1,228 research outputs found

    Argumentation Mining in User-Generated Web Discourse

    Full text link
    The goal of argumentation mining, an evolving research field in computational linguistics, is to design methods capable of analyzing people's argumentation. In this article, we go beyond the state of the art in several ways. (i) We deal with actual Web data and take up the challenges given by the variety of registers, multiple domains, and unrestricted noisy user-generated Web discourse. (ii) We bridge the gap between normative argumentation theories and argumentation phenomena encountered in actual data by adapting an argumentation model tested in an extensive annotation study. (iii) We create a new gold standard corpus (90k tokens in 340 documents) and experiment with several machine learning methods to identify argument components. We offer the data, source codes, and annotation guidelines to the community under free licenses. Our findings show that argumentation mining in user-generated Web discourse is a feasible but challenging task.Comment: Cite as: Habernal, I. & Gurevych, I. (2017). Argumentation Mining in User-Generated Web Discourse. Computational Linguistics 43(1), pp. 125-17

    Explain what you see:argumentation-based learning and robotic vision

    Get PDF
    In this thesis, we have introduced new techniques for the problems of open-ended learning, online incremental learning, and explainable learning. These methods have applications in the classification of tabular data, 3D object category recognition, and 3D object parts segmentation. We have utilized argumentation theory and probability theory to develop these methods. The first proposed open-ended online incremental learning approach is Argumentation-Based online incremental Learning (ABL). ABL works with tabular data and can learn with a small number of learning instances using an abstract argumentation framework and bipolar argumentation framework. It has a higher learning speed than state-of-the-art online incremental techniques. However, it has high computational complexity. We have addressed this problem by introducing Accelerated Argumentation-Based Learning (AABL). AABL uses only an abstract argumentation framework and uses two strategies to accelerate the learning process and reduce the complexity. The second proposed open-ended online incremental learning approach is the Local Hierarchical Dirichlet Process (Local-HDP). Local-HDP aims at addressing two problems of open-ended category recognition of 3D objects and segmenting 3D object parts. We have utilized Local-HDP for the task of object part segmentation in combination with AABL to achieve an interpretable model to explain why a certain 3D object belongs to a certain category. The explanations of this model tell a user that a certain object has specific object parts that look like a set of the typical parts of certain categories. Moreover, integrating AABL and Local-HDP leads to a model that can handle a high degree of occlusion

