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Abstract

With more data and computing resources available these days, we have seen

many novel Natural Language Processing (NLP) models breaking one per-

formance record after another. Some of them even outperform human per-

formance in some specific tasks. Meanwhile, many researchers have revealed

weaknesses and irrationality of such models, e.g., having biases against some

sub-populations, producing inconsistent predictions, and failing to work ef-

fectively in the wild due to overfitting. Therefore, in real applications, espe-

cially in high-stakes domains, humans cannot rely carelessly on predictions

of NLP models, but they need to work closely with the models to ensure

that every final decision made is accurate and benevolent.

In this thesis, we devise and utilize explainable NLP techniques to support

human-AI collaboration using text classification as a target task. Overall,

our contributions can be divided into three main parts. First, we study how

useful explanations are for humans according to three different purposes: re-

vealing model behavior, justifying model predictions, and helping humans

investigate uncertain predictions. Second, we propose a framework that

enables humans to debug simple deep text classifiers informed by model ex-

planations. Third, leveraging on computational argumentation, we develop

a novel local explanation method for pattern-based logistic regression mod-

els that align better with human judgements and effectively assist humans

to perform an unfamiliar task in real-time. Altogether, our contributions

are paving the way towards the synergy of profound knowledge of human

users and the tireless power of AI machines.
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1. Introduction

We have seen more and more Artificial Intelligence (AI) technologies being

adopted in organizations (Fountaine et al., 2019; Soni et al., 2020). The

next interesting questions are “How many of them are truly successful?”

and “What is the key to their success?”. Ransbotham et al. (2020) sur-

veyed 3,000 companies, 57% of which affirmed that their companies are

piloting or deploying AI. However, only about 10% of the surveyed com-

panies could obtain significant financial benefits, generating 5-10% of their

overall revenue, with the AI. Figure 1.1 shows a headline of an article from

MIT Sloan Management Review1, reporting that the key to success of these

companies is human-machine collaboration. Specifically, these organizations

create systems such that they can “learn with the AI”. In other words, they

not only design AI systems that work for themselves but also engineer the

systems so that the AI learns from humans and humans learn from the AI.

In the meanwhile, from the research side, Explainable AI (XAI) focuses on

generating explanations for AI models and/or for their predictions (Adadi

and Berrada, 2018). Some researchers have studied various merits of the

explanations to humans, such as supporting human decision making (Lai

and Tan, 2019), increasing human trust in AI (Jacovi et al., 2021) and even

teaching humans to perform challenging tasks (Lai et al., 2020). On the

other hand, explanations can benefit the AI systems as well, e.g., when

explanations are used to promote system acceptance (Cramer et al., 2008),

to verify the model reasoning (Caruana et al., 2015), and to find potential

causes of errors (Han et al., 2020) and support humans fixing them (Teso

and Kersting, 2019). Therefore, the two-way benefits of explanations may

indeed enable the concept of “learning with the AI”, mentioned above, since

explanations allow both humans to learn from the AI and the AI to be

improved by the humans. This also clearly highlights the importance of

1https://sloanreview.mit.edu/article/the-key-to-success-with-ai-is-human-

machine-collaboration/ (Accessed: 9th September 2021)
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Figure 1.1.: The headline of an article from MIT Sloan Management Re-
view indicating that human-machine collaboration is the key to
success for organizations deploying AI.

explainable AI towards human-AI collaboration.

Because the AI field is very broad, involving many sub-fields such as data

mining, computer vision, planning, optimization, and robotics, it is difficult

to generate universal explainable AI solutions for every sub-field. In this

thesis, we target explainable AI for Natural Language Processing (NLP),

a sub-field of AI focusing on building machine learning models to process

input texts to achieve specific tasks (e.g., classification, question answering,

information extraction, etc.). We focus on NLP because natural language

has several characteristics which are not found in other data modalities.

These become challenges for research in explainable NLP. For instance, the

input space of NLP is discrete as an input text is a sequence of words

or tokens. Hence, explainable AI methods that rely on continuous input

spaces, such as sensitivity analysis (Dimopoulos et al., 1995) and activation

maximization (Erhan et al., 2009; Nguyen et al., 2016), are not directly

applicable or entirely meaningful (Lakkaraju et al., 2020). In addition, each

word or token that forms the input has its own semantics which is neither

complete nor definite unless it stays in a grammatically correct sequence

and we consider it together with its context (Pustejovsky et al., 1996). This

again makes explainable AI methods that rely on distance between inputs

(Altman, 1992) and direct input perturbation (Feng et al., 2018) become

less effective. Overall, these challenges make techniques in explainable NLP

quite unique (meaning that the results from general XAI research cannot

be directly adopted in NLP) and still far from fully solved.

As background, current research for explainability in NLP can be broadly
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categorized into three groups: Generating explanations, Evaluating expla-

nations, and Applying explanations to specific tasks. We briefly overview

these three groups below.

Generating Explanations. There are two types of explanations widely

studied. First, local explanations aim to explain individual predictions made

by a trained model for specific inputs. Second, global explanations aim to

explain what the model has learned and how it works in general irrespective

of any inputs. Local explanations can be presented in many forms depend-

ing on the aspect of the prediction process we want to explain. The most

popular form of local explanations in NLP is input-based explanations (also

known as feature importance explanations) showing which words or parts

in the inputs are important or influential for the predictions (Bhatt et al.,

2020b), as studied in (Li et al., 2016b; Ribeiro et al., 2016; Lundberg and

Lee, 2017; Shrikumar et al., 2017) for example. Other forms of local ex-

planations include rule-based (Ribeiro et al., 2018a), example-based (Guo

et al., 2020), and counterfactual (Yang et al., 2020) explanations. Global

explanations could be created by summarizing from a collection of local

explanations (Ribeiro et al., 2018a; Pedreschi et al., 2019; Lundberg et al.,

2020) or by creating another interpretable model to mimic the target model

(Bastani et al., 2017; Tan et al., 2018; Sushil et al., 2018). Note that when

the model is transparent (e.g., Naive Bayes models, logistic regression, and

decision trees), we can probably use the model itself as the global explana-

tion and extract local explanations from how the model processes the inputs

(such as using the path the input follows in a decision tree as the local ex-

planation) (Danilevsky et al., 2020). However, this does not mean that we

do not need explanation methods invented for transparent models. Taking

human factors into account, we realize that even machine learning experts

may feel frustrated if they need to understand a decision tree with a depth

of ten or more. Thus, the background knowledge, desires, and limits of the

audience cannot be ignored when we design a new explanation method.

Evaluating Explanations. We can consider several desirable properties

of explanations. Each of them leads to several ways to evaluate the expla-

nations, and these may depend on the forms of the explanations as well.

For example, let us consider a text classification task with feature impor-
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tance scores as an explanation. These scores show how important each input

word is for the classification. Early work evaluated these explanations by

gradually deleting words from the input text following the order of their

importance and checking how much the predicted probability drops (Arras

et al., 2016). Poerner et al. (2018b) proposed two evaluation paradigms –

hybrid documents and morphosyntactic agreements. Both check whether

an explanation method correctly points to the (known) root cause of the

prediction. These evaluation methods evaluate the faithfulness2 of the ex-

planations, checking how accurately the explanation reflects the prediction

process of the model (Jacovi and Goldberg, 2020).

In contrast, Mohseni et al. (2018) proposed a benchmark which contains

a list of relevant words for the actual class of each input text, identified by

human experts. The high agreement between the relevant words annotated

by humans and the important words shown in the explanations reflects the

high plausibility of the explanations. Note, however, that the disagreements

could be due to not only the poor explanation method but also the inaccu-

racy of the model or the model reasoning differently from humans.

In any case, both faithfulness and plausibility can be seen as intrinsic

properties of explanations, i.e., properties that good explanation should have

in general. In literature, there have been many works evaluating intrinsic

properties across various explanation methods such as (Nguyen, 2018) for

local faithfulness and plausibility and (DeYoung et al., 2020) for compre-

hensiveness and sufficiency (which are two other intrinsic properties).

Beyond intrinsic properties, some papers evaluate explanation methods

extrinsically based on their performance in downstream applications. For

instance, some evaluated user satisfaction with the explanations (Biran and

McKeown, 2017; Narayanan et al., 2018) and how much the explanations

could engender trust in the AI model (Bussone et al., 2015; Smith-Renner

et al., 2020). Nevertheless, although explanations can be used to support

human-AI collaboration as described earlier, only few papers have discussed

the evaluation and comparison of explanation methods with respect to

purposes of explanation usage by humans such as inferring model qual-

ity (Ribeiro et al., 2016) and providing supports to humans in real-time

(Lai and Tan, 2019). No systematic evaluation of this sort across various

explanation methods has been conducted yet.

2We will discuss faithfulness in detail in Section 3.2.
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Applications of Explanations. As discussed above, the explanations

are useful for supporting collaboration between AIs and humans in many

cases (Samek et al., 2018). Firstly, if an AI outperforms humans in a certain

task (e.g., AlphaGo (Silver et al., 2016)), humans can learn and distill knowl-

edge from the given explanations. Secondly, if an AI’s performance is close

to human intelligence, the explanations can increase humans’ confidence

and trust in the AI (Symeonidis et al., 2009). Lastly, if an AI is duller than

humans, the explanations can help humans verify the decisions made by the

AI and also improve the AI (Biran and McKeown, 2017). Focusing on the

last case, in particular, there are several existing works using explanations

to support debugging. Actually, the term debugging in machine learning

research is interpreted differently by different researchers. Some consider

debugging as a process of identifying or uncovering causes of model errors

(Parikh and Zitnick, 2011; Graliński et al., 2019), while others stress that de-

bugging must not only reveal the causes of problems but also fix or mitigate

them (Kulesza et al., 2015; Yousefzadeh and O’Leary, 2019). Note that, in

this thesis, we adopt the latter interpretation. Previously, there have been

attempts using explanations to allow humans to understand how the model

works and provide feedback in response to debug the model. This process is

called explanatory debugging and has been explored in some previous works

(e.g., (Stumpf et al., 2009; Kulesza et al., 2010, 2015; Teso and Kersting,

2019)). However, most of them targeted traditional machine learning mod-

els (such as Naive Bayes and support vector machines), whereas there are

only few studies exploring problems and strategies for bugs in deep learning

models (Ribeiro et al., 2018b; Cho et al., 2019).

1.1. Thesis Contributions

This thesis has three main contributions which fill in the gaps existing in the

three research categories of explainable NLP discussed above. Figure 1.2

illustrates where our contributions are in the context of human-AI collabora-

tion. Note that, for all the contributions, we focus on the text classification

task, amounting to its various forms such as topic classification, sentiment

analysis, abusive language detection, spam classification, and deceptive re-

view detection. Text classification is a fundamental task in NLP, with a

variety of high-performing models and several potential applications thereof
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Figure 1.2.: A diagram summarizing the contributions of this thesis.

(Li et al., 2020b). There is also great scope at the intersection of explainable

NLP and human-AI collaboration for targeting this task. We focus on two

types of classification models – black-box models and interpretable models –

at different parts of the thesis. Specifically, we choose convolutional neural

network (CNN) (Kim, 2014) as representative of black-box models, because

it has been found to achieve promising results in many text classification

tasks (Johnson and Zhang, 2015; Gambäck and Sikdar, 2017; Zhang et al.,

2019) and had several applicable explanation methods available publicly

(Bach et al., 2015; Shrikumar et al., 2017) (to be evaluated in this thesis).

Also, while being a black-box, CNN is leaner and does not require much

human effort when it comes to debugging (which is also a part of this the-

sis) unlike recent complex transformer-based models (Devlin et al., 2019;

Liu et al., 2019b), which would require more than the budget we have for

conducting experiments with humans. Meanwhile, we choose pattern-based

logistic regression as representative of interpretable models, which may still

need explaining when used by humans for their benefits.

Contribution 1: Human-Grounded Evaluations of Explanation

Methods. With so many local explanation methods available, it is im-

portant to evaluate and compare them in order to choose the right methods

for different settings. Many existing works evaluate explanation methods

by focusing on their intrinsic properties. Still, there has not been any

work that evaluates various existing explanation methods systematically to

demonstrate how well they can support different human-AI collaboration

tasks. We close this gap by proposing three human-grounded tasks to eval-

uate the quality of explanation methods with respect to different purposes
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of explanation usage for text classification. These purposes include (1) re-

vealing model behavior to human users, (2) justifying the predictions, and

(3) helping humans investigate uncertain predictions. Then, using CNNs

as target classification models, we apply these three tasks to evaluate nine

explanation methods, including two random explanations, five configura-

tions of existing well-known methods, and two novel methods developed in

this thesis specifically for CNN text classifiers. Among the nine methods,

four explain at the word level while the other five explain at the n-gram

level. The results are novel, demonstrating dissimilar qualities of the tested

methods and showing how well each can serve the three purposes as well as

the challenges of using explanations for these purposes.

Contribution 2: Human-in-the-Loop Debugging Deep Text Classi-

fiers. Deep learning-based text classifiers work like a black box because the

way they process and reason on inputs is not interpretable to humans. This

makes debugging these models become challenging, more so than explana-

tory debugging of traditional machine learning models (such as Naive Bayes

and support vector machines), as predominantly done in the literature. In

this thesis, we fill this gap by proposing a novel framework, namely FIND,

which integrates explainable NLP and human-AI collaboration to debug

deep text classifiers in the form of CNNs. FIND consists of three steps.

First, it selects an intermediate layer in the target model and analyzes tex-

tual patterns that each neuron in the layer has learned to capture, by using

an explanation method called LRP (Layer-wise relevance propagation) (Ar-

ras et al., 2016). These patterns are then presented to humans using word

clouds. Second, the humans analyze the word clouds and identify whether

the patterns of each neuron are likely to be helpful for the classification task

or they are just irrelevant artifact patterns. Third, the neurons that mainly

capture the irrelevant patterns are disabled in the model, and the model is

re-trained, forced to use only good neurons to perform the task. Overall,

FIND has two characteristics which are different from most of the existing

work. First, it asks for human feedback in response to global explanations

rather than local explanations of the model (as used in, for example, (Teso

and Kersting, 2019; Cho et al., 2019; Smith-Renner et al., 2020)). This is

beneficial because it is not susceptible from the local decision pitfall prob-

lem where local improvements for individual predictions could add up to
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inferior overall performance (Wu et al., 2019b). Second, the debugging pro-

cess is a one-off improvement since the word clouds (shown as the global

explanations) do not change after the model update. Hence, unlike many

previous works (Kulesza et al., 2009, 2010, 2015), our work sits more in the

human-in-the-loop machine learning rather than interactive machine learn-

ing. Using CNN text classifiers, we conduct three human experiments that

demonstrate the effectiveness of FIND in different scenarios (i.e., coping

with small training datasets, datasets with gender bias, and datasets with

different train-test distributions). The results not only highlight the useful-

ness of our approach but also reveal interesting behaviors of CNNs for text

classification.

Contribution 3: Argumentative Explanations for Text Classifica-

tion. Existing explanation methods have been widely devised to address

the transparency issue of black-box models or to create explanations for

any kind of models (i.e., being model-agnostic). This leaves explanations

of interpretable models underexplored by the community. On one hand,

this is understandable because the standard method to extract explanations

from each interpretable model is obvious and faithful (e.g., using the corre-

sponding path in a decision tree as explanation or using k nearest neighbor

examples of a kNN model as explanation). On the other hand, this leads

to little attention on other desirable properties of explanations for these in-

terpretable models. We fill this gap by focusing on explaining pattern-based

logistic regression (PLR) for text classification. In fact, patterns implicitly

emerge in CNNs. However, it is sometimes difficult to understand common

characteristics of the patterns captured by specific CNN features. So, we

choose to extract interpretable patterns beforehand using GrASP (Shnarch

et al., 2017) and use them as features of the logistic regression model. Al-

beit interpretable, PLR is challenging when it comes to explanations. In

particular, we found that a standard way to extract local explanations from

this model does not consider relations among the features. This makes the

explanations less plausible to humans. Hence, to fill this gap, we propose

AXPLR, a novel local explanation method using computational argumen-

tation (Čyras et al., 2021) to model agreements and disagreements among

the features before generating explanations. The method consists of four

steps: extracting argumentation frameworks from the model, computing
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strengths of arguments, post-processing the results, and generating the ex-

planations. Finally, we conduct property analysis, empirical evaluation, and

two experiments in the context of human-AI collaboration to demonstrate

the advantages of AXPLR.

