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Abstract
We introduce a conceptualisation for generating argumentation frameworks

(AFs) from causal models for the purpose of forging explanations for mod-
els’ outputs. The conceptualisation is based on reinterpreting properties of
semantics of AFs as explanation moulds, which are means for characterising
argumentative relations. We demonstrate our methodology by reinterpreting
the property of bi-variate reinforcement in bipolar AFs, showing how the ex-
tracted bipolar AFs may be used as relation-based explanations for the outputs
of causal models. We then evaluate our method empirically when the causal
models represent (Bayesian and neural network) machine learning models for
classification. The results show advantages over a popular approach from the
literature, both in highlighting specific relationships between feature and clas-
sification variables and in generating counterfactual explanations with respect
to a commonly used metric.

1 Introduction
The field of explainable AI (XAI) has in recent years become a major focal point
of the efforts of researchers, with a wide variety of models for explanation being
proposed (see [1] for an overview). More recently, incorporating a causal perspec-
tive into explanations has been explored by some, e.g. [2, 3, 4]. The link between
causes and explanations has long been studied [5]; indeed, the two have even been
equated under a broad sense of the concept of “cause” [6] and causal models have
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been advocated as “explanations or understanding of how data are generated” [7].
Furthermore, some see causal reasoning as underpinning how humans explain to one
another [8]. Also, research from the social sciences [9] has indicated the value of
causal links, particularly in the form of counterfactual reasoning, within explana-
tions, and that the importance of such information surpasses that of probabilities
or statistical relationships for users. Given that “looking at how humans explain to
each other can serve as a useful starting point for explanation in AI” [9], it does
makes sense to draw explanations for AI models from causal models. However, it
is also broadly understood that different users may need different forms of explana-
tions [10], taking into account their cognitive abilities, their background and their
specific goals when seeking explanations of AI systems, and work within the social
sciences clearly points to humans favouring seemingly non-causal forms of explana-
tions in some contexts, in particular: “the majority of what might look like causal
attributions turn out to look like argumentative claim-backings”[11], and “people use
reasons to explain or justify decisions already taken and beliefs already held” [12].

Meanwhile, computational argumentation (see [13, 14] for recent overviews) has
received increasing interest in recent years as a means for providing explanations
of the outputs of a number of AI models, e.g. recommender systems [15], classi-
fiers [16], Bayesian networks [17] and PageRank [18]. Furthermore, several works
focus on the power of argumentation to provide a bridge between explained mod-
els and users, validated by user studies [19, 20]. While argumentative explanations
are wide-ranging in their format and application (see [21, 22] for recent surveys),
the links between causality and argumentative explanations have remained largely
unexplored to date. In this paper, we aim to fill this gap and bring causality and
argumentation together to support the XAI vision, focusing on the explanation of
outputs of machine learning classifiers.

Specifically, we introduce a conceptualisation for generating argumentation
frameworks (AFs) with any number of dialectical relations as envisaged in [23, 24],
from causal models for the purpose of forging explanations for the models’ outputs.
Like [25], we focus not on explaining by features, but instead by relations, hence
the use of argumentation as the underpinning explanatory mechanism. After cov-
ering the most relevant work in the literature (Section 2) and giving the necessary
background (Section 3), we show how properties of argumentation semantics from
the literature can be reinterpreted to serve as explanation moulds, i.e. means for
characterising argumentative relations (Section 4). Then (in Section 5) we propose
a way to define explanation moulds based on inverting properties of argumentation
semantics. Briefly, the idea is to detect, inside a causal model, the satisfaction of the
conditions specified by some semantics property: if these conditions are satisfied by
some influence in the causal model, then the influence can be assigned an explana-

422



Explaining Classifiers’ Outputs

tory role by casting it as a dialectical relation, whose type is in correspondence with
the detected property. The identified dialectical relations compose, altogether, an
argumentation framework. We demonstrate our methodology by reinterpreting the
property of bi-variate reinforcement [26] from bipolar AFs [27] and then showing in
(Section 6) how the extracted bipolar AFs may be used as counterfactual explana-
tions for the outputs of causal models representing different classification methods.
We then provide an empirical assessment of these explanations (Section 7), demon-
strating how they can provide some important insights on the differences between
different models’ functionalities, while outperforming a popular approach from the
literature along a counterfactual metric. Finally, we conclude, indicating potentially
fruitful future work (Section 8).

Overall, we make the following main contributions:

• We propose a novel concept for defining relation-based explanations for causal
models by inverting properties of argumentation semantics.

• We use this concept to define a novel form of reinforcement explanation (RX)
for causal models.

• We show deployability of RXs with two machine-learning models, from which
causal models are drawn.

• We evaluate our proposal empirically: although preliminary, this evaluation
shows promise and indicates directions for future work.

This work extends [28, 29] significantly, with Section 7 being completely new and
the other sections being extended and improved.

2 Related Work
A dominant approach for model-agnostic explainability of AI models is the use of
feature attribution methods, which assign a signed value to each feature (in input)
to represent their importance towards the output of a classification model, for each
of the inputs. LIME [30] and SHAP [31] are popular attribution methods, using
different techniques to assess each feature’s importance by measuring the outcome
of changes to inputs. In a nutshell, LIME is based on sampling perturbations of the
reference input, while SHAP is based on the notion of Shapley values from game
theory, assessing the effect of the presence of a feature when added to all possible sets
of other features (in practice a sampling over the possible permutations of features is
used for an approximate evaluation since the exact calculation would be too costly for
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large sets of features). Alternatively, another model-agnostic approach is the use of
counterfactuals, e.g. as in [32, 33, 34], in which a modified input which would result in
the change in the classification is given. In the literature, feature attribution methods
have been used to generate counterfactual explanations [35], and vice versa [36].
Various studies [37, 38, 39] have have highlighted how feature attribution methods
(including SHAP) are often mis-interpreted and overly trusted. In line with [9],
we regard counterfactual explanations as some of the most useful for understanding
model behaviour. Hence, in this work, we analyse feature attribution explanations
in a counterfactual manner as a baseline against which we assess our approach,
demonstrating the advantages of incorporating causal information to explanations.

