logistics ISs require manpower-intensive human-in-the-loop (HitL) processes for simulation-IS (sim-IS) integration. Where automated sim-IS integration has been achieved, it often does not simulate important sociotechnical system (STS) dynamics, such as information latency and human error, presenting decision-makers with an unrealistic representation of logistics C2 capabilities in context. This research seeks to overcome the limitations of conventional sim-IS interoperability approaches by developing and validating a new approach for sim-IS information exchange through robotic process automation (RPA). RPA software supports the automation of IS information exchange through ISs’ existing graphical user interfaces. This “outside-in” approach to IS integration mitigates the need for engineering changes in ISs (or simulations) for automated information exchange. In addition to validating the potential for an RPA-based approach to sim-IS integration, this research presents recommendations for a Distributed Simulation Engineering and Execution Process (DSEEP) overlay to guide the engineering and execution of sim-IS environments.Major, United States Marine CorpsApproved for public release. Distribution is unlimited

    You can't always sketch what you want: Understanding Sensemaking in Visual Query Systems

    Full text link
    Visual query systems (VQSs) empower users to interactively search for line charts with desired visual patterns, typically specified using intuitive sketch-based interfaces. Despite decades of past work on VQSs, these efforts have not translated to adoption in practice, possibly because VQSs are largely evaluated in unrealistic lab-based settings. To remedy this gap in adoption, we collaborated with experts from three diverse domains---astronomy, genetics, and material science---via a year-long user-centered design process to develop a VQS that supports their workflow and analytical needs, and evaluate how VQSs can be used in practice. Our study results reveal that ad-hoc sketch-only querying is not as commonly used as prior work suggests, since analysts are often unable to precisely express their patterns of interest. In addition, we characterize three essential sensemaking processes supported by our enhanced VQS. We discover that participants employ all three processes, but in different proportions, depending on the analytical needs in each domain. Our findings suggest that all three sensemaking processes must be integrated in order to make future VQSs useful for a wide range of analytical inquiries.Comment: Accepted for presentation at IEEE VAST 2019, to be held October 20-25 in Vancouver, Canada. Paper will also be published in a special issue of IEEE Transactions on Visualization and Computer Graphics (TVCG) IEEE VIS (InfoVis/VAST/SciVis) 2019 ACM 2012 CCS - Human-centered computing, Visualization, Visualization design and evaluation method

    Documenting provenance in noncomputational workflows: Research process models based on geobiology fieldwork in Yellowstone National Park

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146402/1/asi24039_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146402/2/asi24039.pd

    Web-Based Modelling and Collaborative Simulation of Declarative Processes.

    Get PDF
    Abstract. As a provider of Electronic Case Management solutions to knowledge-intensive businesses and organizations, the Danish company Exformatics has in recent years identified a need for flexible process support in the tools that we pro-vide to our customers. We have addressed this need by adapting DCR Graphs, a formal declarative workflow notation developed at the IT University of Copen-hagen. Through close collaboration with academia we first integrated execution support for the notation into our existing tools, by leveraging a cloud-based pro-cess engine implementing the DCR formalism. Over the last two years we have taken this adoption of DCR Graphs to the next level and decided to treat the nota-tion as a product of its own by developing a stand-alone web-based collaborative portal for the modelling and simulation of declarative workflows. The purpose of the portal is to facilitate end-user discussions on how knowledge workers really work, by enabling collaborative simulation of processes. In earlier work we re-ported on the integration of DCR Graphs as a workflow execution formalism in the existing Exformatics ECM products. In this paper we report on the advances we have made over the last two years, we describe the new declarative process modelling portal, discuss its features, describe the process of its development, re-port on the findings of an initial evaluation of the usability of the tool, resulting from a tutorial on declarative modelling with DCR Graphs that we organized at last years BPM conference and present our plans for the future
    corecore