Summary of contributions. All in all, Table 1.1 summarizes different

dimensions of our three main contributions. For models, the table shows

both the models where our proposed methods / frameworks are applicable

and the models we used in the experiments. The explanations used in all the

contributions are friendly to end users with no machine learning experience

although the model developers may perform the human roles in some of the

applications (such as model debugging).

1.2. Ethical Statement

For all the human experiments conducted, unless stated otherwise, we used

a crowdsourcing platform (i.e., Amazon Mechanical Turk) to recruit human

participants without collecting any of their personal information. When

they needed to deal with sensitive texts (e.g., investigating texts from an

abusive language detection dataset), we additionally showed a clear warn-

ing message for them to consider before accepting to perform the task.

Furthermore, the participants could complain about our experiments to the

crowdsourcing platform if they wanted. However, we did not receive any

negative feedback or complaints as of the completion of the experiments.

There is no evidence that the participants received mental harm or there

were any ethical issues during the experiments. For experiments in the last

contribution (AXPLR), under the recommendation by the Research Gov-

ernance and Integrity Team at Imperial College London, we additionally

submitted an application for ethics review (which was duly approved).

1.3. Thesis Structure

This thesis is structured as follows. Chapter 2 provides essential background

knowledge that we use or build upon in the thesis. Chapter 3 critically an-

alyzes related work and points out research gaps that this thesis addresses.

Chapters 4 – 6 present the main contributions in this thesis. Specifically,
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Chap. Focus Expl. Model Human role(s)

4
Evaluating

explanations
Local (Any; CNN)

Task
performers as

evaluators

5
Debugging the

model
Global

(Deep learning;
CNN)

Feedback
providers as
debuggers

6
Explain the
prediction

Local (PLR; PLR)
End users,
Learners

Table 1.1.: Dimensions of the three major contributions of this thesis. Chap.
and Expl. stand for chapter and explanation scope, respectively.
Models are in the form of (A; B) where A is an applicable model
while B is the model used in the experiments. PLR stands for
pattern-based logistic regression. Note that we target text clas-
sification for all the chapters.

Chapter 4 presents the three human-grounded evaluation tasks to assess

explanation methods with respect to different purposes of usage for text

classification. Chapter 5 discusses our proposed human-in-the-loop debug-

ging framework for deep text classifiers, FIND, together with three human

experiments demonstrating the effectiveness of the framework. Chapter 6

explains AXPLR, our novel local explanation method, based on computa-

tional argumentation, designed specifically for pattern-based logistic regres-

sion models. Finally, Chapter 7 concludes the thesis with possible future

work.

1.4. Publications

The work presented in this thesis has resulted in two conference publications,

one journal paper, and one technical report:

• (Lertvittayakumjorn and Toni, 2019) Piyawat Lertvittayakumjorn and

Francesca Toni. 2019. Human-grounded evaluations of explanation

methods for text classification. In Proceedings of the 2019 Confer-

ence on Empirical Methods in Natural Language Processing and the

9th International Joint Conference on Natural Language Processing

(EMNLP-IJCNLP), pages 5195–5205, Hong Kong, China. Associa-

tion for Computational Linguistics. (Chapters 1 and 4)
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• (Lertvittayakumjorn et al., 2020) Piyawat Lertvittayakumjorn, Lucia

Specia, and Francesca Toni. 2020. FIND: Human-in-the-Loop Debug-

ging Deep Text Classifiers. In Proceedings of the 2020 Conference on

Empirical Methods in Natural Language Processing (EMNLP), pages

332–348, Online. Association for Computational Linguistics. (Section

2.1.3 and Chapter 5)

• (Lertvittayakumjorn and Toni, 2021) Piyawat Lertvittayakumjorn and

Francesca Toni. 2021. Explanation-Based Human Debugging of NLP

Models: A Survey. Transactions of the Association for Computational

Linguistics (Accepted, forthcoming). (Chapter 1, Sections 2.2.2, 3.3,

5.6, and 7.2.3)

• (Lertvittayakumjorn et al., 2021b) Piyawat Lertvittayakumjorn, Leshem
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2. Essential Background

This chapter aims to provide background knowledge that is essential for

the thesis. Section 2.1 discusses text classification, which is the target task

for human-AI collaboration in this thesis. In particular, it provides the

task definition, introduces relevant models, and points out some issues that

make this task challenging. Next, Section 2.2 provides an overview of inter-

pretability and explainability for NLP and also overviews two explanation

methods, LRP and Grad-CAM, which play major roles in the thesis (espe-

cially in Chapters 4 and 5). Then, Section 2.3 covers the background for

computational argumentation and its derived explanation which are utilized

mainly in Chapter 6 of this thesis. Finally, Section 2.4 provides a summary

of this chapter with a transition to the next chapter.

2.1. Text Classification

As a fundamental problem in natural language processing, text classifica-

tion aims to classify a given document into one of the known classes. It

also has many specific real-world applications. For example, one task for

sentiment analysis is classifying whether a given text conveys positive or

negative sentiment (Medhat et al., 2014). This enables businesses to do

social listening from review texts in order to grasp public feelings towards

their brand or products. Additionally, abusive language detection aims to

predict whether a given text uses offensive/insulting language or not. This

is helpful, especially in online social media, to reduce contents that might

cause cyber-bullying, hate crime, and discrimination (Park et al., 2018b).

Generally, although humans can manually write rules to classify texts, it is

difficult to compose a complete set of high-quality rules which could effec-

tively classify any unseen texts. This is even more difficult if the humans

do not have any domain knowledge or expertise about the task. Therefore,

most text classification methods rely on the supervised learning approach
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where we optimize a classifier using a set of labeled training data. Next, we

will discuss this approach and some supervised learning models (used in this

thesis) in Sections 2.1.1 and 2.1.2, by using chapters 4 and 5 of (Jurafsky

and Martin, 2020) as the main reference unless cited otherwise. We will

conclude this section with a discussion in Section 2.1.3 of issues emerging in

text classification when supported by standard supervised machine learning.

2.1.1. Problem Definition

Let us consider a text classification task with ∣C∣ classes where C is the set of

all classes. A training dataset D ≙ {(x1, y1), . . . , (xN , yN)} is given, where

xi is the i-th document containing a sequence of Li words, ∥xi1, xi2, ..., xiLi
∥,

and yi ∈ C is the class label of xi. The goal of supervised learning for text

classification is to train a classification model M on the dataset D so that it

is capable of classifying a new input document x into one of the seen classes

ŷ (i.e., ŷ ≙M(x) ∈ C). We call the task binary classification and multiclass

classification for the settings with ∣C∣ ≙ 2 and ∣C∣ > 2, respectively.

To evaluate the performance of a classifier M , we apply it to predict

examples in a labeled test dataset D′ and report the percentage of correct

predictions, so called the accuracy or classification rate. However, if the test

dataset is class imbalanced, i.e., having examples of one class more than oth-

ers, accuracy may not be the best evaluation metric because a model can get

a high accuracy only by always answering the majority class. Alternatively,

we can report the model performance for each specific class c ∈ C using the

class precision, recall, and F-measure (mostly F1). Then we aggregate these

class-specific metrics to be the metrics for the overall performance by either

micro-averaging or macro-averaging. More details about evaluation metrics

for text classification can be found in Appendix A.1.

2.1.2. Relevant Text Classification Models

In this section, we explain some text classification models which we use or

build upon in the thesis. These amount to traditional machine learning

models in the form of decision trees (DTs) and logistic regression (LR), and

deep learning models in the form of convolutional neural networks (CNNs).

Particularly, CNNs are our target models of Chapters 4 and 5, whereas

LR is the target model of Chapter 6. We also leverage DT in one of our
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proposed explanation methods (for CNNs) in Chapter 4.

Traditional Machine Learning Models

By nature, text documents are unstructured data, so they are inconvenient

for machines to process. Hence, traditional machine learning methods per-

form feature extraction, converting each input document x into a feature

vector f ∈ Rd (for d ≥ 1), before training a classifier to map the feature

vectors of all the documents to the classes. The most widely used feature

extraction method for texts is bag-of-words where an input text is tokenized

and organized into an unordered set of words together with their frequen-

cies in the input while the word order is ignored. Then each position in the

feature vector corresponds to the number of appearances of a specific word

in the input text. This feature extraction process is called count vector-

ization. Otherwise, we could use TF-IDF vectorization (Weiss et al., 2010,

chapter 2) to re-weight values in the feature vector, taking into account not

only the word frequency in the input text but also the number of docu-

ments containing each word in the whole training set. Also, we can extend

the bag-of-words method to the bag-of-n-grams method where each element

in the feature vector could correspond to not only a single word (unigram),

but also a phrase of two words (bigram), three words (trigram), or n words

(n-gram). Moreover, we can extract customized features we deem useful for

the classification task at hand and include them in (or use them solely) as

the feature vector. This process is called feature engineering. For example,

for the fake news detection task, one may create features especially for some

punctuation characters (e.g., periods, question marks, exclamation marks)

and for the proportion of words that belong to psycholinguistic categories

(e.g., emotional words, perceptual process) (Pérez-Rosas et al., 2018).

With feature vectors, we can train traditional machine learning classifiers

to predict the classes. Examples of the classifiers include1

• Decision Tree selects a feature with its particular value to be a split

point, partitioning the whole training dataset into two parts. The

selected split point must optimize some metric of the dataset such

1Indeed, there are other types of traditional classifiers (such as Naive Bayes Classifier,
k-Nearest Neighbors, Support Vector Machines, and Random Forest) though their
details are omitted here as they are not relevant to the thesis.
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as information gain (Quinlan, 1986) or gini impurity (Breiman et al.,

1984), hoping that each partition is more specific to some classes.

Splits are then performed recursively on each partition until a stopping

criteria is reached (e.g., the maximum depth of the tree, the minimum

number of samples per a leaf node, the minimum impurity decrease).

• Multinomial Logistic Regression learns the importance of each

feature in the feature vectors f ∈ Rd towards each class c ∈ C. Formally,

p ≙ softmax(Wf + b) (2.1)

where p ∈ R∣C∣ is the predicted probability of all the classes, W ∈ R∣C∣×d

and b ∈ R∣C∣ are weights and biases, respectively, which are the learned

parameters of logistic regression. Thus, the predicted class ŷ is the

class with the maximum predicted probability. The softmax function

is used to normalize a vector into a probability mass function. Its

definition is shown below for the vector z ≙ ∥z1, ..., zk∥.
softmax(zi) ≙ exp(zi)

k

∑
j=1

exp(zj)
for 1 ≤ i ≤ k (2.2)

softmax(z) ≙ ∥softmax(z1), ..., softmax(zk)∥ (2.3)

We can learn the weights and biases of logistic regression by opti-

mizing an objective function (i.e., a loss function) using the gradient

descent algorithm (Ruder, 2016). The loss function we normally use

for multiclass classification is the categorical cross-entropy loss:

L(D) ≙ − 1

N

N

∑
i=1

∑
c∈∣C∣

yi,clog(pi,c) (2.4)

where pi,c is the predicted probability of class c for the example xi,

and yi,c equals 1 only when yi ≙ c, being 0 otherwise.

• Binary Logistic Regression is a specialized case of logistic regres-
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sion where there are only two classes, i.e., C ≙ {0,1}:
p ≙ σ(wT f + b)
≙ σ( d

∑
i=1

wifi + b)
≙ σ(w1f1 +w2f2 + ... +wdfd + b)

(2.5)

where p is the predicted probability of the main class (i.e., class 1),

w ∈ Rd and b ∈ R are weights and bias of the model. σ is a sigmoid

function (so called a logistic function) converting any real number into

a value between 0 and 1.

σ(z) ≙ 1

1 + e−z
(2.6)

where z ≙ 0 yields σ(z) ≙ 0.5. Additionally, we use the binary cross-

entropy loss as an objective function to optimize the model.

L(D) ≙ − 1

N

N

∑
i=1

(yilog(pi) + (1 − yi)log(1 − pi)) (2.7)

where yi ∈ {0,1} is the true label of example xi and pi is the predicted

probability of class 1 for xi returned by the model.

Overall, traditional classifiers in general are mostly interpretable because

we can easily observe the importance of each feature for the predictions

(e.g., via the learned weights or the splitting features). Nevertheless, their

weaknesses are that (1) the word order information is mostly ignored; (2)

the feature vectors are sparse and too large to efficiently compute for some

learning algorithms; and (3) the semantics of words are not modeled and

exploited by the classifiers.

Deep Learning Models

Convolutional Neural Networks (CNNs) have been very successful

in the computer vision domain (Krizhevsky et al., 2012; He et al., 2016)

and got adapted to the NLP domain to perform many tasks including text

classification (Johnson and Zhang, 2015; Gambäck and Sikdar, 2017; Zhang

et al., 2019). It is a type of deep learning models, operating on multiple non-

linear modules (layers) so as to learn effective representations of inputs for
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Figure 2.1.: A 1D CNN for text classification.

achieving a given target task (LeCun et al., 2015). In particular, CNNs for

text classification also rely on the idea of word embeddings (Mikolov et al.,

2013; Pennington et al., 2014) where each input word is represented as a

vector (capturing semantics of the word) and the models then use vectors of

all the input words as input to predict the output class. Additional details

about deep learning and word embeddings can be found in Appendix A.2.

Figure 2.1 shows a standard one-dimensional (1D) CNN for text classifi-

cation (Kim, 2014) which consists of four main steps. First, an input text

xi ≙ ∥xi1, xi2, ..., xiL∥ is embedded into a matrix W ∈ RL×d where the row j

of W is the word embedding of xij with d dimensions. Second, K fixed-size

convolution filters are applied to W to find n-grams that possibly discrimi-

nate one class from the others. For the filter k with window size l, the result

of the convolution on W is a feature map ck ∈ R
L−l+1:

ck ≙ ∥c1k, ..., c(L−l+1)k
∥

cik ≙ g(Fk ⊙Wi∶i+l−1 + bk) (2.8)

where Fk ∈ R
l×d and bk ∈ R are the learned weights of the filter k, Wi∶i+l−1

is a sub-matrix of W consisting of l consecutive rows starting from row i, ⊙

is an element-wise multiplication operator, and g is a non-linear activation

function. Note that we often use the Rectified Linear Unit (ReLU) as g,

where

ReLU(x) ≙max(x,0) (2.9)
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Third, the maximum value found by each filter, corresponding to the most

relevant n-gram in text, is pooled to construct a filter-based feature vector,

f ∈ RK , of the input:

f ≙ ∥max(c1), ...,max(cK)∥ (2.10)

This feature vector f , representing the input text xi, is analogous to f ob-

tained from feature extraction in Section 2.1.2. Finally, fully-connected lay-

ers (FC) are used to predict the results, and a softmax function is applied

to the outputs to obtain predicted probability of the classes (p):

p ≙ softmax(FC(f)) (2.11)

Figure 2.1 shows the case where we use only one linear layer as FC. In

fact, more hidden layers can be added to increase the model capacity for

prediction. Also, more than one filter size can be used to detect n-grams

with short- and long-span relations (Conneau et al., 2017).

To train the CNN model, we need to choose the loss function for the

task (such as Equations 2.4 or 2.7) and use the backpropagation algorithm

(Rumelhart et al., 1986) to optimize the model parameters. For the embed-

ding layer, we usually initialize it with pre-trained word embeddings such

as word2vec (Mikolov et al., 2013) or GloVe (Pennington et al., 2014). If we

have a sufficient amount of training data, we may update these embeddings

during model training to specialize them to the target task. Otherwise, we

set these embeddings as non-trainable.

2.1.3. Issues with Supervised Text Classification

Supervised learning trains a model to map an input text to a class. Since

an input text can contain both parts which are relevant and irrelevant to

the classification, it is possible that the model exploits the irrelevant parts

– relying on the wrong reasons – when making predictions. This usually

happens when training datasets are small or contain artifacts (i.e., tokens

or phrases which are not relevant, but strongly co-occur with one of the

classes) (Wiegand et al., 2019; Gururangan et al., 2018). These can lead to

suboptimal models with undesirable properties. For example, the models

may have biases against some sub-populations or may not work effectively
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in the wild as they overfit the imperfect training data. Even though the

NLP community today has advanced pre-trained language models (e.g.,

BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019b), ALBERT (Lan

et al., 2019), etc.), leveraging transfer learning to improve the performance

of downstream tasks, these models also suffer (more or less) from the same

issue as other machine learning models (Yao et al., 2021).