The role of causality within explanations for AI models has received increasing
attention of late. [2] define a framework for determining the causal effects between
features and predictions using a variational autoencoder. The detection of causal
relations and explanations between arguments within text has also proven effective
within NLP [40]. [3] give causal explanations for neural networks (NNs) in that
they train a separate NN by masking features to determine causal relations (in the
original NN) from the features to the classifications. Generative causal explanations
of black box classifiers [41] are built by learning the latent factors involved in a clas-
sification, which are then included in a causal model. [42] take a different approach,
proposing a general framework for constructing structural causal models with deep
learning components, allowing tractable counterfactual inference. Other approaches
towards explaining NNs, e.g., [43, 44], take into account causal relations when calcu-
lating features’ attribution values for explanation. Meanwhile, [4] introduce causal
explanations for reinforcement learning models based on [5]. We take a different
approach, drawing argumentative explanations from causal models.

Computational argumentation has been widely used in the literature as a mech-
anism for explaining AI models, from data-driven explanations of classifiers’ outputs
[45], powered by AA-CBR [46], to the explanation of the PageRank algorithm [47]
via bipolar AFs [18]. The outputs of Bayesian networks have been explained by
SAFs [17], while decision-making [48] and scheduling [49] have also been targeted.
Property-driven explanations based on bipolar [20] and tripolar [50] AFs have been
extracted for recommendations, where the properties driving the extraction are de-
fined in the orthodox manner (with respect to the resulting frameworks), rather than
inversions thereof, as we propose. Other forms of argumentation have also proven
effective in providing explanations for recommender systems [15], decision making
[51] and planning [52]. Our proposal in this paper adds to this line of work providing
novel forms of argumentative explanations, but drawn from causal models.

Various works have explored the links between causality and argumentation. [53]
shows that a propositional argumentation system in a full classical language is equiv-
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alent to a causal reasoning system, while [54] develops a formal theory combining
“causal stories” and evidential arguments. Somewhat similarly to us, [55] present
a method for extracting argumentative explanations for the outputs of causal mod-
els. However, their method requires more information than the causal model alone,
namely, ontological links, and the argumentation supplements the rule-based expla-
nations, rather than being the main constituent, as is the case in our approach.

Despite the clear potential of causality towards XAI, many of the approaches
for generating explanations for AI models have neglected causality as a potential
drive for explainability. Some of the most popular methods, as discussed earlier, are
heuristic and model-agnostic [30, 31], and, although they are useful, particularly with
regards to their wide-ranging applicability, they neglect how models are determining
their outputs and therefore the underlying causes therein. This has arguably left
a chasm between how explanations are provided by models at the forefront of XAI
technology and what users actually require from explanations [56]. On the other
hand, while causal models provide the raw material for explanation, the latter is not
limited to the selection of a set of appropriate causes [57]. We aim to address these
problems by delivering explanations to users which are directly driven by, but not
limited to, causal models themselves.

3 Background
Our method relies upon causal models and some notions from computational argu-
mentation. We provide core background for both.

Causal models. A causal model [58] is a triple ⟨U, V, E⟩, where:

• U is a (finite) set of exogenous variables, i.e. variables whose values are deter-
mined by external factors (outside the causal model);

• V is a (finite) set of endogenous variables, i.e. variables whose values are
determined by internal factors, namely by (the values of some of the) variables
in U ∪ V ;

• each variable may take any values in its associated domain; we refer to the
domain of Wi ∈ U ∪ V as D(Wi);

• E is a (finite) set of structural equations that, for each endogenous variable
Vi ∈ V , define Vi’s values as a function fVi of the values of Vi’ parents PA(Vi) ⊆
U ∪ V \ {Vi}.
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Example 1. Let us consider a simple causal model ⟨U, V, E⟩ comprising U =
{U1, U2}, V = {V1, V2} and for all Wi ∈ U ∪ V , D(Wi) = {⊤, ⊥}. Figure 1i
(we ignore Figure 1ii for the moment: this will be discussed later in Section 5) vi-
sualises the variables’ parents, and Table 1 gives the combinations of values for the
variables resulting from the structural equations E (amounting to V1 = U1 ∧ ¬U2
and V2 = V1). This may represent a group’s decision on whether or not to enter
a restaurant, with variables U1: “margherita” is spelt correctly on the menu, not
like the drink; U2: there is pineapple on the pizzas; V1: the pizzeria seems to be
legitimately Italian; and V2: the group chooses to enter the pizzeria.

Figure 1: (i) Variables and parents for Example 1, with parents indicated by dashed
arrows (for example {U1, U2} = PA(V1), i.e. U1 and U2 are the parents of V1). (ii)
SAF explanation (see Section 4) for the assignment to exogenous variables u ∈ U
such that fU1 [u] = ⊤ and fU2 [u] = ⊤.

U1 U2 V1 V2
⊤ margherita ⊤ pineapple ⊥ ∼Italian ⊥ ∼enter
⊤ margherita ⊥ ∼pineapple ⊤ Italian ⊤ enter
⊥ margarita ⊤ pineapple ⊥ ∼Italian ⊥ ∼enter
⊥ margarita ⊥ ∼pineapple ⊥ ∼Italian ⊥ ∼enter

Table 1: Combinations of values (⊤ or ⊥) resulting from the structural equations for
Example 1. Here we also indicate the intuitive reading of the assignment of values to
variables according to the illustration in Example 1 (for example, the assignment of
⊤ to U1 may be read as “margherita” is spelt correctly on the menu – simply given
as ‘margherita’ in the table, and the assignment of U2 to ⊥ may be read as there is
no pineapple on the pizzas – simply given as ‘∼pineapple’ in the table).

Given a causal model ⟨U, V, E⟩ where U = {U1, . . . , Ui}, we denote with U =
D(U1) × . . . × D(Ui) the a set of all possible combinations of values of the exogenous
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variables (realisations). With an abuse of notation, we refer to the value of any
variable Wi ∈ U ∪ V given u ∈ U as fWi [u]: if Wi is an exogenous variable, fWi [u]
will be its assigned value in u; if Wi is an endogenous variable, it will be the value
dictated by the structural equations in the causal model.

