1,617 research outputs found

    Argumentative Link Prediction using Residual Networks and Multi-Objective Learning.

    Get PDF
    We explore the use of residual networks for argumentation mining, with an emphasis on link prediction. We propose a domain-agnostic method that makes no assumptions on document or argument structure. We evaluate our method on a challenging dataset consisting of user-generated comments collected from an online platform. Results show that our model outperforms an equivalent deep network and offers results comparable with state-of-the-art methods that rely on domain knowledge

    Multi-Task Attentive Residual Networks for Argument Mining

    Full text link
    We explore the use of residual networks and neural attention for argument mining and in particular link prediction. The method we propose makes no assumptions on document or argument structure. We propose a residual architecture that exploits attention, multi-task learning, and makes use of ensemble. We evaluate it on a challenging data set consisting of user-generated comments, as well as on two other datasets consisting of scientific publications. On the user-generated content dataset, our model outperforms state-of-the-art methods that rely on domain knowledge. On the scientific literature datasets it achieves results comparable to those yielded by BERT-based approaches but with a much smaller model size.Comment: 12 pages, 2 figures, submitted to IEEE Transactions on Neural Networks and Learning System

    Neural-Symbolic Argumentation Mining: An Argument in Favor of Deep Learning and Reasoning

    Get PDF
    Deep learning is bringing remarkable contributions to the field of argumentation mining, but the existing approaches still need to fill the gap toward performing advanced reasoning tasks. In this position paper, we posit that neural-symbolic and statistical relational learning could play a crucial role in the integration of symbolic and sub-symbolic methods to achieve this goal

    AutoAM: An End-To-End Neural Model for Automatic and Universal Argument Mining

    Full text link
    Argument mining is to analyze argument structure and extract important argument information from unstructured text. An argument mining system can help people automatically gain causal and logical information behind the text. As argumentative corpus gradually increases, like more people begin to argue and debate on social media, argument mining from them is becoming increasingly critical. However, argument mining is still a big challenge in natural language tasks due to its difficulty, and relative techniques are not mature. For example, research on non-tree argument mining needs to be done more. Most works just focus on extracting tree structure argument information. Moreover, current methods cannot accurately describe and capture argument relations and do not predict their types. In this paper, we propose a novel neural model called AutoAM to solve these problems. We first introduce the argument component attention mechanism in our model. It can capture the relevant information between argument components, so our model can better perform argument mining. Our model is a universal end-to-end framework, which can analyze argument structure without constraints like tree structure and complete three subtasks of argument mining in one model. The experiment results show that our model outperforms the existing works on several metrics in two public datasets

    Neural-Symbolic Argumentation Mining: An Argument in Favor of Deep Learning and Reasoning

    Get PDF
    Deep learning is bringing remarkable contributions to the field of argumentation mining, but the existing approaches still need to fill the gap toward performing advanced reasoning tasks. In this position paper, we posit that neural-symbolic and statistical relational learning could play a crucial role in the integration of symbolic and sub-symbolic methods to achieve this goal

    Deep Networks and Knowledge: from Rule Learning to Neural-Symbolic Argument Mining

    Get PDF
    Deep Learning has revolutionized the whole discipline of machine learning, heavily impacting fields such as Computer Vision, Natural Language Processing, and other domains concerned with the processing of raw inputs. Nonetheless, Deep Networks are still difficult to interpret, and their inference process is all but transparent. Moreover, there are still challenging tasks for Deep Networks: contexts where the success depends on structured knowledge that can not be easily provided to the networks in a standardized way. We aim to investigate the behavior of Deep Networks, assessing whether they are capable of learning complex concepts such as rules and constraints without explicit information, and then how to improve them by providing such symbolic knowledge in a general and modular way. We start by addressing two tasks: learning the rule of a game and learning to construct the solution to Constraint Satisfaction Problems. We provide the networks only with examples, without encoding any information regarding the task. We observe that the networks are capable of learning to play by the rules and to make feasible assignments in the CSPs. Then, we move to Argument Mining, a complex NLP task which consists of finding the argumentative elements in a document and identifying their relationships. We analyze Neural Attention, a mechanism widely used in NLP to improve networks' performance and interpretability, providing a taxonomy of its implementations. We exploit such a method to train an ensemble of deep residual networks and test them on four different corpora for Argument Mining, reaching or advancing the state of the art in most of the datasets we considered for this study. Finally, we realize the first implementation of neural-symbolic argument mining. We use the Logic Tensor Networks framework to introduce logic rules during the training process and establish that they give a positive contribution under multiple dimensions

    Transformer-based Argument Mining for Healthcare Applications

    Get PDF
    International audienceArgument(ation) Mining (AM) typically aims at identifying argumentative components in text and predicting the relations among them. Evidence-based decision making in the health-care domain targets at supporting clinicians in their deliberation process to establish the best course of action for the case under evaluation. Although the reasoning stage of this kind of frameworks received considerable attention, little effort has been devoted to the mining stage. We extended an existing dataset by annotating 500 abstracts of Randomized Controlled Trials (RCT) from the MEDLINE database, leading to a dataset of 4198 argument components and 2601 argument relations on different diseases (i.e., neoplasm, glau-coma, hepatitis, diabetes, hypertension). We propose a complete argument mining pipeline for RCTs, classifying argument components as evidence and claims, and predicting the relation, i.e., attack or support , holding between those argument components. We experiment with deep bidirectional transformers in combination with different neural architectures (i.e., LSTM, GRU and CRF) and obtain a macro F1-score of .87 for component detection and .68 for relation prediction , outperforming current state-of-the-art end-to-end AM systems

    Argument mining with graph representation learning

    Get PDF
    Argument Mining (AM) is a unique task in Natural Language Processing (NLP) that targets arguments: a meaningful logical structure in human language. Since the argument plays a significant role in the legal field, the interdisciplinary study of AM on legal texts has significant promise. For years, a pipeline architecture has been used as the standard paradigm in this area. Although this simplifies the development and management of AM systems, the connection between different parts of the pipeline causes inevitable shortcomings such as cascading error propagation. This paper presents an alternative perspective of the AM task, whereby legal documents are represented as graph structures and the AM task is undertaken as a hybrid approach incorporating Graph Neural Networks (GNNs), graph augmentation and collective classification. GNNs have been demonstrated to be an effective method for representation learning on graphs, and they have been successfully applied to many other NLP tasks. In contrast to previous pipeline-based architecture, our approach results in a single end-to-end classifier for the identification and classification of argumentative text segments. Experiments based on corpora from both the European Court of Human Rights (ECHR) and the Court of Jus- tice of the European Union (CJEU) show that our approach achieves strong results compared to state-of-the-art baselines. Both the graph augmentation and collective classification steps are shown to improve performance on both datasets when compared to using GNNs alone

    Detecting Arguments in CJEU Decisions on Fiscal State Aid

    Get PDF
    The successful application of argument mining in the legal domain can dramatically impact many disciplines related to law. For this purpose, we present Demosthenes, a novel corpus for argument mining in legal documents, composed of 40 decisions of the Court of Justice of the European Union on matters of fiscal state aid. The annotation specifies three hierarchical levels of information: the argumentative elements, their types, and their argument schemes. In our experimental evaluation, we address 4 different classification tasks, combining advanced language models and traditional classifiers
    • …
    corecore