To improve the suboptimal models, existing work has looked into different

techniques beyond standard model fitting. If the weaknesses of the training

datasets or the models are anticipated, strategies can be tailored to mitigate

such weaknesses. For example, augmenting the training data with gender-

swapped input texts helps reduce gender bias in the models (Park et al.,

2018b; Zhao et al., 2018). Adversarial training can prevent the models

from exploiting irrelevant and/or protected features (Jaiswal et al., 2020;

Zhang et al., 2018). With a limited number of training examples, using

human rationales or prior knowledge together with training labels can help

the models perform better (Zaidan et al., 2007; Bao et al., 2018; Liu and

Avci, 2019). Nonetheless, there are side-effects of sub-optimal datasets that

cannot be predicted and are only found after training thanks to post-hoc

error analysis. To rectify such problems, there have been attempts to enable

humans to fix the trained models (i.e., to perform model debugging). We

will review these methods in detail in Section 3.3.

2.2. Interpretability and Explainability for NLP

Explainable AI focuses on generating explanations for AI models as well

as for their predictions (Adadi and Berrada, 2018). Within the NLP com-

munity, it is gaining more and more attention these days since explanations

are necessary in several language-based applications, especially in high-stake

domains such as healthcare (Feng et al., 2020), law (Branting et al., 2019),

and finance (Yang et al., 2020). Besides explanations, the community is

also interested in opening the black boxes (i.e., analyzing complicated NLP

models to learn more how, when, and why they work). The insights from

the analysis could help us understand the model’s strengths and weaknesses

(Ribeiro et al., 2020), improve the model efficiency (Dalvi et al., 2020), and

contemplate how humans acquire and process languages (Linzen, 2019).

This section reviews methods for interpreting neurons in deep NLP mod-
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els and methods for generating explanations which are relevant to this thesis,

enabling effective human-AI collaboration.

2.2.1. Interpreting Neurons in Deep NLP Models

There has been substantial work in gaining better understanding of each

neuron in complex, deep neural NLP models. In this section, we discuss two

approaches (visualization and corpus analysis) along with some examples.

Visualization. To investigate how a neuron works, we could visualize its

activation values with respect to input texts or input tokens. With this

technique, Li et al. (2016a) observed the final representations learned by

recurrent neural networks (i.e., the feature vectors) of several input texts.

Then they found that some dimensions of the feature vectors capture the ef-

fect of intensification and negation in the input texts. In contrast, Karpathy

et al. (2015) observed cell activation of a character-level LSTM model for

language modelling after receiving each character. The results revealed the

existence of some interpretable cells. For example, they found a cell acting

as a line length counter and cells checking if the current letter is inside a

parenthesis or a quote.

As one model may have hundreds to thousands neurons, manually looking

at visualizations of every neuron is not efficient. Recent works, therefore,

move towards interactive visualizations. For instance, LSTMVis (Strobelt

et al., 2018) allows users to search for cells, in an LSTM model (Hochreiter

and Schmidhuber, 1997), that are activated significantly when reading a

user-specified part of an input. In addition, the system shows parts of

other examples where such cells are also activated, so the users can form

hypotheses about how the cells work.

Corpus Analysis. This approach aims to find n-grams or concepts which

best represent the expertise of the neurons. Jacovi et al. (2018) analyzed

what is captured by each filter of CNN text classifiers. They applied a

threshold to activation scores of n-grams (chosen by max pooling of each

filter) to separate between informative and non-informative n-grams. By an-

alyzing informative n-grams, they found that one convolutional filter may

detect more than one n-gram pattern and may also suppress negative n-

grams. Meanwhile, Na et al. (2019) aimed to find top-M concepts strongly
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activating each CNN filter. To do so, they selected top-K training sen-

tences which activate the filter the most and collected every node in the

constituency parse trees of these sentences to be candidate concepts. For

each candidate concept, they created a synthetic sentence containing the

concept multiple times and checked the activation score it got from the fil-

ter. M concepts of which the synthetic sentences got the highest scores from

each filter are shown to the users. Without corpus search, Poerner et al.

(2018a) optimized the activation of each neuron using gradient ascend and

gumbel softmax trick. This made them found an n-gram which maximally

activates the neuron though it may not convey a clear meaning.

2.2.2. Categorizations of Explanation Methods

In Section 2.2.1, we consider a micro analysis of deep NLP models, i.e.,

investigating each neuron in the models. By contrast, in this section, we

consider a macro analysis of NLP models through explanations. Explana-

tions and explanation methods in NLP can be categorized along three main

dimensions.

What to explain.

Basically, there are two things which we want to explain, corresponding to

two types of explanations. First, local explanations explain the predic-

tions by the model of interest for individual inputs. In other words, we want

to know why the model predicts this output for a given input. This explana-

tion type helps us verify whether a prediction was made for the right reason.

Second, global explanations explain the model overall, independently of

any specific inputs. This explanation type reveals the prediction mechanism

of the model in a more comprehensible way, so it helps us verify if the model

is suitable for deployment (Lakkaraju et al., 2020). Due to the complexity of

NLP models nowadays, it is very challenging to obtain global explanations

which are both comprehensive and comprehensible. Therefore, a majority

of research in explainable NLP targets local explanations, which are more

tractable, as we can see from the survey2 by Dhanorkar et al. (2020).

2https://xainlp2020.github.io/xainlp/home
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How to compute explanations.

Some ML models, e.g., Naive Bayes, logistic regression, and decision trees,

are self-explaining (Danilevsky et al., 2020), also referred to as trans-

parent (Adadi and Berrada, 2018), inherently interpretable3 (Rudin,

2019), or directly interpretable (Arya et al., 2019). Local explanations

of self-explaining models can be obtained at the same time as predictions,

from the process of making those predictions, while the models themselves

can usually serve directly as global explanations. In contrast, another type

of explanation methods requires a separate step to analyze the model and

(optionally) the input in order to generate explanations. We call them post-

hoc explanation methods. Note that we can also apply post-hoc expla-

nation methods to self-explaining models though this is not typically done

since the self-explaining explanations are easier to obtain and guaranteed

to be faithful to the model. We will discuss desirable properties of explana-

tions in Section 3.2. Combining the two dimensions of categorizations, we

get finer classes of methods, including local self-explaining methods, global

self-explaining methods, local post-hoc methods, and global post-hoc meth-

ods.

How to present explanations.

Explanations can be presented in many forms. For local explanations, the

main question is “Why did the model predict this output for a given input?”,

and there are indeed several ways to approach this question.

• Input-based explanations identify which parts of the input are

important for the prediction. For a textual input, the explanation

could be an excerpt from the input, so called a rationale, considered as

a main reason for the prediction. Besides, it could be attribution scores

or relevance scores showing the importance of words in the input text.

These scores can also be visualized as saliency maps overlaying the

input text. Note that negative relevance scores usually mean that the

corresponding words contribute negatively towards the prediction.

3It is debatable whether inherently interpretable is the best term here because it sounds
as if this depends on the users. However, we use this term in the thesis in the sense
that we can use information emitted by the model during the prediction process as
the explanation without the need to perform any extra steps.
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• Counterfactual explanations point out which parts of the input

need to be change in order to change the prediction. The smaller

the change is, the better the counterfactual would be. This form of

explanations is often useful when we want to change an undesirable

output of the model.

• Example-based explanations select influential, important, or sim-

ilar examples from the training set to explain why the model makes a

specific prediction.

• Rule-based explanations provide a decision rule that approximates

the prediction process. With such prediction as the rule head, the rule

body is a composition of conditions that the input text satisfies. It is

also desirable if the rule can generalize beyond the given example.

• Textual explanations verbalize the explanations in natural lan-

guages that humans (especially lay users) can easily understand. Their

contents could align well with a single or a combination of the other

four explanation forms discussed above. Because textual explanations

have more freedom to refer to things outside the training process, they

could mention, in the explanations, commonsense or external knowl-

edge that does not appear explicitly in the input text.

Figure 2.2 illustrates how each type of the local explanations explain the

same prediction. Additionally, Table 2.1 categorizes some existing works

based on the form of their presented local explanations. It can be seen that

the majority of explainable NLP research follow the input-based approach.

Meanwhile, the main question for global explanations is “What is the

overall prediction mechanism of the model?”, and there are two popular

approaches to answer this question.

• Collections of local explanations. Each local explanation can ex-

plain the model behavior locally (near the target example). Therefore,

if we combine several local explanations from all regions of the exam-

ple space, we will see the overall behavior of the model. If we want to

follow this approach, there are three main questions to be answered.

First, which local explanation method shall we use? Second, how shall

we select a set of representative local explanations and how large is
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Task: Sentiment analysis

Dataset: Amazon review polarity (Zhang et al., 2015)

Model: BiLSTM with GloVe embeddings

Input text: Long and boring: I’ve read this book with much
expectation, it was very boring all through out the book

Prediction: Negative

Input-based explanations

Ð→ Rationale: boring

Ð→ Saliency map: Long and boring : I’ve read this book with much

expectation, it was very boring all through out the book

Counterfactual explanations

Ð→ Long and boring: I’ve read this book with much expectation, it was

very awesome all through out the book (Prediction: Positive)

Ð→ Long and boring: I’ve read this book with much expectation, it was

not boring all through out the book (Prediction: Positive)

Example-based explanations (Influential training examples)

Ð→ Stay Away: This just plain bad. Boring..... I did not find this the
least bit entertaining nor interesting. It was a waste of my time.
(Label: Negative)

Ð→ Boring: I would not reccomend this book. It was very boring and I
didn’t find much of a purpose. The end was the best part, but it was
still bad. l did not get into this book or enjoy it. it was for school.
(Label: Negative)

Rule-based explanations

Ð→ If boring, then prediction = Negative (Precision: 85.8%)

Ð→ If very ∧ boring, then prediction = Negative (Precision: 94.7%)

Textual explanations

Ð→ Because the book is long and very boring, the sentiment is negative.

Ð→ The book did not meet the expectation, so the sentiment is negative.

Figure 2.2.: Illustrations of different types of local explanations.

the set? Third, how shall we combine the local explanations to pro-

vide the global view of the model? Examples of this approach include

Ribeiro et al. (2016, 2018a); Pedreschi et al. (2019); Lundberg et al.

(2020); Setzu et al. (2021).
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Input-based

Li et al. (2016b); Ribeiro et al. (2016); Arras
et al. (2016, 2017); Lundberg and Lee (2017);
Shrikumar et al. (2017); Sundararajan et al.
(2017); Murdoch et al. (2018); De Cao et al.
(2020); Kim et al. (2020)

Counterfactual Yang et al. (2020); Ross et al. (2021)

Example-based
Bien and Tibshirani (2011); Koh and Liang
(2017); Khanna et al. (2019); Han et al. (2020);
Guo et al. (2020); Han and Ghosh (2020)

Rule-based
Stumpf et al. (2009); Ribeiro et al. (2018a); Tang
and Surdeanu (2021); Sushil et al. (2021)

Textual
Abujabal et al. (2017); Camburu et al. (2018);
Park et al. (2018a); Liu et al. (2019a); Rajani
et al. (2019); Brahman et al. (2021)

Table 2.1.: Categorization of existing local explanation methods based on
the form of explanations.

• Surrogate models. We can study a complicated model via another

interpretable model which is trained to mimic the behavior of the

complicated model. We call the simple model a surrogate model

or a mimic model. To obtain a surrogate model M ′ of a model M ,

first, we select a dataset D and apply M to each example x ∈ D. After

we obtain the prediction M(x), we pair it with x to be a training

example to train M ′. We can use the standard training algorithm of

M ′ or some advanced techniques such as model distillation (Hinton

et al., 2015). Good surrogate models should well replicate the pre-

dictions of the original model for even unseen examples (i.e., having

high fidelity), while being simple enough to understand. Examples

of research following the surrogate model approach are Bastani et al.

(2017); Tan et al. (2018); Sushil et al. (2018); Lakkaraju et al. (2019).

Note that even though some classes of techniques including adversarial

examples (Jia and Liang, 2017; Ribeiro et al., 2018b), adversarial attacks

(Wallace et al., 2019; Li et al., 2020a), challenge sets (Nie et al., 2020;

Gardner et al., 2020), and neuron interpretation (as in Section 2.2.1) reveal

the overall model behavior irrespective of any specific inputs, we consider

them as model analysis methods rather than global explanation methods
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since they do not explain the end-to-end prediction logic.

Other categorizations.

Some methods generate interactive explanations using, for instance, web

interfaces or dialog systems, where a user can interact and explore specific

aspects of interest (Kulesza et al., 2009; Tenney et al., 2020). In contrast,

static explanation methods usually present the most important factors

(for or against the prediction) to prevent the user from information overload.

In addition, some explanation methods, such as LIME (Ribeiro et al.,

2016) and SHAP (Lundberg and Lee, 2017), are model-agnostic and do

not require access to model parameters. Other methods access the model ar-

chitectures and parameters to generate the explanations, such as DeepLIFT

(Shrikumar et al., 2017) and LRP (layer-wise relevance propagation) (Bach

et al., 2015; Arras et al., 2016). These methods are model-specific as they

work with some architectures (such as neural networks) but not the others

(such as ensemble models).

2.2.3. Relevant Explanation Methods

In this section, we review explanation methods which are used or built upon

in this thesis. These methods are LRP (Arras et al., 2016, 2017) used in

Chapters 4-5 and Grad-CAM (Selvaraju et al., 2017) used in Chapter 4.

LRP

Layer-wise Relevance Propagation (LRP) is a method for explaining predic-

tions of neural networks in terms of importance scores of input features (i.e.,

input-based explanations) (Bach et al., 2015). Originally, it was devised to

explain predictions of image classifiers by creating a heatmap on the input

image highlighting pixels that are important for the classification. Then

Arras et al. (2016) and Arras et al. (2017) extended LRP to work on CNNs

and RNNs for text classification, respectively.

Consider a neuron k whose value is computed using n neurons in the

previous layer,

ak ≙ g( n

∑
j=1

ajwjk + bk) (2.12)

47



where ak is the value of the neuron k, g is a non-linear activation function,

wjk and bk are weights and bias in the network, respectively. We can see

that the contribution of a single node j to the value of the node k is

zjk ≙ ajwjk +
bk

n
(2.13)

assuming that the bias term bk is distributed equally to the n neurons. LRP

works by propagating the activation of a neuron of interest back through

the previous layers in the network proportionally. We call the value each

neuron receives a relevance score (R) of the neuron. To back propagate,

if the relevance score of the neuron k is Rk, the relevance score that the

neuron j receives from the neuron k is

Rj←k ≙
zjk

∑n
j′=1 zj′k

Rk (2.14)

To make the relevance propagation more stable, we add a small positive

number ϵ (as a stabilizer) to the denominator of the propagation rule:

Rj←k ≙
zjk

ϵ +∑n
j′=1 zj′k

Rk (2.15)

This propagation rule is called LRP-ϵ. For more details about other LRP

propagation rules, please see (Montavon et al., 2019). Finally, we can obtain

the relevance score of j in total by summing up Rj←k for all k in the next

layer. If we back propagate until j is at the input layer, we will obtain the

relevance score of the input feature j as desired.

Grad-CAM

Gradient-weighted Class Activation Mapping (Grad-CAM) is an input-based

explanation method, initially devised for 2D convolutional neural networks

(CNNs) used in computer vision tasks. These CNNs can be divided into

two parts, as explained in Section 2.1.2, which are the feature extraction

part (convolutional and pooling layers) and the classification part (dense

layers). However, the output of the feature extraction part is not a feature

vector but a list of feature maps Ak (i.e., two-dimensional matrices) each of

which corresponds to a CNN filter k in the last convolutional layer. Ak is

smaller than the original input image; however, each value in Ak can roughly
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represent an area in the input image at the similar relative position.

Grad-CAM calculates the relevance scores by relying on the gradient-

based approach. In other words, the importance of the input feature xi

towards the output y can be defined as ∂y
∂xi

, showing how a small change in

xi would affect the value of y. Adapting this idea to CNNs, first, Grad-CAM

computes the gradient of yc (i.e., the predicted score before the softmax

of the class c) with respect to every pixel of feature maps Ak of the last

convolutional layer. To find the relevance score of filter k towards class c

(αc
k), it performs global average pooling over the gradient of every pixel in

Ak. Given Z is the number of pixels in Ak,

αc
k ≙

1

Z
∑
i

∑
j

∂yc

∂Ak
ij

(2.16)

Next, Grad-CAM performs a weighted combination of the feature maps

where the weights are αc
k.

Lc ≙ ReLU(∑
k

αc
kA

k) (2.17)

The ReLU function is applied to keep only relevance scores for the target

class c. Note that Lc is smaller than the input image. So, Grad-CAM

up-samples Lc to the input image size using bi-linear interpolation. This

results in the relevance score of every pixel in the original input image as

desired.