We use the do operator [59] to indicate interventions, i.e., for any variable Vi ∈ V
and value thereof vi ∈ D(Vi), do(V = vi) implies that the function fVi is replaced by
the constant function vi, and for any variable Ui ∈ U and value thereof ui ∈ D(Ui),
do(Ui = ui) implies that Ui is assigned ui.

Argumentation. In general, an argumentation framework (AF) is any tuple
⟨A, R1, . . . , Rl⟩, with A a set (of arguments), l > 0 and Ri ⊆ A×A, for i ∈ {1, . . . , l},
(binary and directed) dialectical relations between arguments [23, 24]. In the ab-
stract argumentation [60] tradition, arguments in these AFs are unspecified abstract
entities that can be instantiated differently to suit different settings of deployment.
Several specific choices of dialectical relations can be made, giving rise to specific
AFs instantiating the above general definition, including abstract AFs (AAFs) [60],
with l = 1 (and R1 a dialectical relation of attack, referred to later as R−), support
AFs (SAFs) [61], with l = 1 (and R1 a dialectical relation of support, referred to
later as R+), and bipolar AFs (BAFs) [27], with l = 2 (and R1 and R2 dialectical
relations of attack and support, respectively, referred to later as R− and R+).

The meaning of AFs (including the intended dialectical role of the relations) may
be given in terms of gradual semantics (e.g. see [24, 62] for BAFs), defined, for AFs
with arguments A, by means of mappings σ : A → V, with V a given set of values
of interest for evaluating arguments.

The choice of gradual semantics for AFs may be guided by properties that the
mappings σ should satisfy (e.g. as in [26, 62]). We will utilise, in Section 5, a variant
of the property of bi-variate reinforcement for BAFs from [26].

4 From Causal Models to Explanation Moulds and
Argumentative Explanations

In this section we see the task of obtaining explanations for causal models’ assign-
ments of values to variables as a two-step process: first we define moulds charac-
terising the core ingredients of explanations; then we use these moulds to obtain,
automatically, (instances of) AFs as argumentative explanations. Moulds and ex-
planations are defined in terms of influences between variables in the causal model,
focusing on those from parents to children given by the causal structure underpin-
ning the model, as follows.
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Definition 1. Let M = ⟨U, V, E⟩ be a causal model. The influence graph corre-
sponding to M is the pair ⟨V, I⟩ with:

• V = U ∪ V is the set of all (exogenous and endogenous) variables;

• I ⊆ V × V is defined as I = {(W1, W2)|W1 ∈ PA(W2)} (referred to as the set
of influences).

Note that, while straightforward, the concept of influence graph (closely related
to the notion of causal diagram [63]) is useful as it underpins much of what follows.

Next, the idea underlying explanation moulds is that, typically, inside the causal
model, some variables affect others in a way that may not be directly understand-
able or even cognitively manageable by a user. The influence graph synthetically
expresses which variables affect which others but does not give an account of how the
influences actually occur in the context (namely, the values given to the exogenous
variables) that a user may be interested in. Thus, the perspective we take is that
each influence can be assigned an explanatory role, indicating how that influence
is actually working in that context. The explanatory roles ascribable to influences
can be regarded as a form of explanatory knowledge which is user specific: different
users may be willing (and/or able) to accept explanations built using different sets
of explanatory roles as they correspond to their understanding of how variables may
affect each other. We assume that each explanatory role is specified by a relation
characterisation, i.e. a Boolean logical requirement, which can be used to mould the
explanations to be presented to the users by indicating which relations play a role
in the explanations.

Definition 2. Given a causal model ⟨U, V, E⟩ and its corresponding influence graph
⟨V, I⟩, an explanation mould is a non-empty set:

{c1, . . . , cm}

where for all i ∈ {1, . . . , m}, ci : U × I → {⊤, ⊥} is a relation characterisation, in
the form of a Boolean condition expressed in some formal language. Given some
u ∈ U and (W1, W2) ∈ I, if ci(u, (W1, W2)) = ⊤ we say that the influence (W1, W2)
satisfies ci for u.

Note that we are not prescribing any formal language for specifying relation
characterisations, as several such languages may be suitable.

Given an assignment u to the exogenous variables, based on an explanation
mould, we can obtain an AF including, as (different) dialectical relations, the in-
fluences satisfying the (different) relation characterisations for the given u. Thus,
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the choice of relation characterisations is to a large extent dictated by the specific
form of AF the intended users expect. Before defining argumentative explanations
formally, we give an illustration.
Example 1 (Cont.). Let us imagine a situation where one would like to explain the
behaviour of the causal model from Figure 1i and Table 1 with a SAF (see Section
3). We thus require one single form of relation (i.e. support) to be extracted from
the corresponding influence graph ⟨{U1, U2, V1, V2}, {(U1, V1), (U2, V1), (V1, V2)}⟩. In
order to define the explanation mould for such a situation, we note that the behaviour
defining this relation could be characterised as changing the state of rejected argu-
ments that it supports to accepted when the supporting argument’s state is accepted.
In our simple causal model, accepted arguments may amount to variables assigned
to value ⊤ and rejected arguments may amount to variables assigned to value ⊥.
Thus, the intended behaviour can be captured by a relation characterisation cs such
that, given u ∈ U and (W1, W2) ∈ I:

cs(u, (W1, W2)) = ⊤ iff
(fW1 [u] = ⊤ ∧ fW2 [u] = ⊤ ∧ fW2 [u, do(W1 = ⊥)]= ⊥)∨
(fW1 [u] = ⊥ ∧ fW2 [u] = ⊥ ∧ fW2 [u, do(W1 = ⊤)] = ⊤).

