Conducting experiments and documenting results is daily business of
scientists. Good and traceable documentation enables other scientists to
confirm procedures and results for increased credibility. Documentation and
scientific conduct are regulated and termed as "good laboratory practice."
Laboratory notebooks are used to record each step in conducting an experiment
and processing data. Originally, these notebooks were paper based. Due to
computerised research systems, acquired data became more elaborate, thus
increasing the need for electronic notebooks with data storage, computational
features and reliable electronic documentation. As a new approach to this, a
scientific data management system (DataFinder) is enhanced with features for
traceable documentation. Provenance recording is used to meet requirements of
traceability, and this information can later be queried for further analysis.
DataFinder has further important features for scientific documentation: It
employs a heterogeneous and distributed data storage concept. This enables
access to different types of data storage systems (e. g. Grid data
infrastructure, file servers). In this chapter we describe a number of building
blocks that are available or close to finished development. These components
are intended for assembling an electronic laboratory notebook for use in Grid
environments, while retaining maximal flexibility on usage scenarios as well as
maximal compatibility overlap towards each other. Through the usage of such a
system, provenance can successfully be used to trace the scientific workflow of
preparation, execution, evaluation, interpretation and archiving of research
data. The reliability of research results increases and the research process
remains transparent to remote research partners.Comment: Book Chapter for "Data Provenance and Data Management for eScience,"
of Studies in Computational Intelligence series, Springer. 25 pages, 8
figure