2.3. Computational Argumentation

With incomplete or inconsistent information, humans use argumentation,

both internally and externally, to form a conclusion and/or to make a deci-

sion (Atkinson et al., 2017). We can see argumentation practices in many

real-world situations such as political debates, legal procedures, and sci-

entific knowledge development and discussions. As a prominent aspect of

human intelligence, argumentation has also been studied in a computa-

tional way under symbolic AI. This research field is called Computational

Argumentation, concerning several tasks which include identifying argu-

ments, analyzing their dialectical relationships, evaluating their strengths,

and presenting the argumentation to achieve specific purposes (Walton,
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2009; Atkinson et al., 2017). Apart from its applications in several do-

mains (e.g., collaborative decision making (Aurisicchio et al., 2015), clinical

decision support (Chapman et al., 2019), and legal reasoning (Bench-Capon

et al., 2009)), computational argumentation has also been used in many ex-

plainable AI methods (see (Čyras et al., 2021; Vassiliades et al., 2021) for

recent overviews of argumentative XAI).

In Chapter 6 of this thesis, we use quantitative bipolar argumentation

frameworks (Baroni et al., 2019) to enable argumentative explanations for

text classification. So, this section provides relevant background in compu-

tational argumentation needed for that chapter.

2.3.1. Abstract Argumentation

There are two main approaches to represent an argument. One of them,

i.e., abstract argumentation, treats an argument as a single abstract entity.

The other one, i.e., structural argumentation or assumption-based argumen-

tation, treats an argument as a deduction from assumptions to a conclusion,

so we can see components inside an argument. However, in this thesis, we

follow the former approach. Definition 1 defines an abstract argumentation

framework (AF), as introduced in (Dung, 1995).

Definition 1. An abstract argumentation framework F is a pair ⟨A,R−⟩,
where A is a set of arguments and R− is a binary relation of attack on A,

i.e., R− ⊆ A ×A.

According to Dung (1995), anything can be an argument as long as it

is in dialectical relation with other arguments (e.g., attacking or to be at-

tacked). To visualize an AF, we use nodes and edges as arguments and

relations between them, respectively. Figure 2.3 is an example of AF with

A ≙ {a, b, c, d} and R− ≙ {(c, b), (d, b), (b, a)} (c attacks b, d attacks b, and b

attacks a).

Definition 2. Given an abstract argumentation framework F ≙ ⟨A,R−⟩
and an argument a ∈ A, R−(a) is a set of arguments in A which attack a.

In other words, R−(a) ≙ {b ∈ A∣(b, a) ∈R−}.
For the AF in Figure 2.3, R−(a) ≙ {b}, whereas R−(b) ≙ {c, d}. Indeed,

R−(c) ≙R−(d) ≙ ∅. Moreover, we can define the notion of attack involving

sets of arguments as follows.
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c

d
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–

Figure 2.3.: An example of abstract argumentation framework.

• For P ⊆ A and Q ⊆ A, P attacks Q if and only if (iff) there are p ∈ P

and q ∈ Q such that p attacks q.

• For P ⊆ A and q ∈ A, P attacks q iff there exists p ∈ P that attacks q.

Given an AF in general, we can evaluate the arguments using an extension-

based semantics, which is a method to identify some subsets of A that satisfy

some meaningful dialectical constraints. Such “good” subsets of arguments

are called extensions. Definition 3 lists some examples of extension-based

semantics discussed in (Dung, 1995).

Definition 3. Given an AF F ≙ ⟨A,R−⟩, we say that the subset E ∈ A is

• conflict-free iff E does not attack itself.

• admissible iff E is conflict-free and attacks any argument attacking

a member in E.

• preferred iff E is maximal (with respect to ⊆) admissible set of F .

• stable iff E is conflict-free and attacks every argument in A − E.

As the AF in Figure 2.3 has four arguments, there are 24 ≙ 16 subsets of

A. Nine of them are conflict-free, including ∅, {a}, {b}, {c}, {d}, {a, c},
{a, d}, {c, d}, and {a, c, d}. All of them are also admissible except {a} and

{b}. However, only {a, c, d} is stable and preferred.

2.3.2. Quantitative Bipolar Argumentation Frameworks

Quantitative Bipolar Argumentation Frameworks (QBAF) which we will

use in Chapter 6 are different from the basic argumentation framework in

Section 2.3.1 in two aspects, i.e., bipolarity and gradual semantics.
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Definition 4. A bipolar argumentation framework (BAF) F is a triplet

⟨A,R−,R+⟩, where A is a set of arguments whereas R− and R+ are binary

relations of attack and support on A, respectively. In other words, R− ⊆

A ×A and R+ ⊆ A ×A.

Bipolar argumentation adds a new relation type between arguments which

is support via R+ (Cayrol and Lagasquie-Schiex, 2005). For an argument

a ∈ A, the definition of R+(a) is analogous to R−(a) in Definition 2 (i.e.,

R+(a) ≙ {b ∈ A∣(b, a) ∈ R+}). Also, different interpretations of support in

the literature lead to many extension-based semantics proposed for BAF

(Cohen et al., 2014).

Another type of semantics used for BAF is gradual semantics where each

argument is coupled with a base score (showing the argument’s internal

strength) and then the dialectical strength of each argument will be com-

puted by aggregating the strengths of its attackers and the strengths of its

supporters. The higher the dialectical strength, the more acceptable the ar-

gument is. So, we do not have “good” sets of arguments out of the gradual

semantics unless we set a threshold to separate the good from the bad. A

BAF using gradual semantics with a base score equipped with each argu-

ment can be called a quantitative BAF (QBAF) of which the definition is

shown below (as formalized in (Baroni et al., 2019)).

Definition 5. A quantitative bipolar argumentation framework (QBAF) F

is a quadruple ⟨A,R−,R+, τ⟩, where A, R−, and R+ are defined in the same

way as BAF (see Definition 4), and a total function τ ∶ A → I indicates the

base score of each argument in A.

In other words, τ(a) is the base score of a ∈ A. Additionally, we use σ

to represent the (dialectical) strength function for arguments in A, defined

below (Baroni et al., 2019).

Definition 6. For any a ∈ A, the strength of a is given by σ(a) where

σ ∶ A → I is a total strength function. For any set of arguments B ⊆ A,

σ(B) refers to the multiset {σ(b)∣b ∈ B}.
I in Definitions 5 and 6 is the range of the base scores and the strengths.

Figure 2.4 shows an example of QBAF together with the base scores and

the strengths of the arguments noted as value pairs. So far, there have been

different strength functions σ proposed (e.g., DF-QuAD (Rago et al., 2016)
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a

(0.9, 0.468)

b (0.2, 0.2)

c

(0.5, 0.68)

d(0.2, 0.2)

e(0.7, 0.7)

f(0.4, 0.4)

+

–

+

+

–

Figure 2.4.: An example of quantitative bipolar argumentation framework
(QBAF). With each argument, there is a value pair (x, y) where
x and y represent the base score and the strength (based on
DF-QuAD semantics (Rago et al., 2016)) of the argument, re-
spectively.

and Euler-based (Amgoud and Ben-Naim, 2018)) amounting to different

gradual semantics (with different desirable properties, discussed next).

2.3.3. Desirable Properties of Gradual Semantics

Due to a variety of gradual semantics proposed, many research papers in-

troduce and study desirable properties that the semantics should satisfy to

make the strength calculation process consistent with how humans evaluate

arguments (Amgoud and Ben-Naim, 2018; Bonzon et al., 2016). Recently,

Baroni et al. (2019) unified 29 literature properties into 11 group properties

(GP) for generic QBAFs. Given a QBAF ⟨A,R−,R+, τ⟩ and α,β ∈ A,

• GP1. If R−(α) ≙ ∅ and R+(α) ≙ ∅, then σ(α) ≙ τ(α).
• GP2. If R−(α) ≠ ∅ and R+(α) ≙ ∅, then σ(α) < τ(α).
• GP3. If R−(α) ≙ ∅ and R+(α) ≠ ∅, then σ(α) > τ(α).
• GP4. If σ(α) < τ(α), then R−(α) ≠ ∅.

• GP5. If σ(α) > τ(α), then R+(α) ≠ ∅.

• GP6. If R−(α) ≙ R−(β), R+(α) ≙ R+(β), and τ(α) ≙ τ(β), then

σ(α) ≙ σ(β).
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• GP7. If R−(α) ⊂ R−(β), R+(α) ≙ R+(β), and τ(α) ≙ τ(β), then

σ(α) > σ(β).
• GP8. If R−(α) ≙ R−(β), R+(α) ⊂ R+(β), and τ(α) ≙ τ(β), then

σ(α) < σ(β).
• GP9. If R−(α) ≙ R−(β), R+(α) ≙ R+(β), and τ(α) < τ(β), then

σ(α) < σ(β).
• GP10. If R−(α) < R−(β), R+(α) ≙ R+(β), and τ(α) ≙ τ(β), then

σ(α) > σ(β).
• GP11. If R−(α) ≙ R−(β), R+(α) < R+(β), and τ(α) ≙ τ(β), then

σ(α) < σ(β).
The definition of < between two sets used in GP10 and GP11 is defined as

follows. Given P and Q are subsets of A, P ≤ Q iff there exists an injective

mapping f from P to Q such that ∀α ∈ P,σ(α) ≤ σ(f(α)). Furthermore,

P < Q iff P ≤ Q but Q ≰ P . Actually, there are other properties defined

for QBAF such as balanced, monotonicity, anonymity, independence, etc.

(Baroni et al., 2019; Potyka, 2021); however, we do not review them here

since they are outside the scope of this thesis.

2.3.4. From Argumentation Frameworks to Explanations

Mapping arguments into an argumentation framework is a standard way

for enabling machines to evaluate the arguments. However, argumenta-

tion frameworks generally contain more than necessary information for the

end users. Also, the notions used could be unfamiliar to lay users. Many

explanation methods relying on computational argumentation, hence, do

not present the argumentation framework as the explanation as it is, but

convert the framework into another form which is easily consumable and

suitable for the target task. Atkinson et al. (2017) refers to this step as the

rhetorical layer of argumentation. Examples of the form include extensions

showing arguments which are reasons for the acceptability of a target ar-

gument (Fan and Toni, 2015), dispute trees visualizing a debate between a

proponent and an opponent (Modgil and Caminada, 2009), and dialogues

allowing the users to engage with for more details (amounting to traversing

the underlying argumentation framework) (Cocarascu et al., 2019). Besides,
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counterfactual explanations can be generated from an argumentation frame-

work by suggesting a modification to the input (which in turn modulates the

argumentation framework) that would change the target prediction (Albini

et al., 2021).

2.4. Summary

We presented, in this chapter, the essential background for the thesis.

Specifically, we started from introducing the text classification task, which

we will focus on, as well as explaining classification models used in the thesis.

Then we reviewed and categorized advances in interpretability and explain-

ability for NLP before closing with the background about computational

argumentation and its connection with explainability.

In the next chapter, we will explain in more detail current state-of-the-

art in specific topic areas of this PhD thesis. Also, we will provide critical

analyses of these works and summarize research gaps we particularly tackle

in this thesis.
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3. Related Work

This chapter describes and critically analyzes the current state-of-the-art in

three specific areas which are relevant to this thesis. Section 3.1 discusses

related works concerning local and global explanations for text classifiers.

Section 3.2 focuses on evaluation of explanation methods (including both

intrinsic and extrinsic evaluations). Section 3.3 explains the general frame-

work for human debugging of NLP models via explanations and analyzes

state-of-the-art approaches for doing so. Within these three sections, we also

emphasize where our contributions are specifically as well as the research

gaps they address to highlight the significance of our work.

3.1. Explanations for Text Classifiers

Text classification is a fundamental task in NLP, so there exist several ex-

planation methods which are applicable to this task. Concerning local expla-

nation methods, which provide explanations for classifications for specific

inputs, many of them are input-based and model-agnostic. In other words,

given an input text, these methods explain the model’s predicted class by

identifying relevant parts in the input. Since they aim to work with any

type of models, these methods try to generate the explanations while treat-

ing the model as a black box. One prominent way to do so is to perturb

the original input and observe how the model responses. For example, the

leave-one-out method (Li et al., 2016b) defines a relevance score of an input

word (or token) by the drop in the predicted probability after the word (or

token) being removed from the input. LIME (Ribeiro et al., 2016) generates

neighbor examples around the original input and feeds them to the model

to obtain the corresponding predictions. Then it fits a linear classifier to

mimic the behavior of the model locally around the original input. During

training, neighbor examples which are more similar (defined by a specific

distance function) to the original input have higher weights in the objective
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function. Finally, the weight of each feature (i.e., word or token) in the lin-

ear model is treated as the relevance score of the feature. Similarly, SHAP

(Lundberg and Lee, 2017) relies on input perturbation. Unlike LIME, it

has a more systematic way to perturb the input and a different distance

function in the objective function. Nonetheless, the perturbed inputs of

these perturbation-based methods are usually out of the distribution that

the target model was trained on since they could be ungrammatical due to

some words being dropped. Hence, the model behavior for these perturbed

inputs may not reflect its behavior when being applied to normal inputs. To

remedy this issue, Kim et al. (2020) perturbed each input token by trying

all possible tokens in that position (according to the likelihood specified by

a language model) and then marginalized the effect to be the relevance score

of the token.

In contrast, model-specific methods are devised to generate explanations

for specific types of models. Thereby, they can get access to and leverage

the model architecture and parameters. For instance, because computing

SHAP is time-consuming in general, Lundberg and Lee (2017) also proposed

TreeSHAP which is an efficient variant of SHAP designed particularly for

tree-based machine learning models (e.g., decision trees and random forests).

As discussed in Section 2.2.2, DeepLIFT (Shrikumar et al., 2017) and LRP

(layer-wise relevance propagation) (Bach et al., 2015; Arras et al., 2016) are

methods applicable to neural networks since they rely on relevance propa-

gation from the target output node to the input nodes, taking into account

the network connections and weights. Gradient-based analysis is another

group of model-specific methods, applying to models where derivative of

the output with respect to the input feature is computable (including neu-

ral networks). The broad idea is that the derivative reflects the sensitivity

of the output when there is a small change in the input. Methods of this

group are such as Saliency (Simonyan et al., 2013), Integrated Gradient

(Sundararajan et al., 2017), and SmoothGrad (Smilkov et al., 2017). They

are also applied to models beyond NLP as well. In the computer vision do-

main, there are methods designed specifically for a class of neural networks,

namely convolutional neural networks (CNNs), such as Class Activation

Mapping (CAM) (Zhou et al., 2016) and Gradient-weighted Class Activa-

tion Mapping (Grad-CAM) (Selvaraju et al., 2017). Although the NLP

community is using CNNs in many existing works, there is still no expla-
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nation method which is applicable specifically to CNN models under the

NLP setting. In Chapter 4 of this thesis, we fill the gap by proposing two

model-specific local explanation methods for 1D CNN text classifiers. One

of them adapts Grad-CAM to make it suitable for the one-dimensional (1D)

structure. The other one combines a surrogate decision tree with n-grams

selected by max-pooling of the CNNs to generate local explanations.

When it comes to interpretable models, there has been very little atten-

tion to explain them since their inherent explanations are already obvious

and faithful to the models. This in turn makes other desirable properties

of explanations1 for these models underexplored. For example, the prod-

uct of a feature value and the corresponding weight in a binary logistic

regression model can be seen as the contribution of the feature towards the

positive class. However, if the model contains features which are not in-

dependent from one another, the individual contribution, explained above,

may not accurately reflect how the model utilizes the corresponding feature

since the contribution was trained to interact with other contributions from

dependent features. This results in the explanations being less plausible

to humans. In Chapter 6 of this thesis, we define a novel local explanation

method for pattern-based logistic regressions to deal with this problem, thus

filling the research gap.

To address dependencies between features, we choose to use computa-

tional argumentation in our proposed explanation method. In fact, there

have been some previous works leveraging computational argumentation to

generate explanations for classification tasks. For example, Cocarascu et al.

(2020) worked on an argumentation-based classification model, called AA-

CBR (Cyras et al., 2016), using training examples as arguments. These

arguments argue with each other to classify the target example. Hence,

their argumentative explanation can be directly obtained from the argu-

mentative classification model. Dejl et al. (2021) generated argumentative

explanation by extracting an argumentation framework from the target neu-

ral network where arguments come from neurons and relations come from

connections between the neurons. Sendi et al. (2019) explained a deep en-

semble model by extracting interpretable rules from the base models of the

ensemble and using the rules as arguments arguing to find the final output.