Then, for the assignment to exogenous variables u ∈ U such that fU1 [u] = ⊤ and
fU2 [u] = ⊥, we may obtain the SAF in Figure 1ii (visualised as a graph with nodes
as arguments and edges indicating elements of the support relation). For illustration,
consider (U1, V1) ∈ I for this u. We can see from Table 1 that fV1 [u] = ⊤ and also
that fV1 [u, do(U1 = ⊥)] = ⊥ and thus from the above it is clear that cs(u, (U1, V1)) =
⊤ and thus the influence is of the type of support that cs characterises. Meanwhile,
consider (U2, V1) ∈ I for the same u: the fact that fU2 [u] = ⊥ and fV1 [u] = ⊤ means
that cs(u, (U2, V1)) = ⊥ and thus the influence is not cast as a support. Indeed, if we
consider the first and second rows of Table 1, we can see that U2 being true actually
causes V1 to be false, thus it is no surprise that the influence is not cast as a support
and plays no role in the resulting SAF. If we wanted for this influence to play a role,
we could, for example, choose to incorporate an additional relation of attack into
the explanation mould, to generate instead BAFs (see Section 3) as argumentative
explanations. This example thus shows how explanation moulds must be designed to
fit causal models depending on external explanatory requirements dictated by users.
It should be noted also that some explanation moulds may be unsuitable to some
causal models, e.g. the explanation mould with the earlier cs would not be directly
applicable to causal models with variables with non-binary or continuous domains.

In general, AFs serving as argumentative explanations can be generated as fol-
lows.
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Definition 3. Given a causal model ⟨U, V, E⟩, its corresponding influence graph
⟨V, I⟩, some u ∈ U and an explanation mould {c1, . . . , cm}, an argumentative ex-
planation is an AF ⟨A, R1, . . . Rm⟩, where

• A ⊆ V, and

• R1, . . . , Rm ⊆ I ∩ (A × A) such that, for any i = 1 . . . m, Ri = {(W1, W2) ∈
I ∩ (A × A)|ci(u, (W1, W2)) = ⊤}.

Note that we have left open the choice of A (as a generic, possibly non-strict
subset of V). In practice, A may be the full V, but we envisage that users may prefer
to restrict attention to some variables of interest (for example, excluding variables
not “involved” in any influence satisfying the relation characterisations).

Example 1 (Cont.). The behaviour of the causal model from Figure 1i and Table 1
for u such that fU1 [u] = ⊤ and fU2 [u] = ⊥, using the explanation mould {cs} given
earlier, can be captured by either of the two SAFs (argumentative explanations)
below, depending on the choice of A:

• the SAF in Figure 1ii, where every variable is an argument;

• the SAF with the same support relation but U2 excluded from A, as it is not
“involved” and thus does not contribute to the explanation.

Both SAFs explain that fV1 [u] = ⊤ is supported by fU1 [u] = ⊤, in turn supporting
fV2 [u] = ⊤ . Namely, the causal model recommends that the group should enter the
pizzeria because the pizzeria seems legitimately Italian, given that “margherita” is
spelt correctly on the menu. Note that the pineapple not being on the pizza could
also be seen as a support towards the pizzeria being legitimately Italian, the inclusion
of which could be achieved with a slightly more complex explanation mould.

5 Inverting Properties of Argumentation Semantics:
Reinforcement Explanations

The choice (number and form) of relation characterisations in explanation moulds
is crucial for the generation of explanations concerning the value assignments to
endogenous variables in the causal models. Even after having decided which argu-
mentative relations to include in the AF/argumentative explanation, the definition
of the relation characterisations is non-trivial, in general. In this section we demon-
strate a novel concept for utilising properties of gradual semantics for AFs for the
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definition of relation characterisations and the consequent extraction of argumenta-
tive explanations.

The common usage of these properties in computational argumentation can be
roughly equated to: if a semantics, given an AF, satisfies some desirable properties,
then the semantics is itself desirable (for the intended context, where those properties
matter). We propose a form of inversion of this notion for use in our XAI setting,
namely: if some desirable properties are identified for the gradual semantics of (still
unspecified) AFs, then these properties can guide the definition of the dialectical rela-
tions underpinning the AFs. For this inversion to work, we need to identify first and
foremost a suitable notion of gradual semantics for the AFs we extract from causal
models. Given that, with our AFs, we are trying to explain the results obtained
from underlying causal models, we cannot impose just any gradual semantics from
the literature, but need to make sure that we capture, with the chosen semantics,
the behaviour of the causal model itself. This is similar, in spirit, to recent work
to extract (weighted) BAFs from multi-layer perceptrons (MLPs) [64], using the
underlying computation of the MLPs as a gradual semantics, and to the proposals
to explain recommender systems (RSs) via tripolar AFs [50] or BAFs [20], using the
underlying predicted ratings by the RSs as a gradual semantics.

A natural semantic choice for causal models, since we are trying to explain why
endogenous variables are assigned specific values in their domains given assignments
to the exogenous variables, is to use the assignments themselves as a gradual seman-
tics. Then, the idea of inverting properties of semantics to obtain dialectical relations
in AFs can be recast to obtain relation characterisations in explanation moulds as
follows: given an influence graph and a selected value assignment to exogenous vari-
ables, if an influence satisfies a given, desirable property, then the influence can be
cast as part of a dialectical relation in the resulting AF.

Naturally, for this inversion to be useful, we need to identify useful properties
from an explanatory viewpoint. We will illustrate this concept with the property of
bi-variate reinforcement for BAFs [26], which we posit is generally intuitive in the
realm of explanations. Bi-variate reinforcement is defined when the set of values V
for evaluating arguments is equipped with a pre-order <. Intuitively, bi-variate re-
inforcement states that1 strengthening an attacker (a supporter) cannot strengthen
(cannot weaken, respectively) an argument it attacks (supports, respectively), where
strengthening an argument amounts to increasing its value from v1 ∈ V to v2 ∈ V
such that v2 > v1 (whereas weakening an argument amounts to decreasing its value
from such v2 to v1). In our formulation of this property, we require that increas-
ing the value of variables represented as attackers (supporters) can only decrease

1Here, we ignore the intrinsic basic strength of arguments used in the formal definition in [26].

431



Rago et al.

(increase, respectively) the values of variables they attack (support, respectively).

