515 research outputs found

    Abstract argumentation for explainable satellite scheduling

    Get PDF
    Satellite schedules are derived from satellite mission objectives, which are mostly managed manually from the ground. This increases the need to develop autonomous on-board schedul- ing capabilities and reduce the requirement for manual manage- ment of satellite schedules. Additionally, this allows the unlocking of more capabilities on-board for decision-making, leading to an optimal campaign. However, there remain trust issues in decisions made by Artificial Intelligence (AI) systems, especially in risk-averse environments, such as satellite operations. Thus, an explanation layer is required to assist operators in understanding decisions made, or planned, autonomously on-board. To this aim, a satellite scheduling problem is formulated, utilizing real world data, where the total number of actions are maximised based on the environmental constraints that limit observation and down-link capabilities. The formulated optimisation problem is solved with a Constraint Programming (CP) method. Later, the mathematical derivation for an Abstract Argumentation Framework (AAF) for the test case is provided. This is proposed as the solution to provide an explanation layer to the autonomous decision-making system. The effectiveness of the defined AAF layer is proven on the daily schedule of an Earth Observation (EO) mission, monitoring land surfaces, demonstrating greater capabilities and flexibility, for a human operator to inspect the machine provided solution

    Logic-based Technologies for Intelligent Systems: State of the Art and Perspectives

    Get PDF
    Together with the disruptive development of modern sub-symbolic approaches to artificial intelligence (AI), symbolic approaches to classical AI are re-gaining momentum, as more and more researchers exploit their potential to make AI more comprehensible, explainable, and therefore trustworthy. Since logic-based approaches lay at the core of symbolic AI, summarizing their state of the art is of paramount importance now more than ever, in order to identify trends, benefits, key features, gaps, and limitations of the techniques proposed so far, as well as to identify promising research perspectives. Along this line, this paper provides an overview of logic-based approaches and technologies by sketching their evolution and pointing out their main application areas. Future perspectives for exploitation of logic-based technologies are discussed as well, in order to identify those research fields that deserve more attention, considering the areas that already exploit logic-based approaches as well as those that are more likely to adopt logic-based approaches in the future

    AI for Explaining Decisions in Multi-Agent Environments

    Full text link
    Explanation is necessary for humans to understand and accept decisions made by an AI system when the system's goal is known. It is even more important when the AI system makes decisions in multi-agent environments where the human does not know the systems' goals since they may depend on other agents' preferences. In such situations, explanations should aim to increase user satisfaction, taking into account the system's decision, the user's and the other agents' preferences, the environment settings and properties such as fairness, envy and privacy. Generating explanations that will increase user satisfaction is very challenging; to this end, we propose a new research direction: xMASE. We then review the state of the art and discuss research directions towards efficient methodologies and algorithms for generating explanations that will increase users' satisfaction from AI system's decisions in multi-agent environments.Comment: This paper has been submitted to the Blue Sky Track of the AAAI 2020 conference. At the time of submission, it is under review. The tentative notification date will be November 10, 2019. Current version: Name of first author had been added in metadat

    A Framework for Data-Driven Explainability in Mathematical Optimization

    Full text link
    Advancements in mathematical programming have made it possible to efficiently tackle large-scale real-world problems that were deemed intractable just a few decades ago. However, provably optimal solutions may not be accepted due to the perception of optimization software as a black box. Although well understood by scientists, this lacks easy accessibility for practitioners. Hence, we advocate for introducing the explainability of a solution as another evaluation criterion, next to its objective value, which enables us to find trade-off solutions between these two criteria. Explainability is attained by comparing against (not necessarily optimal) solutions that were implemented in similar situations in the past. Thus, solutions are preferred that exhibit similar features. Although we prove that already in simple cases the explainable model is NP-hard, we characterize relevant polynomially solvable cases such as the explainable shortest-path problem. Our numerical experiments on both artificial as well as real-world road networks show the resulting Pareto front. It turns out that the cost of enforcing explainability can be very small

    Explain what you see:argumentation-based learning and robotic vision

    Get PDF
    In this thesis, we have introduced new techniques for the problems of open-ended learning, online incremental learning, and explainable learning. These methods have applications in the classification of tabular data, 3D object category recognition, and 3D object parts segmentation. We have utilized argumentation theory and probability theory to develop these methods. The first proposed open-ended online incremental learning approach is Argumentation-Based online incremental Learning (ABL). ABL works with tabular data and can learn with a small number of learning instances using an abstract argumentation framework and bipolar argumentation framework. It has a higher learning speed than state-of-the-art online incremental techniques. However, it has high computational complexity. We have addressed this problem by introducing Accelerated Argumentation-Based Learning (AABL). AABL uses only an abstract argumentation framework and uses two strategies to accelerate the learning process and reduce the complexity. The second proposed open-ended online incremental learning approach is the Local Hierarchical Dirichlet Process (Local-HDP). Local-HDP aims at addressing two problems of open-ended category recognition of 3D objects and segmenting 3D object parts. We have utilized Local-HDP for the task of object part segmentation in combination with AABL to achieve an interpretable model to explain why a certain 3D object belongs to a certain category. The explanations of this model tell a user that a certain object has specific object parts that look like a set of the typical parts of certain categories. Moreover, integrating AABL and Local-HDP leads to a model that can handle a high degree of occlusion

    Explaining classifiers’ outputs with causal models and argumentation

    Get PDF
    We introduce a conceptualisation for generating argumentation frameworks (AFs) from causal models for the purpose of forging explanations for mod-els’ outputs. The conceptualisation is based on reinterpreting properties of semantics of AFs as explanation moulds, which are means for characterising argumentative relations. We demonstrate our methodology by reinterpreting the property of bi-variate reinforcement in bipolar AFs, showing how the ex-tracted bipolar AFs may be used as relation-based explanations for the outputs of causal models. We then evaluate our method empirically when the causal models represent (Bayesian and neural network) machine learning models for classification. The results show advantages over a popular approach from the literature, both in highlighting specific relationships between feature and classification variables and in generating counterfactual explanations with respect to a commonly used metric
    • …
    corecore