However, we can see that none of the existing works focuses exclusively on

1We will explain desirable properties of explanations in detail in Section 3.2.
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logistic regression. Therefore, our work in Chapter 6 contributes to the field

in this aspect. Note that our work is somewhat related to argument mining

where arguments and their relations are extracted from natural language

texts (Lawrence and Reed, 2019). Nonetheless, the arguments and relations

of our work are not directly from the input text but from the pattern-based

logistic regression model to be explained instead (i.e., using pattern-based

features as arguments with specificity relations between the patterns defin-

ing dialectical relations).

In contrast to local explanations, there are fewer works studying global

explanations for text classifiers. This is because interpretable text classi-

fiers can be the global explanations themselves while black-box classifiers

are usually too involved to be captured faithfully in global explanations at

the complexity level where humans can understand. As introduced in Sec-

tion 2.2.2, there are two main classes of global explanations for NLP – one

using collections of local explanations and the other one using surrogate

models. Some of them are model-agnostic such as (Ribeiro et al., 2016,

2018a; Bastani et al., 2017; Setzu et al., 2021). The rest are model-specific

such as (Lundberg et al., 2020) for tree-based models, (Sushil et al., 2018)

for neural networks, and (Sushil et al., 2021) for recurrent neural networks.

These global explanations may sometimes reveal weaknesses of the model

(i.e., something that the model has wrongly learned from the training data);

however, they did not show how to leverage the global explanations for mit-

igating the problems. Actually, these methods were intentionally designed

just for explaining but not for supporting model debugging and improve-

ment. To fill this gap, in Chapter 5, we provide a new method based on

neuron visualization which globally explains deep text classifiers (in partic-

ular 1D CNNs) where the explanations enable us to easily remove what the

model has wrongly learned.

3.2. Evaluation of Explanation Methods

With so many explanation methods available, the next challenge is how to

evaluate them so as to choose the right methods for different settings. Ex-

isting evaluation methods can be grouped into two main types with regards

to what they evaluate, as shown in Figure 3.1. The first type of evaluation

assesses the quality of the generated explanations, while the second type
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Figure 3.1.: A taxonomy of evaluation methods for explanations.

evaluates the generation methods or the algorithms themselves. In this sec-

tion, we discuss only the first type since the second type is out of the scope

of this thesis.

When evaluating the generated explanations, we need to decide which as-

pect of the explanations we want to evaluate. This can then be categorized

into two groups including intrinsic evaluation (focusing on desirable prop-

erties of explanations) and extrinsic evaluation (focusing on how useful

the explanations are in downstream tasks). We explain both of them here.

3.2.1. Intrinsic Evaluation of Explanations

Intrinsic evaluation aims to quantify desirable properties. One of early

works in explainable AI by Kulesza et al. (2013) studied two properties of

explanations, namely soundness and completeness, and how they impact
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end users’ mental models and trust. In their work, soundness amounts to the

extent to which each component of an explanation’s content is truthful in

describing the underlying system. In contrast, completeness amounts to the

extent to which all of the underlying system is described by the explanation.

However, Kulesza et al. (2013) did not propose any methods to evaluate the

degree of soundness or completeness of a given explanation in their work.

For the last five years, when explainable AI has been studied and applied

to deep NLP models, faithfulness is another desirable property of explana-

tions discussed in many works. However, most of them mention it without

defining what exactly faithful or faithfulness means (Ribeiro et al., 2018a;

Gilpin et al., 2018; Lakkaraju et al., 2019; Setzu et al., 2021). This makes

evaluation methods for faithfulness being different across different papers.

Recently, Jacovi and Goldberg (2020) published a paper to discuss this is-

sue in particular. They defined that faithfulness refers to how accurately

the interpretation reflects the true reasoning process of the model. Later,

Jacovi and Goldberg (2021) said more specifically that a faithful interpre-

tation is the accurate representation of the causal chain of decision making

in the model, and explanation is a process of conveying causal information

about the model’s decision to a person. According to these definitions,

faithfulness is a more general concept, with soundness and completeness, as

defined by Kulesza et al. (2013), being aspects of faithfulness.

However, the definitions of faithfulness by Jacovi and Goldberg (2020,

2021) emphasize a significant issue concerning evaluating faithfulness of ex-

planations. For deep learning models which are black boxes, humans do

not know the models’ true reasoning process, leading to the lack of ground

truths when evaluating faithfulness. Therefore, based on our observations,

many existing works consider faithfulness in a looser meaning instead: an

explanation is faithful if the model demonstrates the same behavior as the ex-

planation says. For example, some previous works evaluated faithfulness of

relevance scores (for text classification) by word deletion – gradually delet-

ing words from the input text in the order of their relevance and checking

how the prediction confidence drops (Arras et al., 2016; Nguyen, 2018). If

we remove a word with a high relevance score (according to the explana-

tion) from the input and then the predicted probability given by the model

drops drastically, we can say that the model demonstrates the same behav-

ior as the explanation says, i.e., treating that word as very relevant to the
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prediction2. Hence, the explanation – the relevance score – is faithful.

Nevertheless, evaluating explanations by word deletion relies on the lin-

earity assumption, i.e., the contributions of different parts of the input are

independent from each other (Jacovi and Goldberg, 2020), but this assump-

tion does not hold in practice because the model might rely on a combination

of input words. So, word deletion is not a perfect method to evaluate faith-

fulness even with respect to the looser meaning of faithfulness. This problem

could be mitigated by deleting a set of words instead of word-by-word and

checking the correlation between the probability change and the sum of the

relevance scores of the deleted words (Bhatt et al., 2020a).

Note that the idea of deletion can also be applied to evaluate example-

based explanations. Particularly, one can remove influential examples from

the training data and see how the prediction performance changes (Han

et al., 2020). If the change is significant, it means that the explanation

method faithfully points out influential examples (according to the looser

meaning of faithfulness).

Apart from relevance scores, some previous works use a surrogate model,

i.e., a simpler model mimicking the behavior of the target complex model,

as an explanation. Because the causal chain of the surrogate model is

very likely different from the causal chain of the target model (e.g., a de-

cision tree versus a convolutional neural network), we can hardly say that

the surrogate model is faithful to the target model according to the stricter

definition of faithfulness by Jacovi and Goldberg (2021). To evaluate the

quality of the surrogate model, nonetheless, some previous works consider

that the surrogate model is faithful if its predictions are the same as the

predictions of the models it explains. We call the percentage of the same

predictions fidelity (Lakkaraju et al., 2019). Because high fidelity shows

that the model demonstrates the same behavior as the explanation says,

people can use fidelity to measure faithfulness (with respect to the looser

meaning of faithfulness we noted above). In any case, regardless of which

definition of faithfulness we use, we must not involve humans when evalu-

ating faithfulness because faithfulness is the property with respect to the

underlying model only (Jacovi and Goldberg, 2020).

2Note that the leave-one-out explanation method (Li et al., 2016b) will obtain the perfect
score from the word deletion evaluation method as they are equivalent (relying on the
same principle).
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Additionally, when using rationale extraction (i.e., using some parts of

the input text as explanation), two properties which are related to faith-

fulness (in the looser meaning) are comprehensiveness and sufficiency,

proposed by DeYoung et al. (2020). An explanation has high comprehen-

siveness when it covers every reason that the model could use to make the

same prediction. This concept is similar to recall in standard classification.

However, we do not have any ground truth to evaluate comprehensiveness

directly. So, DeYoung et al. (2020) proposed that, if a model M predicts

class j for an input x, the comprehensiveness of a rationale r (extracted

from x) can be reflected by M(x)j −M(x∖r)j where M(x)j is the probabil-

ity of class j the model M predicts for the input x and x∖r is the input x

with the rationale r removed. We say that r is more comprehensive when

M(x)j −M(x∖r)j is high. In contrast, according to DeYoung et al. (2020),

sufficiency concerns whether only the explanation (i.e., the extracted ratio-

nale) is sufficient to lead to the prediction. In other words, the sufficiency

s of the rationale r equals M(x)j −M(r)j . If s is close to 0, it means the

rationale r is sufficient to contribute (at least) almost equally to M(x)j .
However, we need to be cautious when using comprehensiveness and suffi-

ciency proposed by DeYoung et al. (2020). First, if an extracted rationale

is comprehensive, it does not mean that the model uses every part of the

rationale for the prediction. In fact, it may rely only on a few parts when

making the prediction, and the rest will not be exploited unless the few

important parts are missing. Second, according to the definition above, an

explanation r is sufficient if and only if M(x)j ≈ M(r)j . Nonetheless, r is

actually a part in x, and there could be other parts in x that are evidence

against class j. Therefore, it may need more than r in x to make the model

predicts class j for x even though r is sufficient to make the model predict

class j in isolation.

Another desirable property which is applicable to local explanations is

generalizability. It amounts to how well the explanation generalizes (i.e.,

still holds) beyond the target example. This property is desirable because

some may want to exploit insights learned from the explanation to similar

examples (Sokol and Flach, 2020). It could be measured via a support set,

i.e., the percentage of examples that the explanation applies. Note that

Sokol and Flach (2020) referred to this property as completeness which is

different from completeness defined by Kulesza et al. (2013).
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Besides, there are also properties of explanations that involve humans

(i.e., the explainees). One of them is comprehensibility concerning whether

the explanations are understandable to humans. Other names for this prop-

erty include understandability, human-interpretability, and readabil-

ity. This could be assessed via some proxy metrics, based on the idea that

simplicity enables comprehensibility. For example, using decision sets as ex-

planations, Lakkaraju et al. (2017) considered, for instance, the number of

rules, the number of predicates, and the maximum width of the conditions

to be the inverse indicators of comprehensibility. Using relevance scores of

input features as an explanation, Bhatt et al. (2020a) considered sparseness

of the scores as a proxy of comprehensibility due to an assumption that

humans are capable of understanding explanations with a few features than

too many features.

Besides, we can measure comprehensibility by involving humans into the

evaluation process. In the case where the model is complex but still un-

derstandable to machine learning experts (e.g., a system of multiple inter-

pretable models), one may present the explanation of the system to lay

users and elicit their understandings about the system after seeing the ex-

planation. If their understandings match the answers from machine learn-

ing experts, we can consider the explanation high-quality (understandable)

(Hoffman et al., 2018). Furthermore, Hase and Bansal (2020) used sim-

ulatability to evaluate explanation methods. Specifically, they let human

participants learn from model predictions and the associated explanations

and asked them to predict the model behavior on a new input. Correct

answers imply comprehensibility of the explanations. It must be careful,

however, that simulatability here is not only affected by comprehensibility

but also by faithfulness of the explanation. In other words, the explana-

tions must be faithful and comprehensible so that humans can simulate the

prediction results correctly.

Last but not least, plausibility is another property of explanations which

take humans into account. It amounts to how convincing the explanations

are to humans (Jacovi and Goldberg, 2020; Wiegreffe and Pinter, 2019).

Hence, we somehow need humans to evaluate this plausibility. Mohseni

et al. (2018) proposed a benchmark which contains a list of relevant words

for the actual class of each input text, identified by human experts. Then

they compared machine explanation to human-identified words. Wiegreffe
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and Marasović (2021) compiled a list of datasets with human explanations

that could be used to assess plausibility. It is noteworthy that less plausible

explanations could be due to not only the poor explanation method but also

the inaccuracy of the model or the model reasoning differently from humans.

Thus, when we compare plausibility of different explanation methods, we

need to make sure that they are applied to the same model.

Even though there are many properties we can evaluate intrinsically, we

do not always require all of them. It depends on why and how we use

the explanations. For example, if our user is a machine learning engineer

who wants to verify the model via the explanations, faithfulness is the most

important property (as in Chapter 5). Meanwhile, if we want to use expla-

nations to persuade lay users, plausibility is of our interest (as in Chapters 4

and 6) whereas comprehensiveness is not that important because humans

do not explain using all the possible reasons either (Miller, 2019). All in all,

faithfulness, comprehensiveness, sufficiency, and generalizability are evalu-

ated with respect mainly to the underlying model, while comprehensibility

and plausibility are evaluated with respect mainly to the users.

In the following chapters, we will refer to faithfulness, fidelity, sufficiency,

and plausibility. Because some of these terms have several definitions in the

literature as explained above, we provide their definitions considered in this

thesis as follows.

Definition 7. Given a text classification model M , an input text x, a local

explanation E which explains the output class M(x), and a human user H

(i.e., the explainee),

• E is faithful if M demonstrates the same behavior as indicated in E

with respect to the process of M predicting the output for x.

• Let x consist of x+, x−, and x0 which are parts or features of x that

contribute positively, negatively, and nothing to M(x), respectively.

For E ∈ x+, E is sufficient if M(x−x++E) ≙M(x) where x−x++E

is the input x without any parts or features supporting M(x) except
E.

• E is plausible if it is convincing to H that E is a reason for M(x).
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Definition 8. Given a text classification model M , a surrogate model E

which is a global explanation of M , and a test dataset D, the fidelity of E

is the percentage of x ∈ D such that M(x) ≙ E(x).
It can be seen that the definitions of fidelity and plausibility we use are

the same as in related work. We adopt the looser meaning of faithfulness

here to make it consistent with most of the related work (although we do not

fully endorse this definition). Finally, our definition of sufficiency concerns

not only the explanation E but also the other context in x to avoid the

weakness of what DeYoung et al. (2020) defined, as discussed above.

3.2.2. Extrinsic Evaluation of Explanations

Extrinsic evaluation focuses on evaluating explanations according to a target

downstream task. One of the most basic tasks of explanations is to satisfy

users, covering many factors as perceived by the users (e.g., usefulness,

understandability, sufficiency, actionability, and accuracy). Hoffman et al.

(2018) proposed that both researchers who generate the explanations and

end users who consume the explanations can perform the evaluation. Specif-

ically, according to Hoffman et al. (2018), the researchers evaluate goodness

of the explanations a priori whereas the end users evaluate the satisfaction

a posteriori. It is important particularly in applications aiming to satisfy

users such as recommendation systems and personal assistants. Existing

works assess user satisfaction mainly by using interviews or questionnaires

(Gedikli et al., 2014; Biran and McKeown, 2017; Narayanan et al., 2018).

In addition, it has been discussed in literature that explanations can en-

gender human trust in the AI (Symeonidis et al., 2009; Mercado et al.,

2016; Miller, 2019). One standard way to measure the trust is to ask hu-

mans explicitly through questionnaires how much they trust the model (be-

fore and after seeing the explanations) and let them answer using rating

scales (Bussone et al., 2015; Smith-Renner et al., 2020). The words used in

the questions could actually be different. For instance, Pu and Chen (2006)

measured user trust via perceived competence and intention to return to

use the AI agent after the users saw explanations. Recent work, however,

found that self-reported trust may not be reliable (Schaffer et al., 2019).

So, Zhang et al. (2020) considered, as a measure of trust, the percentage

of the times that the user decided to use the AI’s prediction as their final
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prediction even though the user’s initial prediction disagreed with the AI’s.

Jacovi et al. (2021) further suggested that it is important, when evaluating

the user trust in the AI, to set up the situation where the user considers

some actions of the AI unfavorable to them and both the favorable and

unfavorable outcomes could happen from the AI actions.

In addition to predictions and confidence scores computed by the AI, ex-

planations could also help humans make more accurate decisions. One

way to evaluate explanation methods is, therefore, to measure how well hu-

mans perform when being assisted by explanations from such methods. For

example, Lai and Tan (2019) compared AI performance (full automation) to

human performance when they are shown, as supporting information by the

AI, nothing, only explanations, only predicted labels, both explanations and

predicted labels, and both plus whether the AI is confident. Lai and Tan

(2019) also compared input-based explanations (corresponding to weights

of their linear SVM classifier) and example-based explanations (based on

their nearest neighbors classifier) in this experiment.

Another downstream application is using explanations to support model

inspection and debugging. When a model does not work properly, good

explanation methods should be able to highlight the misbehavior to the

users. Ribeiro et al. (2016) asked human participants to choose, from two

given models, the one which can generalize better by considering their local

explanations (either LIME or a greedy baseline). The more answers the

participants got correct, the better the explanation method they read was.

Besides, example-based explanations of incorrect predictions can help iden-

tify potentially wrong labels in the training data. Koh and Liang (2017)

and Khanna et al. (2019) compared their explanation methods with others

by checking how many mislabeled examples they found out of all the sus-

picious training examples reported by the explanation methods. As one of

our contributions in the thesis is directly related to using explanations to

enable human debugging of NLP models, we discuss this topic in detail in

Section 3.3.