    Language representations for computational argumentation

    Full text link
    Argumentation is an essential feature and, arguably, one of the most exciting phenomena of natural language use. Accordingly, it has fascinated scholars and researchers in various fields, such as linguistics and philosophy, for long. Its computational analysis, falling under the notion of computational argumentation, is useful in a variety of domains of text for a range of applications. For instance, it can help to understand users’ stances in online discussion forums towards certain controversies, to provide targeted feedback to users for argumentative writing support, and to automatically summarize scientific publications. As in all natural language processing pipelines, the text we would like to analyze has to be introduced to computational argumentation models in the form of numeric features. Choosing such suitable semantic representations is considered a core challenge in natural language processing. In this context, research employing static and contextualized pretrained text embedding models has recently shown to reach state-of-the-art performances for a range of natural language processing tasks. However, previous work has noted the specific difficulty of computational argumentation scenarios with language representations as one of the main bottlenecks and called for targeted research on the intersection of the two fields. Still, the efforts focusing on the interplay between computational argumentation and representation learning have been few and far apart. This is despite (a) the fast-growing body of work in both computational argumentation and representation learning in general and (b) the fact that some of the open challenges are well known in the natural language processing community. In this thesis, we address this research gap and acknowledge the specific importance of research on the intersection of representation learning and computational argumentation. To this end, we (1) identify a series of challenges driven by inherent characteristics of argumentation in natural language and (2) present new analyses, corpora, and methods to address and mitigate each of the identified issues. Concretely, we focus on five main challenges pertaining to the current state-of-the-art in computational argumentation: (C1) External knowledge: static and contextualized language representations encode distributional knowledge only. We propose two approaches to complement this knowledge with knowledge from external resources. First, we inject lexico-semantic knowledge through an additional prediction objective in the pretraining stage. In a second study, we demonstrate how to inject conceptual knowledge post hoc employing the adapter framework. We show the effectiveness of these approaches on general natural language understanding and argumentative reasoning tasks. (C2) Domain knowledge: pretrained language representations are typically trained on big and general-domain corpora. We study the trade-off between employing such large and general-domain corpora versus smaller and domain-specific corpora for training static word embeddings which we evaluate in the analysis of scientific arguments. (C3) Complementarity of knowledge across tasks: many computational argumentation tasks are interrelated but are typically studied in isolation. In two case studies, we show the effectiveness of sharing knowledge across tasks. First, based on a corpus of scientific texts, which we extend with a new annotation layer reflecting fine-grained argumentative structures, we show that coupling the argumentative analysis with other rhetorical analysis tasks leads to performance improvements for the higher-level tasks. In the second case study, we focus on assessing the argumentative quality of texts. To this end, we present a new multi-domain corpus annotated with ratings reflecting different dimensions of argument quality. We then demonstrate the effectiveness of sharing knowledge across the different quality dimensions in multi-task learning setups. (C4) Multilinguality: argumentation arguably exists in all cultures and languages around the globe. To foster inclusive computational argumentation technologies, we dissect the current state-of-the-art in zero-shot cross-lingual transfer. We show big drops in performance when it comes to resource-lean and typologically distant target languages. Based on this finding, we analyze the reasons for these losses and propose to move to inexpensive few-shot target-language transfer, leading to consistent performance improvements in higher-level semantic tasks, e.g., argumentative reasoning. (C5) Ethical considerations: envisioned computational argumentation applications, e.g., systems for self-determined opinion formation, are highly sensitive. We first discuss which ethical aspects should be considered when representing natural language for computational argumentation tasks. Focusing on the issue of unfair stereotypical bias, we then conduct a multi-dimensional analysis of the amount of bias in monolingual and cross-lingual embedding spaces. In the next step, we devise a general framework for implicit and explicit bias evaluation and debiasing. Employing intrinsic bias measures and benchmarks reflecting the semantic quality of the embeddings, we demonstrate the effectiveness of new debiasing methods, which we propose. Finally, we complement this analysis by testing the original as well as the debiased language representations for stereotypically unfair bias in argumentative inferences. We hope that our contributions in language representations for computational argumentation fuel more research on the intersection of the two fields and contribute to fair, efficient, and effective natural language processing technologies

    Argumentation dialogues in web-based GDSS: an approach using machine learning techniques