Property 1. Given a causal model ⟨U, V, E⟩ such that, for each Wi ∈ U ∪ V , the
domain D(Wi) is equipped with a pre-order <,2 and given its corresponding influence
graph ⟨V, I⟩, an argumentative explanation ⟨A, R−, R+⟩ for u ∈ U satisfies causal
reinforcement iff for any (W1, W2) ∈ I where w1 = fW1 [u], for any w− ∈ D(W1)
such that w− < w1, and for any w+ ∈ D(W1) such that w+ > w1:

• if (W1, W2) ∈ R−, then fW2 [u, do(W1 = w+)] ≤ fW2 [u] and fW2 [u, do(W1 =
w−)] ≥ fW2 [u];

• if (W1, W2) ∈ R+, then fW2 [u, do(W1 = w+)] ≥ fW2 [u] and fW2 [u, do(W1 =
w−)] ≤ fW2 [u].

We can then invert this property to obtain an explanation mould. In doing so, we
introduce slightly stricter conditions to ensure that influencing variables that have
no effect on influenced variables do not constitute both an attack and a support,
a phenomenon which we believe would be counter-intuitive from an explanation
viewpoint.

Definition 4. Given a causal model ⟨U, V, E⟩ such that, for each Wi ∈ U ∪ V , the
domain D(Wi) is equipped with a pre-order <, and given its corresponding influence
graph ⟨V, I⟩, a reinforcement explanation mould is an explanation mould {c−, c+}
such that, given some u ∈ U and (W1, W2) ∈ I, letting w1 = fW1 [u]:

• c−(u, (W1, W2)) = ⊤ iff:

1. ∀w+ ∈ D(W1) such that w+ > w1, it holds that fW2 [u, do(W1 = w+)] ≤
fW2 [u];

2. ∀w− ∈ D(W1) such that w− < w1, it holds that fW2 [u, do(W1 = w−)] ≥
fW2 [u];

3. ∃≥1w+ ∈ D(W1) or ∃≥1w− ∈ D(W1) satisfying strictly the inequality
conditions in points 1 and 2 above.

• c+(u, (W1, W2)) = ⊤ iff:

1. ∀w+ ∈ D(W1) such that w+ > w1, it holds that fW2 [u, do(W1 = w+)] ≥
fW2 [u];

2. ∀w− ∈ D(W1) such that w− < w1, it holds that fW2 [u, do(W1 = w−)] ≤
fW2 [u];

2With an abuse of notation we use the same symbol for all pre-orders.
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3. ∃≥1w+ ∈ D(W1) or ∃≥1w− ∈ D(W1) satisfying strictly the inequality
conditions in points 1 and 2 above.

We call any argumentative explanation resulting from the explanation mould
{c−, c+} a reinforcement explanation (RX).

Note that, as for generic argumentative explanations, we do not commit in gen-
eral to any choice of A in RXs.

Proposition 1. Any RX satisfies causal reinforcement.

Proof. Follows directly from the definition of Property 1 and Definition 4.

The satisfaction of the property of causal reinforcement indicates how RXs could
be used counterfactually, given that the results of changes to the variables’ values on
influenced variables are guaranteed. For example, if a user is looking to increase an
influenced variable’s value, supporters (attackers) indicate variables whose values
should be increased (decreased, respectively). In the following sections, we will
explore the potential of this capability when causal models provide abstractions of
classifiers whose output needs explaining.

6 Reinforcement Explanations for Classification
In this section, we first instantiate causal models for two families of classifiers com-
monly used in the literature. We then demonstrate how RXs can be used to ex-
plain these classifiers in a counterfactual manner, supplementing their structure with
weights on the relations, which allows RXs to be compared with feature attribution
methods (see Section 2).

The two families of classifiers that we use to instantiate causal models are
Bayesian network classifiers (BCs) and classifiers built from feed-forward NNs. Given
some assignments to input variables I (from the variables’ domains), these classifiers
can be seen as determining the most likely value for classification variables, which,
in this paper, we assume to be binary, in a given set C. Thus, the classification
task may be seen as a mapping M(x) returning, for assignment x to input vari-
ables, either 1 or 0 (for the classification variables in C) depending on whether the
probability exceeds a given threshold θ. We summarise the classification process in
Figure 2. Note that, in the case of NNs, the probabilities may result from using,
e.g., a softmax activation for the output layer. Furthermore, note that for the pur-
poses of this paper, the underpinning details of these classifiers and how they can be
obtained are irrelevant and will be ignored. In other words, we treat the classifier

433



Rago et al.

Figure 2: A schematic view of classification by BCs and NNs. We assume C =
{C1, . . . , Ck}, for k ≥ 1, with each Ci a binary classification variable, with values
c1

i and c0
i , such that P (Ci = c0

i ) = 1 − P (Ci = c1
i ); ci is the value for Ci whose

probability P exceeds the threshold (θ). Assuming that the threshold is suitably
chosen so that ci is uniquely defined for each Ci, the classifier can be equated to the
function M such that M(x) = (c1 . . . , ck).

as a black-box, as standard in much of the XAI literature, and explain its outputs
in terms of its inputs.

We represent the classification task by a (naive) BC or by a NN with the following
causal model:

Definition 5. A causal model for a naive BC or classifier built from a NN is a
causal model ⟨UC , VC , EC⟩, where:

• UC consists of the input variables I of the classifier, with their respective do-
mains;

• VC = C such that, for each Ci ∈ C, D(Ci) = {c1
i , c0

i };

• EC corresponds to the computation of the probability values P (Ci = c1
i )) by

the classifier (see Figure 2).

IC = UC×VC represents the influences in the causal model for the classifier; these
are such that the exogenous variables UC are densely connected to the endogenous
variables VC . In line with our assumptions for RXs, we assume that the variables’
domains are equipped with a pre-order.

As discussed in Section 2, the purpose of feature attribution methods is to as-
sign a signed importance value to each feature for a given input. Our motivation
for this work is to explore an alternative direction, namely to interpret changes in
outcomes with a causal lens and produce explanations that follow human intuition
when presented to the users, while still maintaining feature attribution methods’
goal of characterising the impact of each feature on a classification.

We aim to characterise (and rank) features based on their potential to change the
outcome of the model. Our ingredients are: (i) The model outcome for the example
to be explained in the form of a probability; (ii) A function to select the direction of
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change in the domain of the variable intervened; (iii) Interventions over the domain
of the variables and the change in model probability resulting from them.