Last but not least, for some tasks, machine learning models are more capa-

ble than humans such as authorship attribution (Juola, 2007) and deceptive

review detection (Lai et al., 2020). Thus, the models may learn something

that lay humans have never known or noticed. Thereby, an explanation

method is useful if it can reveal such insights learned by the models to
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teach humans to perform the tasks better (Mac Aodha et al., 2018). The

higher human performance after learning from the explanations can be a

measure of the quality of the explanation method in this regards (Lai et al.,

2020).

3.2.3. Comparison across Explanation Methods

When a new explanation method is proposed, it must be evaluated against

some baselines to demonstrate the effectiveness. However, datasets, proper-

ties, and baselines used in the experiments could be different across different

papers. Hence, it is also important to conduct research comparing several

existing explanation methods using the same setup so as to make reliable

comparison and conclusion. Most of the existing works which compare many

explanation methods focus on intrinsic evaluation. For instance, Poerner

et al. (2018b) experimented on eight different explanation methods (some

of which have several configurations) to check if each method correctly iden-

tifies the known root cause of the prediction. In other words, they evaluated

plausibility of the explanations. If the underlying model works nearly per-

fectly and the task is not too complex, it can be assumed that the model

relies on the correct known root cause. So, the match between the explana-

tion and the root cause could also reflect the faithfulness of the explanations

under this assumption. Additionally, using seven datasets, DeYoung et al.

(2020) evaluated comprehensiveness and sufficiency of the explanations re-

turned from four explanation methods by modifying the input according to

the explanation and investigating the change in the predicted probability as

discussed in Section 3.2.1. Similarly, Nguyen (2018) compared four expla-

nation methods to evaluate their local faithfulness by checking the number

of words in the explanations that needs to be deleted from the input before

the prediction switches to another class. These experiments assess qualities

of the explanations with regards to the underlying model without human

involvement. In fact, Nguyen (2018) also conducted human evaluation with

the four methods to check if humans can correctly guess the model pre-

diction by seeing the input and the explanation or not. This evaluated

plausibility of the explanation. However, the results might be inaccurate as

humans could biased by the input shown. One of the evaluation methods

we propose in Chapter 4, therefore, mitigates this issue by hiding the input
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from the human participants.

In contrast, the works conducting evaluation of explanations for NLP

tasks with respect to downstream applications (i.e., extrinsic evaluation) are

still very limited. Existing works compare only few explanation methods.

For example, Ribeiro et al. (2016) compared greedy baselines and LIME

for identifying better text classifiers and compared two different variants of

LIME for model debugging. As explained above, Lai and Tan (2019) com-

pared explanations from two inherently interpretable models (linear SVM

and nearest neighbors) for helping humans make decisions. After that, Lai

et al. (2020) compared three explanations – weights of linear SVM, atten-

tion scores of BERT (Devlin et al., 2019), and LIME scores of BERT –

for training humans to perform a difficult task. All in all, the community

still lacks research comparing various post-hoc explanation methods in NLP

with respect to various downstream applications. This is the major research

gap we aim to address in Chapter 4 – formalizing the evaluation methods

and conducting experiments with different types of post-hoc explanation

methods.

3.3. Explanation-Based Human Debugging of

NLP Models

This section reviews advances specifically on how explanations have been

used in the literature to enable humans to fix bugs in NLP models. We refer

to this research area as explanation-based human debugging (EBHD), as a

general umbrella term encompassing explanatory debugging and human-in-

the-loop debugging.

As noted in Chapter 1, the term debugging is interpreted differently by

different researchers. It may refer to a process of identifying or uncovering

causes of model errors according to some researchers (Parikh and Zitnick,

2011; Graliński et al., 2019). Meanwhile, others stress that debugging must

not only reveal the causes of problems but also fix or mitigate them (Kulesza

et al., 2015; Yousefzadeh and O’Leary, 2019). In this thesis, we adopt the

latter interpretation.

Assuming that there is no implementation mistake in the source code,

the causes of model errors usually arise from imperfect training data. As
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introduced in Section 2.1.3, there are some cases when the causes can be

anticipated and fixed beforehand (Park et al., 2018b; Liu and Avci, 2019;

Jaiswal et al., 2020). However, sometimes the causes or even the problems

cannot be predicted and are only found after training using post-hoc error

analysis. In these cases, human knowledge is needed to verify and improve

the trained models. To enable humans to do so effectively and efficiently,

explanations come to play a role here, leading to the process of explanation-

based human debugging (EBHD).

Overall, existing EBHD approaches can be seen as instances of our pro-

posed general framework in Figure 3.2. To demonstrate the debugging

process, existing works need to set up the bug situation they aim to fix,

amounting to the target NLP task, the machine learning model used to

carry out that task, and the source of the bug to be addressed. Then

the EBHD process can be done generally in three main steps. First, the

model provides interpretable insights about the bugs to human debuggers
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via explanations. After that, the humans inspect the explanations and give

feedback in response. In the experiments, this step could be done in-person,

by crowd sourcing, or by simulation. Finally, the feedback is used to update

and improve the model by directly adjusting model parameters, improving

the training data, or influencing the (re)training process. Note that these

three steps can be carried out once, as a one-off improvement, or iteratively,

depending on how the debugging framework is designed.

As a concrete example, Figure 3.3 illustrates how Ribeiro et al. (2016)

improved an SVM text classifier (Joachims, 1998) trained on the 20News-

groups dataset (Lang, 1995)3. This dataset has many artifacts which could

make the model rely on wrong words when making predictions, reducing its

generalizability. To perform EBHD, Ribeiro et al. (2016) recruited humans

from a crowdsourcing platform (i.e., Amazon Mechanical Turk) and asked

them to inspect LIME explanations (word attribution scores) for model

predictions of ten examples. After that, the humans gave feedback by iden-

tifying words in the explanations that should have not got high attribution

scores (supposed to be the artifacts). These words were then removed from

the training data, and the model was retrained. The process was repeated

for three iterations, and the results show that the model generalizes better

after every iteration. Using the general EBHD framework in Figure 3.2,

we can break the framework of Ribeiro et al. (2016) into components as

depicted in Figure 3.3.

Concerning the big picture of the field, early EBHD work comes from

the human-computer interaction community. Kulesza et al. (2009) aimed

to let humans improve a Naive Bayes email classification model. As the

classifier is self-explaining, its explanations can be easily derived from the

model. They allowed the users to ask questions (e.g., “Why will this mes-

sage be filed to folder A?”) and presented the explanations as answers using

template-based sentences and some bar plots. The users then can adjust

the bar plots, corresponding to the parameters of the underlying model

to fix the bugs. Stumpf et al. (2009) studied the types of feedback humans

usually give in response to machine-generated predictions and explanations.

The most prominent ones include removing-adding features (words), tuning

weights, and leveraging feature combinations. Also, some of the feedback

collected (i.e., important words of each category) was used to improve their

3http://qwone.com/~jason/20Newsgroups/
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Naive Bayes classifier via two techniques – constraint optimization and user

co-training. Kulesza et al. (2010) used auto-coding of transcripts as the

target task and asked humans to check local explanations generated by the

system (i.e., important words in the input) so as to confirm or correct the ex-

planations. Words identified as unimportant were removed from the model,

whereas the identified important words became features with high weights

for the user-specified category. Later, in 2015, Kulesza et al. proposed,

as desirable principles, that the presented explanations for explanatory de-

bugging should be sound and complete, but not overwhelming. They also

presented an EBHD system which satisfies these principles. The system

was made interactive to reveal incremental changes in real time after each

user action and allow the user to undo the action for which the results are

not desirable. The interactiveness is possible as their model update step

does not require re-training the model but changing the model parameters

directly. Nonetheless, all these early works targeted simple machine learn-

ing classifiers (i.e., Naive Bayes classifiers with bag-of-words). So, it is not

obvious how to apply their proposed approaches to deep learning-based text

classifiers where we do not clearly see how the models use the input words.

Also, the principles suggested by Kulesza et al. (2015) are indeed challenging

when working on non-interpretable complex models.

Recently, thanks to several post-hoc explanation methods proposed, there

have been new attempts to use explanations and human feedback to debug

classifiers in general. Some of them were tested on traditional text classifiers.

One of them is (Ribeiro et al., 2016) as described earlier (cf. Figure 3.3).

In addition, Teso and Kersting (2019) proposed CAIPI, which is an ex-

planatory interactive learning framework. At each iteration, it selects an

unlabeled example to predict and explain to users using LIME, and the users

respond by identifying irrelevant features from the explanation. CAIPI then

uses this feedback to generate augmented data that reduce the importance

of the identified irrelevant features and retrains the model using both the

original training data and the augmented data. It is noteworthy that both

(Ribeiro et al., 2016) and (Teso and Kersting, 2019) present local expla-

nations to elicit feedback from the users and the explanations change after

model update. Therefore, their processes can be done iteratively (but not

interactively though as retraining the model takes time). Iterative debug-

ging is beneficial because humans can fix vital bugs first and finer bugs in
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later iterations, as we can see from the performance plots in (Ribeiro et al.,

2016). However, it could also be susceptible to the phenomenon called local

decision pitfalls where local improvements for individual predictions could

add up to inferior overall performance (Wu et al., 2019b). Meanwhile, to

the best of our knowledge, there is still no work using global explanations

to debug deep NLP models in the EBHD setting. Chapter 5 in the thesis,

therefore, aims to fill this gap, using global explanations to enable human

debugging of deep text classifiers (with a focus on 1D CNNs).

So far, all the existing works discussed exploit input-based explanations

in their framework. Another line of research of EBHD focuses on using

example-based explanations to debug the model by improving the quality

of the training data. As briefly introduced in Section 3.2.2, Khanna et al.

(2019) randomly flipped the labels of a random 20% of the training examples

so as to set up the bug situation. To debug the trained model, they iden-

tified training examples which were responsible for misclassifications of the

validation data using their proposed (explanation) method. Next, they sim-

ulated the manual inspection of the returned examples and corrected their

labels if needed before retraining the model. To correct the labels, they

cross-checked the current labels with the true labels (before the random

flipping process). This step is equivalent to humans providing feedback in

the EBHD framework, while the retraining step is equivalent to the model

update step. This process could also be used to evaluate example-based

explanation methods extrinsically, as conducted in (Koh and Liang, 2017;

Khanna et al., 2019; Han and Ghosh, 2020). Particularly, with the same

amount of training data inspected, an example-based explanation method

which leads to higher accuracy after model update is considered to be a bet-

ter explanation method. However, these methods are effective when there

are wrong labels in the training data, but they do not work when spurious

correlations emerge despite correct labels. In contrast, our debugging work

in Chapter 5 focuses more on the latter case and, hence, targets a different

bug situation from these methods.

3.4. Summary

This thesis contributes in three main research areas: explanations for text

classifiers, evaluation of explanation methods, and explanation-based hu-
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man debugging of NLP models. Below is the summary of research gaps,

with respect to existing works, identified earlier in this chapter and ad-

dressed within this thesis in later chapters.

Explanations for text classifiers

• The community still lacks explanation methods which are applicable

specifically to 1D CNN models used in many NLP applications. Hence,

we propose two novel local explanation methods – adapted from Grad-

CAM and decision trees – in Chapter 4.

• Explanations for interpretable models do not always satisfy every

desirable property of explanations while their dedicated explanation

methods are still underexplored. In Chapter 6, we propose a novel

local explanation method (based on computational argumentation)

aiming to improve plausibility of the explanations for pattern-based

logistic regression to fill this research gap.

• Existing global explanation methods were devised intentionally for

explaining the model but not for supporting model debugging and

improvement. In Chapter 5, we fill this gap by proposing a new form

of global explanation based on neuron analysis allowing us to easily

remove what the model has wrongly learned.

Evaluation of explanation methods

• The notion of sufficiency of explanations as proposed by DeYoung

et al. (2020) does not consider the interaction between the extracted

rationale and the rest of the input. So, we propose a new definition of

sufficiency in Section 3.2.1 to address this issue. We also adapt this

definition to evaluate explanations in Chapter 6.

• The community still lacks research comparing various post-hoc expla-

nation methods in NLP with respect to various downstream applica-

tions. Chapter 4 in this thesis mainly targets this issue by formalizing

human evaluation methods for three downstream tasks and conducting

the experiments with different types of post-hoc explanation methods.

Explanation-based human debugging of NLP models
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• Most of the existing approaches use local explanations in their EBHD

frameworks which could cause local decision pitfall, leading to sub-

optimal models. There is still no work using global explanations to

debug deep NLP models in the EBHD setting. Hence, we fill this gap

by proposing a novel framework using global explanations to enable

human debugging of deep text classifiers (with a focus on 1D CNNs),

to be discussed in Chapter 5.
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4. Human-Grounded Evaluations

of Explanation Methods

As introduced in the previous chapter, it is important to compare differ-

ent explanation methods to select the most suitable one for a use case of

interest. Still, research on evaluating explanation methods for specific ex-

planation usage is scarce. Some purposes of explanation usage (i.e., model

inspection and improvement and human decision support) have been studied

with only few explanation methods (Ribeiro et al., 2016; Lai and Tan, 2019).

There are other purposes of usage which have not been experimented with at

all. Also, the community still lacks comparisons of various post-hoc expla-

nation methods in NLP for potential human-AI collaboration tasks. To fill

this gap, in this chapter, we propose three evaluation tasks which target dif-

ferent purposes of explanations for text classification – (1) revealing model

behavior to human users, (2) justifying the predictions (i.e., providing sen-

sible reasons for the predicted classes), and (3) helping humans investigate

uncertain predictions. We then use these tasks to evaluate nine input-based

explanation methods working on 1D CNNs for text classification. These

explanation methods are different in several aspects. For example, regard-

ing granularity, four explanation methods select words from the input text

as explanations, whereas the other five select n-grams as explanations. In

terms of generality, one of the explanation methods is model-agnostic, two

are random (i.e., worst case) methods, another two (newly proposed in this

chapter) are specific to 1D CNNs for text classification, and the rest are

applicable to neural networks in general. So, our work is more comprehen-

sive than previous related works in terms of the various human-grounded

evaluation tasks proposed and the number and dimensions of explanation

methods being evaluated.

The rest of this chapter is organized as follows. Section 4.1 proposes the

three novel human-grounded evaluation tasks for three purposes of expla-
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nation usage for text classification. Section 4.2 describes the experimental

setup where we evaluate the nine explanation methods with the proposed

evaluation tasks. The two newly proposed explanation methods for 1D

CNNs are also presented in this section. Then Section 4.3 discusses experi-

mental results, highlighting dissimilar qualities of the explanation methods

and pointing out the most suitable explanation method for each purpose.

Finally, Section 4.4 summarizes our contributions and important findings of

this chapter.

4.1. Proposed Evaluation Methods

We propose three human tasks to evaluate explanation methods for text

classification as summarized in Table 4.1. Following the notations in Sec-

tion 2.1.1, let M and x be the target model and an input text, respectively.

Also, let ŷ ≙ M(x) ∈ C be the predicted class. An explanation method

may return rationales or relevance scores of input words as explanations.

To normalize these forms, we represent each explanation ζ as an ordered

list of text fragments (words or n-grams) in x which are most relevant to

a prediction ŷ. In other words, an explanation ζ amounts to a sequence

⟨z1, . . . , zk⟩ where zi is a word or an n-gram from the input text x ordered

by its relevance. Here, we have k ≥ 0 where k ≙ 0 means that the explana-

tion is empty. Explanations for and against the predicted class ŷ are called

evidence (ζ+ ≙ ⟨z+1 , . . . , z+k+⟩) and counter-evidence (ζ− ≙ ⟨z−1 , . . . , z−k−⟩), re-

spectively. Generally, having evidence text fragments in the input makes the

model more certain about its predicted class, while having counter-evidence

text fragments in the input makes the model less certain about its pre-

dicted class. Given ζ ≙ ⟨z1, . . . , zk⟩, we can also specify the top-m (evidence

or counter-evidence) text fragments as ζm which equals ⟨z1, . . . , zm⟩ where

m ≤ k.

4.1.1. Task 1: Revealing the Model Behavior

Task 1 evaluates whether explanations can expose irrational behavior of a

poor model. This property of explanation methods is very useful when we

do not have a labelled dataset to evaluate the model quantitatively. To

set up the task, firstly, we train two models to make them have different
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Figure 4.1.: Example question for Task 1 (revealing the model behavior)
and the user interface for the experiment.

performance on classifying testing examples (i.e., different capability to gen-

eralize to unseen data). Then we use these models to classify an input text

and apply the explanation method of interest to explain the predictions

– highlighting top-m evidence text fragments on the text for each model.

