441 research outputs found

    Multi-Context Reasoning in Continuous Data-Flow Environments

    Get PDF
    The field of artificial intelligence, research on knowledge representation and reasoning has originated a large variety of formats, languages, and formalisms. Over the decades many different tools emerged to use these underlying concepts. Each one has been designed with some specific application in mind and are even used nowadays, where the internet is seen as a service to be sufficient for the age of Industry 4.0 and the Internet of Things. In that vision of a connected world, with these many different formalisms and systems, a formal way to uniformly exchange information, such as knowledge and belief is imperative. That alone is not enough, because even more systems get integrated into the online world and nowadays we are confronted with a huge amount of continuously flowing data. Therefore a solution is needed to both, allowing the integration of information and dynamic reaction to the data which is provided in such continuous data-flow environments. This work aims to present a unique and novel pair of formalisms to tackle these two important needs by proposing an abstract and general solution. We introduce and discuss reactive Multi-Context Systems (rMCS), which allow one to utilise different knowledge representation formalisms, so-called contexts which are represented as an abstract logic framework, and exchange their beliefs through bridge rules with other contexts. These multiple contexts need to mutually agree on a common set of beliefs, an equilibrium of belief sets. While different Multi-Context Systems already exist, they are only solving this agreement problem once and are neither considering external data streams, nor are they reasoning continuously over time. rMCS will do this by adding means of reacting to input streams and allowing the bridge rules to reason with this new information. In addition we propose two different kind of bridge rules, declarative ones to find a mutual agreement and operational ones for adapting the current knowledge for future computations. The second framework is more abstract and allows computations to happen in an asynchronous way. These asynchronous Multi-Context Systems are aimed at modelling and describing communication between contexts, with different levels of self-management and centralised management of communication and computation. In this thesis rMCS will be analysed with respect to usability, consistency management, and computational complexity, while we will show how asynchronous Multi-Context Systems can be used to capture the asynchronous ideas and how to model an rMCS with it. Finally we will show how rMCSs are positioned in the current world of stream reasoning and that it can capture currently used technologies and therefore allows one to seamlessly connect different systems of these kinds with each other. Further on this also shows that rMCSs are expressive enough to simulate the mechanics used by these systems to compute the corresponding results on its own as an alternative to already existing ones. For asynchronous Multi-Context Systems, we will discuss how to use them and that they are a very versatile tool to describe communication and asynchronous computation

    An explainable approach to deducing outcomes in european court of human rights cases using ADFs

    Get PDF
    In this paper we present an argumentation-based approach to representing and reasoning about a domain of law that has previously been addressed through a machine learning approach. The domain concerns cases that all fall within the remit of a specific Article within the European Court of Human Rights. We perform a comparison between the approaches, based on two criteria: ability of the model to accurately replicate the decision that was made in the real life legal cases within the particular domain, and the quality of the explanation provided by the models. Our initial results show that the system based on the argumentation approach improves on the machine learning results in terms of accuracy, and can explain its outcomes in terms of the issue on which the case turned, and the factors that were crucial in arriving at the conclusion

    Computational Complexity of Strong Admissibility for Abstract Dialectical Frameworks

    Get PDF
    Abstract dialectical frameworks (ADFs) have been introduced as a formalism for modeling and evaluating argumentation allowing general logical satisfaction conditions. Different criteria used to settle the acceptance of arguments arecalled semantics. Semantics of ADFs have so far mainly been defined based on the concept of admissibility. Recently, the notion of strong admissibility has been introduced for ADFs. In the current work we study the computational complexityof the following reasoning tasks under strong admissibility semantics. We address 1. the credulous/skeptical decision problem; 2. the verification problem; 3. the strong justification problem; and 4. the problem of finding a smallest witness of strong justification of a queried argument

    Online Handbook of Argumentation for AI: Volume 1

    Get PDF
    This volume contains revised versions of the papers selected for the first volume of the Online Handbook of Argumentation for AI (OHAAI). Previously, formal theories of argument and argument interaction have been proposed and studied, and this has led to the more recent study of computational models of argument. Argumentation, as a field within artificial intelligence (AI), is highly relevant for researchers interested in symbolic representations of knowledge and defeasible reasoning. The purpose of this handbook is to provide an open access and curated anthology for the argumentation research community. OHAAI is designed to serve as a research hub to keep track of the latest and upcoming PhD-driven research on the theory and application of argumentation in all areas related to AI.Comment: editor: Federico Castagna and Francesca Mosca and Jack Mumford and Stefan Sarkadi and Andreas Xydi
    • …
    corecore