To arrive at the formulation for the counterfactual feature importance we pro-
pose, we introduce three functions that will help us scan features for their “coun-
terfactual capabilities". They all refer to generic input variable Uj and classification
variable Ci, for a given realisation u of the input variables. Note that for every
variable Uj ∈ UC , we assume that D(Uj) is finite and totally ordered and for each
u ∈ D(Uj) we denote as pos(u) ≥ 1 the natural number corresponding to its position
in the ordering.

Potential Change in Outcome quantifies the change in probability of Ci given
an intervention assigning the value u′ to Uj :

∆f
(Uj ,Ci)
u,u′ = |fCi [u|do(Uj = u′)] − fCi [u]|.

Relation Sign Function returns a positive or negative sign depending on the
type of relation between Uj and Ci:

δ(Uj , Ci, u) =





1 if c+(u, (Uj , Ci)) = ⊤
−1 if c−(u, (Uj , Ci)) = ⊤
0 otherwise

Domain Subset Function selects the subset of the domain of Uj to be considered
to achieve a change in the classification outcome of Ci with respect to the one given
by u. The selection takes into account the threshold θ and the relation sign function
δ:

γ(Uj ,Ci,u)=





{u′∈D(Uj)|u′>fUj [u]} if (fCi [u]−θ) ∗ δ(Uj ,Ci,u)<0
{u′∈D(Uj)|u′<fUj [u]} if (fCi [u]−θ) ∗ δ(Uj ,Ci,u)>0
∅ if (fCi [u]−θ) ∗ δ(Uj ,Ci,u)=0

The idea is that the function γ selects the possible values of Uj which are greater
than the current one in u in two cases: fCi [u] is above the threshold and Uj is an
attacker; fCi [u] is below the threshold and Uj is a supporter. Analogously, γ selects
the possible values of Uj which are lower than the current one in u in two cases:
fCi [u] is above the threshold and Uj is a supporter; fCi [u] is below the threshold
and Uj is an attacker.

On this basis, we formulate in the following our notion of counterfactual feature
importance.
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Counterfactual Importance ranks the input features based on the amount of
change in probability that a value close to the current one can bring, provided that
it produces a change in classification:

ω(Uj ,Ci,u) =
∑

u′∈γ(Uj ,Ci,u)

∆f
(Uj ,Ci)
u,u′ ∗ 1((θ − fCi [u|do(Uj = u′)]) · (θ − fCi [u]) < 0)

|pos(u′) − pos(fUj [u])|
(1)

where 1() is the indicator function taking value 1 if the expression in brackets is
true and 0 otherwise. Note also that we assume by convention that ω(Uj ,Ci,u) = 0
when γ(Uj ,Ci,u) = ∅.

The rationale behind the formulation is as follows: The sum includes a term for
every possible value u′ that can be used for an intervention on Uj coherently with the
expected direction of change (these values are returned by γ(Uj ,Ci,u)). Each of these
values contributes to the sum proportionally to the potential change in probability
of Ci (namely ∆f

(Uj ,Ci)
u,u′ ) but only if it causes a change in the final classification, i.e.

if the threshold is crossed in the desired direction (i.e. the difference between θ and
fCi changes sign). Therefore, the indicator function filters the “wanted" changes and
the interventions not producing a change are disregarded. Moreover, each of these
terms is weighted according to the distance of u′ from the current values of Uj : the
greater the distance, the greater the denominator, the lower the contribution to the
importance. This will improve the ranking of the variables that produce actionable
changes, which are closest to the current input u.

In representing classifiers as causal models and generating importance values
for the relations of the resulting RXs, we are now able to directly compare RXs
experimentally with feature attribution methods.

7 Experimental Evaluation
In this section we provide an empirical evaluation of our approach, focusing our
evaluation on the property of causal reinforcement for RXs. The main research
questions we aim to address are:

1. Can the attacks and supports in RXs be put in correspondence with positive
and negative, respectively, polarity in feature attribution techniques?

2. Can relation importance in RXs be put in correspondence with the magnitude
of the values associated to features in feature attribution techniques?
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To answer both questions we compare RXs with a prominent feature attribution
technique (i.e. SHAP [31], where, for the experiments, we use version 0.35.0 of the
publicly available SHAP library). Concretely, we use SHAP in two ways: in Section
7.1 to extract reasons for and against classifications by classifiers (in comparison with
supports and attacks in RXs); and in Section 7.2 as a way to determine reasons’
importance as (the absolute values of) feature attribution values computed by SHAP
(in comparison with our notion of relation importance). The sign of these feature
attribution values is used to determine the sign of the reasons themselves.

In our experiments we use two publicly available datasets (FICO [65] and COM-
PAS [66]) and two different models, a naive BC and a NN, in line with Section 5. We
implement the naive BCs using the scikit-learn implementation and the NNs using
CASTLE [67]. For both datasets, there is a single, binary classification variable. We
discretised continuous features using equally-sized bins limiting them to a maximum
of 10 for FICO. For COMPAS, we used the existing variable domains, given that
the variables are discrete (with a minimum of two values and a maximum of 17
values). Also, since Definition 4 and the definition of importance work under the
assumption that variables’ domains are ordered, a random ordering was generated
for all variables with no inherent order. Some comments on the effect of this arbi-
trary ordering will be provided later. Additional details on the datasets are given
in Table 2. Here, we can see how in the FICO dataset all features are continuous
(and thus their domain is equipped with a natural total order) while in COMPAS
50% of the features lack an inherent order. We will show the consequences of this
difference between the datasets in the results.

For each of the datasets, we trained a Naive BC and a NNs with 1 hidden layer
and 32 hidden neurons. We trained the NN for a maximum of 200 epochs and
with learning rate of 0.0005 and patience on the validation loss of 50 epochs. The
naive BCs were fitted using Laplace estimation from the training set with α = 0.1.
Classification metrics for the two types of models on the two datasets (when trained
on 75% of the samples and tested on the remaining 25%) are reported in Table 3.
Note how the different models have similar performances on the same dataset. Note
also that model performance optimisation was not the focus of this work and that
we kept models as standard as possible.