Next, we ask humans, based on the highlighted texts from the two models,

which model is more reasonable. If the performance of the two models is

clearly different, good explanation methods should enable humans to notice

the poor model, which is more likely to decide based on non-discriminative

(i.e., irrelevant) words, even though both models predict the same class for

an input text. Normally, humans will answer that the model with a more

plausible explanation is more reasonable. Therefore, an explanation method

will score well in this task if the plausibility of the generated explanation
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positively correlates with the performance of the underlying model.

We formalize this task as follows.

Task 1. To evaluate the performance of a target explanation method, we

need

• Two text classification models MA and MB where MA outperforms

MB on a test dataset with F1 difference ∆ and

• An input text x such that MA(x) ≙MB(x).
We generate an evaluation question by applying the target explanation method

to compute the explanations for x, (ζ+m)A and (ζ+m)B (i.e., top-m evidence

text fragments for the predictions MA(x) and MB(x), respectively). Then

we show the humans (1) the input text x twice, one highlighted with (ζ+m)A
and the other highlighted with (ζ+m)B and (2) the predicted class. Next, we

ask the humans which model they believe is more reasonable. Five options

are provided to the humans: MA seems clearly more reasonable than MB,

MA seems slightly more reasonable than MB, I can’t say which model is

more reasonable, MB seems slightly more reasonable than MA, MB seems

clearly more reasonable than MA. The scores that the target explanation

method will obtain when the humans select these options are +1.0, +0.5,

0.0, -0.5, and -1.0, respectively.

An example question for this task in the real user interface used in our

experiment is shown in Figure 4.1. There are some important points to

elaborate and note for this task. First, as stated in the formalization above,

the chosen input texts must be classified into the same class by both mod-

els so the humans make decisions based only on the different explanations.

However, it is worth to consider both the cases where both models cor-

rectly classify and where they misclassify. Second, to make the questions

understandable to lay humans in practice, we choose to use the word Robot

instead of model as shown in Figure 4.1. Also, we randomly select the order

of the good and the poor models shown for every question and sample En-

glish characters (without replacement) to be the robot names (e.g., Robot

S and Robot H in Figure 4.1). These aims to prevent the humans from

associating the model quality with the order shown. Third, we provide the

answer options for the two models along with confidence levels for the hu-

mans to select. In Figure 4.1, options with the word clearly indicate that
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Figure 4.2.: Example question for Task 2 (justifying the predictions) and
the user interface for the experiment.

the humans are confident, whereas options with the word slightly indicate

that they are unconfident. If they select the right model with high confi-

dence, the explanation method will get a higher positive score (+1.0). In

contrast, a confident but incorrect answer results in a large negative score

(-1.0). Also, the humans have the option to state no preference (i.e., I can’t

say which robot is more reasonable in Figure 4.1), for which the explanation

method will get a zero score.

4.1.2. Task 2: Justifying the Predictions

Explanations are sometimes used by humans as the reasons for the predicted

class. Task 2 tests whether the evidence texts are truly related to the

predicted class and can distinguish it from the other classes, so called class-

discriminative (Selvaraju et al., 2017). To set up the task, we use a well-

trained model and select an input example classified by this model with high

confidence (pŷ > τh where τh is a threshold parameter), so as to reduce the

cases of unclear explanations due to low model accuracy or text ambiguity.

(Note that we look at low-confidence predictions in Task 3.) Then we show

only the top-m evidence text fragments generated by the method of interest

to humans and ask them to guess the class of the document containing the

evidence. The explanation method which makes the humans surely guess
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the class predicted by the model will get a high positive score. Formally, a

question of Task 2 can be generated as follows.

Task 2. To evaluate the performance of a target explanation method, we

need

• A well-trained text classification model M and

• An input text x such that ŷ ≙M(x) and pŷ > τh where τh is a threshold

parameter and 1

∣C∣ < τh < 1.

We generate an evaluation question by applying the target explanation method

to compute the explanation ζ+m (i.e., top-m evidence text fragments for the

prediction ŷ). Then we show ζ+m to the humans and ask them, based on the

explanation, which class of the input text these evidence text fragments are

from. Regarding answer options, we generate two options for each possible

class in C, one saying that the humans are certain of their answer and the

other one saying that they are uncertain. For the certain options selected by

the humans, the target explanation method will obtain +1.0 if the selected

class is ŷ and -1.0 if the selected class is not ŷ. For the uncertain options

selected by the humans, the target explanation method will obtain +0.5 if

the selected class is ŷ and -0.5 if the selected class is not ŷ. We additionally

provide the “I can’t say” option where the target explanation method will

obtain 0.0 if this option is selected.

An example question for this task in the real user interface used in our

experiment is shown in Figure 4.2. Concerning τh, it must be less than 1

because it is a probability threshold. Also, there is no point to go lower than
1

∣C∣ since the predicted probability of the winning class is guaranteed to be

greater than 1

∣C∣ in the context of multi-class classification. As in the previ-

ous task, this task considers both the correct and incorrect predictions with

high confidence to see how well the explanations justify each of the cases.

For incorrect predictions, an explanation method gets a positive score when

a human guesses the same incorrect class after seeing the explanation. In

real applications, convincing explanations for incorrect classes can help hu-

mans understand the model’s weakness and suggest additional examples to

retrain and improve the model. Note that this task is somewhat related to

plausibility of the explanations; however, we do not directly measure plausi-

bility as we do not match machine explanations to human explanations. We

82



Figure 4.3.: Example question for Task 3 (investigating uncertain predic-
tions) and the user interface for the experiment.

instead check whether the explanations can make humans associate them

with the predicted class or not.

4.1.3. Task 3: Investigating Uncertain Predictions

If an AI system makes a prediction with low confidence, it may need to

raise the case with humans and let them decide, but with the analyzed

results as additional information. Task 3 aims to check if the explanations

can help humans comprehend the situation and correctly classify the input

text or not. To set up, we use a well-trained model and an input text

classified by this model with low confidence (pŷ < τl where τl is a threshold

parameter). Then we apply the explanation method of interest to find

top-m evidence and top-m counter-evidence texts of the predicted class.

We present both types of evidence to humans1 together with the predicted

class and probability p and ask the humans to use all the information to

1We present counter-evidence as evidence for the other classes to simplify the task ques-
tions.
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guess the actual class of the input text, without seeing the input text itself.

To sum up, we can formalize Task 3 as follows.

Task 3. To evaluate the performance of a target explanation method, we

need

• A well-trained text classification model M and

• An input text x such that ŷ ≙M(x) and pŷ < τl where τl is a threshold

parameter and 1

∣C∣ < τl < 1.

We generate an evaluation question by applying the target explanation method

to compute the explanations ζ+m and ζ−m (i.e., top-m evidence and counter-

evidence text fragments for the prediction ŷ). Then we show the humans (1)

the predicted class ŷ, (2) the predicted probability p of all the classes, and

(3) ζ+m and ζ−m. Next, we ask the humans to classify the input text x. Re-

garding answer options, we generate two options for each possible class in C,

one saying that the humans are certain of their answer and the other saying

that they are uncertain. For the certain options selected by the humans, the

target explanation method will obtain +1.0 if the selected class is actually

the correct class of x and -1.0 if the selected class is not correct. For the

uncertain options selected by the humans, the target explanation method will

obtain +0.5 if the selected class is actually the correct class of x and -0.5 if

the selected class is not correct.

An example question for this task in the real user interface used in our

experiment is shown in Figure 4.3. The scoring criteria of this task are sim-

ilar to the previous tasks except that we do not provide the “no preference”

option as the humans can still rely on the predicted scores when all the ex-

planations are unhelpful. Note that our questions in the experiment come

from two scenarios equally, where ŷ is correct and where ŷ is incorrect.

4.2. Experimental Setup

4.2.1. Datasets

We used two English textual datasets for all the three tasks.

(1) Amazon Review Polarity is a sentiment analysis dataset for product

reviews with positive and negative classes (Zhang et al., 2015). We chose
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Figure 4.4.: A 1D CNN for text classification used in this chapter.

this dataset as representative of binary classification problems which do not

require any domain-specific knowledge to perform. We randomly selected

100K, 50K, and 100K examples for training, validating, and testing the

CNN models, respectively.

(2) ArXiv Abstract is a text classification dataset we created by collecting

abstracts of scientific articles publicly available on ArXiv2. Particularly,

we collected abstracts from the “Computer Science (CS)”, “Mathematics

(MA)”, and “Physics (PH)” categories, which are the three main categories

on ArXiv. We then created a dataset with three disjoint classes, removing

the abstracts which belong to more than one of the three categories. We

chose this dataset as representative of multi-class classification problems

which require domain-specific knowledge (i.e., science and mathematics) to

perform. In the experiments, we randomly selected 6K, 1.5K, and 10K

examples for training, validating, and testing the CNN model, respectively.

4.2.2. Classification Models: 1D CNNs

As for the classifiers, we used 1D CNNs (explained in Section 2.1.2) with

the same structure (shown in Figure 4.4) for all the tasks and datasets.

Specifically, we used 200-dim GloVe vectors as non-trainable weights in the

embedding layer (Pennington et al., 2014). The convolution layer had three

filter sizes [2, 3, 4] with 50 filters for each size, while the intermediate fully-

connected layer had 150 units. The activation functions of the filters and the

2https://arxiv.org
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fully-connected layers are ReLU (except the softmax at the output layer).

The models were implemented using Keras and trained with Adam opti-

mizer3 using categorical cross entropy as the loss function (batch size =

2048). Furthermore, to prevent overfitting, we used the validation split to

perform early stopping. Specifically, if the validation loss does not improve

for three epochs consecutively, the training process is stopped. Finally, we

selected the model with the lowest validation loss as the (well-trained) model

in the experiments. As a result, the macro-average F1 of the models on the

test sets are 0.90 and 0.94 for the Amazon and the ArXiv datasets, respec-

tively. Overall, classification with ArXiv appears to be an easier task as it

is likely solvable by looking at individual keywords. In contrast, classifica-

tion with the Amazon sentiment analysis is not quite easy: many reviews

mention both pros and cons of the products, so a classifier needs to ana-

lyze several parts of the input to reach a conclusion. However, this is still

manageable by the CNN architecture we used.

For task 1, we need another model which performs worse than the well-

trained model. In this experiment, we trained the second CNNs (i.e., the

worse models) for the two datasets in different ways to examine the capa-

bility of explanation methods in two different scenarios. For the Amazon

dataset, while the first (well-trained) CNN needed eight epochs until the

validation loss converged, we trained the second CNN for only one epoch

to make it underfitting. For the ArXiv dataset, we trained the second

CNN using the same number of examples as the first model but with more

specific topics. To explain, we randomly selected only examples from the

subclass ‘Computation and Language’, ‘Dynamical Systems’, and ‘Quan-

tum Physics’ as training and validation examples for the class ‘Computer

Science’, ‘Mathematics’, and ‘Physics’, respectively. In other words, the

training and testing data of the worse CNN came from different distribu-

tions. The other settings for training these two worse models (including the

loss function, the optimizer, and the batch size) are the same as used for

the two well-trained models. As a result, the macro-average F1 of the worse

CNNs are 0.81 and 0.85 for the Amazon and the ArXiv datasets, respec-

tively, resulting in the ∆ (i.e., the F1 difference between the better and the

worse models) of 0.09 for both datasets. The full results of all the CNN

3We use the default parameters of Adam optimizer in Keras (see https://keras.io/

api/optimizers/adam/).
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1st CNN (better) Prec. Recall F1 No. of examples
Negative 0.92 0.89 0.90 50039
Positive 0.89 0.92 0.90 49961
micro avg 0.90 0.90 0.90 100000
macro avg 0.90 0.90 0.90 100000

2nd CNN (worse) Prec. Recall F1 No. of examples

Negative 0.82 0.81 0.81 50039
Positive 0.81 0.82 0.81 49961
micro avg 0.81 0.81 0.81 100000
macro avg 0.81 0.81 0.81 100000

Table 4.2.: Precision, Recall, and F1 scores of both CNNs for the Amazon
dataset.

1st CNN (better) Prec. Recall F1 No. of examples
Computer science 0.94 0.93 0.93 10000
Mathematics 0.92 0.93 0.92 10000
Physics 0.96 0.94 0.95 10000
micro avg 0.94 0.94 0.94 30000
macro avg 0.94 0.94 0.94 30000

2nd CNN (worse) Prec. Recall F1 No. of examples

Computer science 0.96 0.74 0.84 10000
Mathematics 0.75 0.94 0.83 10000
Physics 0.89 0.88 0.89 10000
micro avg 0.85 0.85 0.85 30000
macro avg 0.87 0.85 0.85 30000

Table 4.3.: Precision, Recall, and F1 scores of both CNNs for the ArXiv
dataset

models of the Amazon and the ArXiv datasets are reported in Tables 4.2

and 4.3, respectively.

4.2.3. Explanation Methods

We evaluated nine explanation methods as summarized in Table 4.4. First,

we used Random (W) and Random (N) as two random (pseudo-)explanation

methods serving as the worst case explanations. They select, respectively,

words and non-overlapping n-grams randomly from the input text as ev-

idence and counter-evidence. For the n-gram random method (and other

n-gram based explanation methods in this chapter), n is one of the CNN

filter sizes (2, 3, 4).

Second, we selected LIME which is a well-known model-agnostic perturbation-
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Method Name Approach Granularity

Random (W) Random
Explanations

Words
Random (N) N-grams

LIME Perturbation Words

LRP (W)
Relevance

Propagation

Words
LRP (N) N-grams
DeepLIFT (W) Words
DeepLIFT (N) N-grams

Grad-CAM-Text † Gradient N-grams

Decision Trees (DTs) † Model Extraction N-grams

Table 4.4.: Nine explanation methods evaluated. Examples of the gener-
ated explanations can be found in Table 4.5 and Appendix B.1.
† denotes methods newly proposed in this thesis.

based method (Ribeiro et al., 2016). It trains a linear model using samples

(5,000 samples in this chapter) around the input text to explain the impor-

tance of each word towards the prediction. The importance scores can be

either positive (for the predicted class) or negative (against the predicted

class).

Third, we selected layer-wise relevance propagation (LRP), specifically

ϵ-LRP (Bach et al., 2015), and DeepLIFT (Shrikumar et al., 2017) which

are applicable to neural networks in general and perform very well in several

evaluations without humans (Xiong et al., 2018; Poerner et al., 2018b). LRP

propagates the output of the target class (before softmax) back through lay-

ers to find attributing words, while DeepLIFT does the same but propagates

the difference between the output and the predicted output of the reference

input (i.e., all-zero embeddings in this chapter). These two methods assign

relevance scores to every word in the input text. Words with the highest and

the lowest scores are selected as evidence for and counter-evidence against

the predicted class, respectively. Also, we extended LRP and DeepLIFT to

generate explanations at n-gram level: we considered all possible n-grams in

the input text where n is one of the CNN filter sizes; then the explanations

are generated based on the relevance score of each n-gram, i.e., the sum of

relevance scores of all words in the n-gram.

For more details about LIME, LRP, and DeepLIFT, please see Section 2.2.3.

Next, we searched for model-specific explanation methods which target

specifically 1D CNNs for text classification. We found that Jacovi et al.
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(2018) proposed one: listing only n-grams corresponding to feature values

in v that pass thresholds for their filters. Each of the thresholds is set

subject to sufficient purity of the classification results above it. However,

their method is applicable to CNNs with only one linear layer as FC (as

shown in Figure 2.1), while our CNNs have an additional hidden layer (with

ReLU activation). So, we could not compare with their method in this work.

To increase diversity in the experiments with model-specific explanation

methods, we therefore propose two new methods applicable to 1D CNNs

with multiple layers in FC, presented next.

Grad-CAM-Text

Because we could not find any explanation method developed specifically

for 1D CNNs when we conduct this experiment, we search for model-specific

methods applied to a similar architecture, i.e., 2D CNNs used in computer

vision (Krizhevsky et al., 2012; Simonyan and Zisserman, 2014). Generally,

as in 1D CNNs, 2D CNNs consist of two main parts: the first performing

convolution over the input to find the image representation and the second

using the representation to make a prediction via feed-forward layers. Two

major differences between 1D and 2D CNNs are: (i) 2D CNNs usually have

more than one convolution layer unlike our 1D CNNs, which have exactly

one convolution layer. (ii) each filter of the last convolution layer of a 2D

CNN produces an activation map which is a matrix representing the input

image. So, the whole representation is a tensor of K activation maps where

K is the number of filters in the last convolution layer. In contrast, each

filter in a 1D CNN produces only a scalar value. Hence, the whole input

representation is a vector of K elements where K is the number of filters in

the only convolution layer.