    Get PDF
    Tese de doutoramento em InformaticsA tomada de decisão está presente no dia a dia de qualquer pessoa, mesmo que muitas vezes ela não tenha consciência disso. As decisões podem estar relacionadas com problemas quotidianos, ou podem estar relacionadas com questões mais complexas, como é o caso das questões organizacionais. Normalmente, no contexto organizacional, as decisões são tomadas em grupo. Os Sistemas de Apoio à Decisão em Grupo têm sido estudados ao longo das últimas décadas com o objetivo de melhorar o apoio prestado aos decisores nas mais diversas situações e/ou problemas a resolver. Existem duas abordagens principais à implementação de Sistemas de Apoio à Decisão em Grupo: a abordagem clássica, baseada na agregação matemática das preferências dos diferentes elementos do grupo e as abordagens baseadas na negociação automática (e.g. Teoria dos Jogos, Argumentação, entre outras). Os atuais Sistemas de Apoio à Decisão em Grupo baseados em argumentação podem gerar uma enorme quantidade de dados. O objetivo deste trabalho de investigação é estudar e desenvolver modelos utilizando técnicas de aprendizagem automática para extrair conhecimento dos diálogos argumentativos realizados pelos decisores, mais concretamente, pretende-se criar modelos para analisar, classificar e processar esses dados, potencializando a geração de novo conhecimento que será utilizado tanto por agentes inteligentes, como por decisiores reais. Promovendo desta forma a obtenção de consenso entre os membros do grupo. Com base no estudo da literatura e nos desafios em aberto neste domínio, formulou-se a seguinte hipótese de investigação - É possível usar técnicas de aprendizagem automática para apoiar diálogos argumentativos em Sistemas de Apoio à Decisão em Grupo baseados na web. No âmbito dos trabalhos desenvolvidos, foram aplicados algoritmos de classificação supervisionados a um conjunto de dados contendo argumentos extraídos de debates online, criando um classificador de frases argumentativas que pode classificar automaticamente (A favor/Contra) frases argumentativas trocadas no contexto da tomada de decisão. Foi desenvolvido um modelo de clustering dinâmico para organizar as conversas com base nos argumentos utilizados. Além disso, foi proposto um Sistema de Apoio à Decisão em Grupo baseado na web que possibilita apoiar grupos de decisores independentemente de sua localização geográfica. O sistema permite a criação de problemas multicritério e a configuração das preferências, intenções e interesses de cada decisor. Este sistema de apoio à decisão baseado na web inclui os dashboards de relatórios inteligentes que são gerados através dos resultados dos trabalhos alcançados pelos modelos anteriores já referidos. A concretização de cada um dos objetivos permitiu validar as questões de investigação identificadas e assim responder positivamente à hipótese definida.Decision-making is present in anyone’s daily life, even if they are often unaware of it. Decisions can be related to everyday problems, or they can be related to more complex issues, such as organizational issues. Normally, in the organizational context, decisions are made in groups. Group Decision Support Systems have been studied over the past decades with the aim of improving the support provided to decision-makers in the most diverse situations and/or problems to be solved. There are two main approaches to implementing Group Decision Support Systems: the classical approach, based on the mathematical aggregation of the preferences of the different elements of the group, and the approaches based on automatic negotiation (e.g. Game Theory, Argumentation, among others). Current argumentation-based Group Decision Support Systems can generate an enormous amount of data. The objective of this research work is to study and develop models using automatic learning techniques to extract knowledge from argumentative dialogues carried out by decision-makers, more specifically, it is intended to create models to analyze, classify and process these data, enhancing the generation of new knowledge that will be used both by intelligent agents and by real decision-makers. Promoting in this way the achievement of consensus among the members of the group. Based on the literature study and the open challenges in this domain, the following research hypothesis was formulated - It is possible to use machine learning techniques to support argumentative dialogues in web-based Group Decision Support Systems. As part of the work developed, supervised classification algorithms were applied to a data set containing arguments extracted from online debates, creating an argumentative sentence classifier that can automatically classify (For/Against) argumentative sentences exchanged in the context of decision-making. A dynamic clustering model was developed to organize conversations based on the arguments used. In addition, a web-based Group Decision Support System was proposed that makes it possible to support groups of decision-makers regardless of their geographic location. The system allows the creation of multicriteria problems and the configuration of preferences, intentions, and interests of each decision-maker. This web-based decision support system includes dashboards of intelligent reports that are generated through the results of the work achieved by the previous models already mentioned. The achievement of each objective allowed validation of the identified research questions and thus responded positively to the defined hypothesis.I also thank to Fundação para a Ciência e a Tecnologia, for the Ph.D. grant funding with the reference: SFRH/BD/137150/2018

    Gaining Insight into Determinants of Physical Activity using Bayesian Network Learning

    Get PDF
    Contains fulltext : 228326pre.pdf (preprint version ) (Open Access) Contains fulltext : 228326pub.pdf (publisher's version ) (Open Access)BNAIC/BeneLearn 202

    Explainable NLP for Human-AI Collaboration

    Get PDF
    With more data and computing resources available these days, we have seen many novel Natural Language Processing (NLP) models breaking one performance record after another. Some of them even outperform human performance in some specific tasks. Meanwhile, many researchers have revealed weaknesses and irrationality of such models, e.g., having biases against some sub-populations, producing inconsistent predictions, and failing to work effectively in the wild due to overfitting. Therefore, in real applications, especially in high-stakes domains, humans cannot rely carelessly on predictions of NLP models, but they need to work closely with the models to ensure that every final decision made is accurate and benevolent. In this thesis, we devise and utilize explainable NLP techniques to support human-AI collaboration using text classification as a target task. Overall, our contributions can be divided into three main parts. First, we study how useful explanations are for humans according to three different purposes: revealing model behavior, justifying model predictions, and helping humans investigate uncertain predictions. Second, we propose a framework that enables humans to debug simple deep text classifiers informed by model explanations. Third, leveraging on computational argumentation, we develop a novel local explanation method for pattern-based logistic regression models that align better with human judgements and effectively assist humans to perform an unfamiliar task in real-time. Altogether, our contributions are paving the way towards the synergy of profound knowledge of human users and the tireless power of AI machines.Open Acces
    corecore