7.1 Causal Reinforcement Analysis

In order to understand whether our RXs are able to handle different models while
also unveiling differences in the way RXs operate when compared with SHAP, we
measured: the prevalence of relations (i.e. the percentage of occurrences for each
method) and agreement (between the two methods).
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FICO COMPAS
Number of samples 10,458 6,950
Number of features 23 12

Size of Domain
Minimum 4 2

Average 7 4.6
Maximum 10 17

Number of ordinal features 23 6
% of ordinal features 100% 50%

Table 2: Dataset details. The number of samples for the dataset is the total. The
number of features does not include the target classification variable. The size of the
domains for the two datasets consist of deciles (where enough data were available)
for continuous features and the original categories for categorical features. The
number and % of ordinal features represents the features with a natural ordering,
e.g. continuous, or with naturally ordered categories.

FICO COMPAS
(*) NN NBC NN NBC

ROC-AUC 0.783 0.771 0.78 0.79
Accuracy 71.7% 71.9% 70.5% 71.6%
F1 Score 71.6% 71.9% 70.2% 71.5%
Precision 71.7% 71.9% 70.7% 72.6%

Recall 71.6% 71.8% 69.6% 70.5%

Table 3: Performances of the models. (*) NN (Neural Network) or NBC (Naive
Bayesian network Classifier).

Prevalence of relations. We extracted RXs and SHAP explanations for all sam-
ples in the testing part of the two datasets and measured: for RXs, the percentage of
influences in the causal models for the two models contributing attacks and supports,
and, for SHAP, the percentage of negative and positive reasons.

The results are shown in Table 4. We note that there are large discrepancies
across models and types of explanations for each of the two datasets, in contrast
with similar performances by the classifiers (see Table 3). This is somewhat not
surprising, as it could be a consequence of very different workings by the (very dif-
ferent) models to obtain classifications, and provides part of the motivation for the
experiments in Section 7.2 to verify faithfulness of the explanations to the models,
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counterfactually. We also note that the total percentages of negative and positive
attribution values established by SHAP are greater for FICO than for COMPAS,
while the total percentages of influences that become part of the attack and support
relations in RXs are considerably higher for NNs than NBCs independently of the
dataset. This reflects the inner workings of the two models: NNs leverage the order-
ings over variables’ domains since they assign weights that get multiplied with the
value of the input variable, whose ordering (its value) has, therefore, a big influence
on the final output. BCs on the other hand, mostly disregard these orderings since
they calculate the probability of the classification variables for specific values of the
input variables if categorical, or for a group/bucket of values, if numeric. BCs will
therefore disregard ordering within the bucket, while across buckets the only link to
the original ordering could come through the conditional probabilities, with a much
less direct effect given that the value of the variable would be modified according to
the class frequency in that band. In the case of the FICO dataset, whose continuous
variables are all equipped with a natural ordering, RXs result in larger attack and
support relations than for BCs, whereas in COMPAS, where some variables have
been artificially and arbitrarily ordered to obtain RXs, the difference in relation
size across the models is not so dramatic, somewhat confirming the expected depen-
dence of RXs on the existence of natural orderings. Table 4 gives insight into the
interactions between data, model, and RXs. For the FICO data, where all variables
are numeric and hence have natural ordering, the difference between the amount
of relations identified in NN and BC is much more significant than in the case of
COMPAS (for FICO the difference is between 87.3% and 28.3%, while for COM-
PAS it is between 77.3% and 64.2%). This is to say that NN does a better job
at leveraging numeric variables and shows an increased power to extract RXs that
reflect the model behaviour for a given dataset, noting also that RXs need natural
ordering to work at their best. NN does not support the extraction of many more
relations than BCs for the COMPAS data instead, since there are not many natural
orderings to leverage in the first place. Note that we do not assume that the larger
the number of relations extracted the better. Instead, what we deem important is
that the relationships that the model actually finds in the data are extracted for
explanatory purposes. Investigation of this from different angles is provided in the
following sections, highlighting how RXs are very effective at representing models
that have extracted relationships from ordered variables in the data. Concerning
the split between positive and negative reasons for SHAP, there seems to be a clear
dominance of the former across datasets and models, but no clear pattern emerges
for supports and attacks in RXs. We note though there are discrepancies in the
+/- splits across the two different explanation methods, showing that they work
differently and begging for further exploration of faithfulness in Section 7.2.
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Agreement between RXs and SHAP. We also conducted a finer-grained anal-
ysis of the differences between the two forms of explanation, focusing on how many
influences/reasons with opposite sign the two methods extract and on extracted
influences/reasons versus ignored ones. Table 5 shows the results.

We note that SHAP and RXs agree less than 40% of the time for FICO and less
than 20% for COMPAS. To understand this, we firstly looked at the cases where the
models were establishing relations/reasons of opposite sign (Strong Disagree, i.e. +
vs - ) and noticed that this happened around 50% of the time for FICO NN and
only 10% of the time for FICO NBC. Of course, this is a consequence of the number
of extracted influences/reasons overall for this dataset, as seen in Table 4. Still,
the amount of strong disagreement is quite high, but it does make intuitive sense
when we think about the inner workings of the two explanation methods: for SHAP,
a positive reason means that the current value of the corresponding variable is in
favour of the current model output; according to Definition 4, instead, supporting
variables are those whose values above the current one increase the probability of
the value of the target classification variable (to be explained). In other words, our
causal reinforcement definition focuses on the projection of possible changes to a
variable that are guaranteed to have the expected behaviour on the target. At a
general level this shows that apparently simple and superficially similar explanations
elements may actually allow quite different interpretations. In our case, the generic
idea of positive and negative influence can correspond to instances with significantly
different meanings. Conveying the correct meaning to the users is obviously a crucial
and nontrivial issue in this respect. Since we are assuming a context where users
ascribe a counterfactual meaning to explanations, this observation brought us to the
set of experiments in the next section, where we analyse the usefulness of Definition
4 for counterfactual purposes.

7.2 Causal Reinforcement for Counterfactuals

The second set of experiments assesses how we can apply Definition 4 to extract
intuitive and actionable counterfactual behaviour from our models. One method for
providing such an assessment is to compare with attribution methods functioning
as counterfactual explanation methods, e.g. as in [68], a set-up which we use, along
with the importance measure defined in Section 6. In doing so we evaluate the
counterfactual nature of our explanations (see the relevant discussion in Section 2).

Again, we consider the same models and datasets, in comparison to SHAP, but
this time we focus on applying interventions to input variables and observing the
change in the models’ outputs (or classification). To do this we couple Definition 4
with the counterfactual feature importance ω from (1) of how important the relations
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FICO COMPAS
NN NBC NN NBC

SHAP
− 30.3% 22.2% 21.9% 22.3%
+ 46.1% 66.1% 40.6% 40.3%

Total 76.4% 88.2% 62.5% 62.5%

RXs
− 43.8% 10.9% 47.5% 40.6%
+ 43.5% 17.4% 29.7% 23.6%

Total 87.3% 28.3% 77.3% 64.2%

Table 4: Prevalence of relations. Here + and − indicate, respectively, support and
attack relations in RXs and positive and negative attribution values in SHAP. Totals
do not sum up to 100% given that there can be influences/features that the methods
do not extract.

FICO COMPAS
RXs vs SHAP NN NBC NN NBC

Strong Disagree 52.9% 10.1% 30.2% 21.1%
Weak Disagree 47.1% 89.9% 69.8% 78.9%

Disagree 60.2% 69.8% 84% 92.8%
Agree 39.8% 30.2% 16% 7.2%

Table 5: Relation Agreement Summary. The ‘Strong Disagree’ row looks at influ-
ences/reasons that both RXs and SHAP extract, but with opposite signs (+ vs -,
as per caption of Table 4). The ‘Weak Disagree’ row looks at the influences/reasons
that one method extracts while the other does not (+ or - vs influences/reasons not
extracted). ‘Strong’ and ‘Weak Disagree’ sum up to 100% and split the total of dis-
agreements shown in the ‘Disagree’ row, while the ‘Agree’ row gives the remainders,
i.e. the extracted influences/reasons with the same sign across explanation methods.

established by the models are. Concretely, we used the absolute value of ω(Uj ,Ci,u)
to select the input variables Uj to change in order to achieve a change in classification
Ci (counterfactual output).

Definition 4 is useful in selecting the direction of change, given the current classi-
fication. Given that all input variables have categorical domains in this setting (after
discretisation), we had to choose how many steps to move away from the current
value u of Uj . We focused first on the most actionable change recommendations that
the receiver of a model decision and explanation could want. Hence we analysed the
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change in classification for setting u′ one step away from its current value fUj [u]
(i.e. |pos(u′) − pos(fUj [u])| = 1). We did the same for SHAP. For both methods,
we changed the sets of the most important features, increasing their size from 1 to
5 (Top Uj = 1,. . . ,5, respectively) according to either SHAP or RXs.

The results are presented in Figure 3. In the FICO-NN setting, where the mono-
tonic relationships are strong and well captured by the model, RXs perform well and
outperform SHAP in all scenarios. In particular, a higher number of classification
changes is achieved when allowing a greater number of variables to be changed while
this does not happen in the case of SHAP. For FICO-NBC the situation is less clear-
cut, though it can be observed that RXs do better than SHAP in the case where
only one step away from the current value is allowed. It can be argued that this
case is the most actionable and therefore relevant counterfactually. For COMPAS,
RXs perform worse than SHAP in most cases. This again is expected given the mix
of purely categorical and ordinal features in the data as well as the lower average
number of categories. For the not naturally ordered variables we had to enforce a
random ordering for the purposes of this tests, and this has evidently had an impact.

8 Conclusions & Future Work

We have introduced a novel approach for extracting AFs from causal models in or-
der to explain the latter’s outputs. We have shown how explanation moulds can be
defined for particular explanatory requirements in order to generate argumentative
explanations. We focused, in particular, on inverting the existing property of ar-
gumentation semantics of bi-variate reinforcement to create an explanation mould,
before demonstrating how the resulting reinforcement explanations (RXs) can be
used to explain causal models representing different machine-learning-based classi-
fiers. We then performed an empirical evaluation of RXs, analysing the differences
between the relations in RXs and the reasons for and against classification produced
by the popular SHAP method [31]. We also introduced a preliminary measure of
importance over the relations in RXs and used it to assess the counterfactuality of
RXs. A deeper investigation on the notion of importance at a general level and the
study of further, possibly more appropriate, definitions of this measure represent an
important direction of future work.

Our preliminary empirical evaluation suggests that our approach outperforms
SHAP in the cases where the conditions for its applicability are satisfied, and pro-
vides the basis for discussing the suitability of different approaches in different con-
texts. Our results also highlight the need for different explanation mechanisms
depending on the users’ needs. For instance, actionable explanations, concerning
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Figure 3: Proportion of successful counterfactual classification changes achieved
by number of input variables changed (Top 1 to 5). The x axis represents the
number of bins away from the current value i.e. distance from current position
(|pos(u′) − pos(fUj [u])|) for each changed input variable Uj . The different shades
of green are for changing the one, two and five most important variables for RXs,
while the reds are for SHAP.

how to change the input of a model to get a different output, may not fit feature
attribution techniques, and, in general, a one-size-fits-all approach to explanations
cannot achieve this.

One of the most promising aspects of our work is the vast array of directions
for future work it suggests. Clearly, the wide-ranging applicability of causal models
broadens the scope of explanation moulds and argumentative explanations well be-
yond machine learning models, and we plan to undertake an investigation into other
contexts in which they may be useful, for example for decision support in healthcare.

We also plan to study inversions of different properties of argumentation seman-
tics and different forms of AFs to understand their potential, e.g. counting for AAFs
[69]. Within the context of explaining machine learning models, we plan to assess
RXs’ suitability for different data structures and different classifiers, considering in
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particular deeper explanations, e.g. including influences amongst input variables
and/or intermediate, in addition to input and output, variables, in the spirit of
[70, 25]. This may be aided by the deployment of methods for the extraction of
more sophisticated causal models from classifiers, e.g., [67] for NNs.

Finally, while we posit that, when properly defined, the meaning and explanatory
role of the dialectical relations can be rather intuitive at a general level, providing
effective explanations to users through AFs will require the investigation of proper
presentation and visualization methods, possibly tailored to users’ competences and
goals and to different application domains.
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