Among several explanation methods for 2D CNNs specifically, we find

Grad-CAM (Selvaraju et al., 2017) being a very promising method for

adapting to 1D CNNs. For more details about the original Grad-CAM,

please see Section 2.2.3. Here, to make it applicable to 1D CNNs, we

propose Grad-CAM-Text, adapting Grad-CAM to find the most relevant

n-grams for text classification. Since each value in the feature vector v of

the target 1D CNN corresponds to an n-gram selected by a filter, we use

E+j,k to show the effect of an n-gram selected by the kth filter towards the
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prediction of class j:

E+j,k ≙ ∣max(∂FC(v)j
∂vk

,0)∣ × vk. (4.1)

The partial derivative term shows how much the prediction of class j changes

if the value from the kth filter slightly changes. (The intuition is similar to

Equation 2.16 of the original Grad-CAM, but our method does not need to

average the derivatives over an activation map matrix since each 1D CNN

filter produces only a scalar value.) As we are finding the evidence for the

target class j, we consider only the positive value of the derivative. Then

E+j,k combines this term with the strength of vk to show the overall effect

of the kth filter for the input text. Next, using E+j,k for all the filters k, we

calculate the effect of each word wi in the input text towards class j by

aggregating the effects of all the n-grams containing wi.

E+j,wi
≙∑

k

(E+j,k × I∥wi ∈ Nk∥) (4.2)

where Nk is an n-gram detected by the kth filter. (The intuition is simi-

lar to Equation 2.17 of the original Grad-CAM. However, the original one

needs to attribute the computed effect E+j,k to the input image by bi-linear

interpolation, whereas our Grad-CAM-Text can identify an n-gram in the

input text that corresponds to each filter k precisely thanks to the max-

pooling mechanism.) Lastly, to produce the final explanation, we select, as

the evidence, non-overlapping n-grams which are detected by at least one

of the filters and have the highest sums of the effects of all the words they

contain. For example, to decide whether we will select the n-gram Nk as an

evidence text or not, we consider ∑wi∈Nk
E+j,wi

.

In contrast, to find counter-evidence of class j, we change max in Equation

4.1 to min because we are interested in the case where FC(v)j is lower when

vk is higher. Formally,

E−j,k ≙ ∣min(∂FC(v)j
∂vk

,0)∣ × vk. (4.3)

E−j,wi
≙∑

k

(E−j,k × I∥wi ∈ Nk∥) (4.4)

where E−j,k and E−j,wi
are the effect of an n-gram selected by the kth filter
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and the input word wi against the prediction of class j. To decide whether

we will select the n-gram Nk as an counter-evidence text of class j or not,

we consider ∑wi∈Nk
E−j,wi

.

Decision Trees

This explanation method is based on model extraction (Bastani et al., 2017).

To generate the explanations, we create a decision tree (DT ) which mimics

the behavior of the classification part (fully-connected layers FC) of the

trained CNN. This is different from what Bastani et al. (2017) proposed

which mimics the behavior of the whole model. That cannot be applicable

here since the numerical input of 1D CNNs is the embedding matrix, the

values of which make no sense to humans and thus cannot be used in the

explanations. Therefore, we propose a way to adapt it to 1D CNNs.

Given a filter-based feature vector v, the DT needs to predict the same

class as predicted by the CNN. Formally, we want

DT (v) ≙ argmax
j

pj ≙ argmax
j

FC(v)j . (4.5)

For multi-class classification, we construct one DT for each class (one vs.

rest classification). We employ CART with Gini index for learning DTs

(Leo et al., 1984). All the training examples are generated by the trained

CNN using a training dataset, whereas a validation dataset is used to prune

the DTs to prevent overfitting.

Also, for each feature vj in v, we calculate the Pearson’s correlation be-

tween vj and the output of each class (before softmax) in FC(v) using a

training dataset, so we know which class is usually predicted given a high

score of vj (i.e., correlated most to this feature). We use cj denoting the

most correlated class of the feature vj .

We can consider the DTs as a global explanation of the model as it ex-

plains the CNN in general. To create a local explanation, we use the DT

of the predicted class to classify the input. At each decision node, we col-

lect associated n-grams passing the nodes’ thresholds to be evidence for

(or counter-evidence against) the predicted class (depending on the most

correlated class of each splitting feature). For example, an input text x is

classified to class a, so we use the DT of class a to predict with the input
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x. If a decision node checks whether feature vj of this input is greater than

0.25 and assume it is true for this input, the n-gram corresponding to vj

will be evidence if the most correlated class of vj is class a (i.e., cj ≙ a).

Otherwise, it will be counter-evidence if cj ≠ a.

Finally, we show examples of the generated explanations for all the nine

explanation methods in Table 4.5 and Appendix B.1.

4.2.4. Human Evaluation Details

Given the three evaluation tasks (as in Section 4.1) and the two datasets

(i.e., Amazon and ArXiv), we had 3 × 2 ≙ 6 experiments in total. For each

experiment, we asked humans to perform the task to collect scores for the

nine explanation methods. Then we averaged out the scores and compared

the results.

Participants and Procedure. For the Amazon dataset, we recruited

participants by using a crowdsourcing platform, namely Amazon Mechanical

Turk (MTurk). One unit of work on Amazon MTurk is called a HIT (which

stands for a Human Intelligence Task). Here, we posted on MTurk the three

evaluation tasks separately with short descriptions. An MTurk worker could

select to do one or more tasks. For each task, s/he could perform one or more

HITs each of which amounted to a set of ten questions to be answered. After

a worker accepted to perform a HIT, s/he was given a link to our website

which provided the full instructions of the task and two sample questions

(with answers and reasons for the answers) to familiarize her/himself with

the task. Below the instructions and the sample questions, there were a

list of ten questions for them to answer. Once the worker answered all the

ten questions, s/he was then allowed to click submit to finish the HIT. The

worker who wanted to do another HIT could request the new URL from the

MTurk website. To ensure the quality of crowdsourcing, we allowed only

workers whose history had at least 50 approved HITs and more than 95%

HITS approval rate to do the tasks. Moreover, each question we generated

was answered by three workers and the scores were averaged.

However, for the ArXiv dataset, we could not use crowdsourcing because

the tasks required background knowledge of the related subjects. There-

fore, we recruited graduates and post-graduate students in Computer Sci-
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An example from the Amazon dataset, Actual: Pos,
Predicted: Pos, (Predicted scores: Pos 0.514, Neg 0.486): “OK
but not what I wanted: These would be ok but I didn’t realize just how
big they are. I wanted something I could actually cook with. They are a
full 12” long. The handles didn’t fit comfortably in my hand and the
silicon tips are hard, not rubbery texture like I’d imagined. The tips
open to about 6” between them. Hope this helps someone else know ...”

Method Top-3 evidence texts

Random (W) not / wanted / ’d

Random (N) did n’t / be ok / could actually cook

LIME (W) comfortably / wanted / helps

LRP (W) are / not / 6

LRP (N) are hard , not /
about 6” between / not what I wanted

DeepLIFT (W) are / not / 6

DeepLIFT (N) are hard , not / about 6 ” between /
not what I wanted

Grad-CAM-T (N) comfortably in my hand / I wanted : These /
. The tips open

DTs (N) imagined . The tips

Method Top-3 counter-evidence texts

Random (W) texture / . / what

Random (N) this helps someone else / , not /
wanted something I

LIME (W) not / else / someone

LRP (W) : / tips / open

LRP (N) . The tips open / : These would /
in my hand and

DeepLIFT (W) : / tips / open

DeepLIFT (N) . The tips open / : These would /
in my hand and

Grad-CAM-T (N) not what I wanted / not rubbery texture like /
Hope this helps someone

DTs (N) ’d imagined . / are . I wanted / would be ok

Table 4.5.: Examples of evidence and counter-evidence texts, generated by
the tested explanation methods and separated by ‘/’.

ence, Mathematics, Physics, and Engineering to perform the tasks, both via
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direct invitations and via the college mailing lists. Because the recruited

participants here were likely more reliable than crowdsourced participants,

we collected only one answer per generated question. We used the same user

interface as in the Amazon tasks, to provide instructions, sample questions,

and real questions to the participants. Similarly, one unit of work contained

ten questions, and they could do as many tasks or units as they wanted.

(The system would randomly show a new set of questions when they wanted

to do more.) After completing the tasks, some invited participants reached

back to us with some qualitative feedback about the experiments, but this

is truly optional.

In total, we have 367 and 121 participants for the Amazon and the ArXiv

datasets, respectively.

Prototype and Materials. For each task and dataset, we selected 100

input texts (which satisfy the task condition) from the test split to generate

evaluation questions. Half of the selected input texts were classified correctly

by the model(s) and the rest were misclassified. So, with nine explanation

methods being evaluated, each task had 900 questions per dataset for human

participants to answer.

To generate the explanations, we used public libraries of LIME4, LRP

(Alber et al., 2018), and DeepLIFT5 in our experiments. Besides, the code

for computing Grad-CAM-Text was adapted from keras-vis6, whereas we

used scikit-learn (Pedregosa et al., 2011) for decision tree construction7.

Tables 4.6 and 4.7 report the decision trees’ performance in mimicking the

CNNs’ predictions (i.e., fidelity) on the test sets. All the DTs achieved over

80% macro-F1 in mimicking the CNNs’ predictions. As the F1 scores say, it

is easier for the DTs to mimic the behavior of the well-trained CNNs than

the poor CNNs.

For the task parameters (see Section 4.1), we set m = 3, τh ≙ 0.9, and

τl ≙ 0.7. To clarify, for each explanation, we showed top three (counter-)

evidence text fragments. When an explanation method returned less than

three text fragments in an explanation, we just showed all of them. This

could happen when the input text was too short or the corresponding path

4https://github.com/marcotcr/lime
5https://github.com/kundajelab/deeplift
6https://github.com/raghakot/keras-vis
7The code and datasets are available at https://github.com/plkumjorn/CNNAnalysis.
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1st CNN (better) Prec. Recall F1 No. of examples
Negative 0.84 0.84 0.84 48333
Positive 0.85 0.85 0.85 51667
micro avg 0.85 0.85 0.85 100000
macro avg 0.85 0.85 0.85 100000

2nd CNN (worse) Prec. Recall F1 No. of examples

Negative 0.81 0.82 0.82 49482
Positive 0.82 0.82 0.82 50518
micro avg 0.82 0.82 0.82 100000
macro avg 0.82 0.82 0.82 100000

Table 4.6.: Performance of the decision trees in mimicking the CNNs’ pre-
dictions for the Amazon dataset

1st CNN (better) Prec. Recall F1 No. of examples
Computer science 0.89 0.91 0.90 9971
Mathematics 0.89 0.87 0.88 10203
Physics 0.90 0.91 0.90 9826
micro avg 0.89 0.89 0.89 30000
macro avg 0.89 0.89 0.89 30000

2nd CNN (worse) Prec. Recall F1 No. of examples

Computer science 0.83 0.81 0.82 7653
Mathematics 0.82 0.88 0.85 12506
Physics 0.88 0.81 0.84 9841
micro avg 0.84 0.84 0.84 30000
macro avg 0.84 0.83 0.84 30000

Table 4.7.: Performance of the decision trees in mimicking the CNNs’ pre-
dictions for the ArXiv dataset

from the DTs method had less than three (counter-)evidence text fragments.

Also, as specified by τh, and τl above, we consider a model prediction to

have high confidence (in Task 2) and low confidence (in Task 3) when the

predicted probability of the output class is greater than 0.9 and lower than

0.7, respectively.

The website we created to collect human answers was implemented using

a Python-based web framework, called Flask8, and hosted on PythonAny-

where9, while the user interface was mainly implemented using the Boot-

strap 3.3.5 front-end framework10and Google Charts11. Examples of user

8https://flask.palletsprojects.com/
9https://www.pythonanywhere.com/

10https://getbootstrap.com/docs/3.3/
11https://developers.google.com/chart
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interfaces for questions have been shown in Figures 4.1, 4.2, and 4.3.

Data Collection and Analysis. Every answer from the participants had

a score associated to it as summarized in the last row of Table 4.1. A higher

score implies a better explanation method with respect to the associated

task. Hence, we calculated and compared the average scores the nine expla-

nation methods obtained from all the questions in that task (A). To better

understand the tested methods, we further calculated the average scores

separately for correctly classified examples (✔) and misclassified examples

(✘). Moreover, we checked whether the scores of other methods were signif-

icantly lower than the scores of the best method in each setting or not. For

the Amazon dataset in particular, we also calculated the inter-rater agree-

ment measures (Fleiss’ kappa) (Fleiss, 1971) to show to what extent the

three answers for each question agreed with one another. In contrast, we

do not have the agreement measures for the ArXiv dataset as one question

in this dataset was answered by only one participants. Please note that we

will not directly compare the numeric scores across the two datasets as they

were from different pools of participants, but we can still observe the rank-

ings of the nine explanation methods within the same dataset and discuss

their rankings across datasets to some degree.

4.3. Experimental Results

The results of our experiments for task 1, 2, and 3 are reported in Tables 4.8,

4.9, and 4.10, respectively. Each table shows the average scores of each ex-

planation method obtained from human answers for both datasets (Amazon

and ArXiv). The score range is [-1,1] where 1 is the best possible score. A,

✔, and ✘ in the tables indicate whether the average scores were computed

based on all the 100 input texts, or only 50 correctly classified input texts,

or 50 misclassified input texts, respectively. Boldface numbers are the high-

est average scores in the columns. A number is underlined when there is no

statistically significant difference between the scores of the corresponding

method and the best method in the same column (at a significance level

of 0.05). In addition, the last row reports inter-rater agreement measures

(Fleiss’ kappa) (Fleiss, 1971) in the format of α / β where α considers an-

swers with human confidence/certainty levels (5 answer options for task 1-2
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Explanation
Method

Task 1: Revealing the model behavior
Amazon ArXiv

A ✔ ✘ A ✔ ✘

Random (W) 0.02 0.00 0.04 -0.11 -0.05 -0.17
Random (N) 0.02 0.02 0.02 -0.12 -0.16 -0.07
LIME (W) -0.02 0.02 -0.06 0.03 0.02 0.03
LRP (W) 0.00 -0.01 0.02 -0.03 -0.01 -0.05
LRP (N) -0.07 -0.04 -0.09 0.12 0.24 -0.01
DeepLIFT (W) 0.04 0.03 0.04 0.07 0.13 0.00
DeepLIFT (N) 0.06 0.06 0.05 0.06 0.22 -0.10
Grad-CAM-Text (N) 0.07 0.11 0.03 -0.03 -0.04 -0.01
DTs (N) -0.05 -0.02 -0.08 -0.13 -0.22 -0.03
Fleiss κ (Amazon) 0.050 / 0.054 N/A

Table 4.8.: The average scores and the inter-annotator agreement measure
for Task 1 – revealing the model behavior. A, ✔, and ✘ refer
to all, correctly classified, and misclassified input texts, respec-
tively.

and 4 answer options for task 3) and β considers answers regardless of the

human confidence/certainty levels (5 answer options reduced to 3 categories

for task 1-2 and 4 answer options reduced to 2 categories for task 3). Fur-

thermore, Figure 4.5 displays the distributions of individual scores (from

all the input examples) for all three tasks. We show the score distribution

plots for correctly classified examples only and misclassified examples only

in Appendix B.2. To help us notice methods which behaved differently from

the others more easily, we decided to use line graphs for these plots.

4.3.1. Results for Task 1: Revealing the Model Behavior

For the Amazon dataset, though Grad-CAM-Text achieved the highest over-

all score, the performance was not significantly different from other methods,

including the random explanations. Also, the inter-rater agreement for this

task was quite poor. It suggests that existing explanation methods cannot

apparently reveal irrational behavior of the underfitting CNN to lay human

users. Hence, as Figure 4.5(a) shows, the scores of most explanation meth-

ods distribute symmetrically around zero. Moreover, only 20-30% of the

answers have high confidence (i.e., selecting the “clearly more reasonable”

options), whereas the rest have low confidence (i.e., selecting the “slightly

more reasonable” options) or no preference (i.e., the “I can’t say” option).

For the ArXiv dataset, LRP (N) and DeepLIFT (N) got the highest scores
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(e) Task: 3, Dataset: Amazon
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(f) Task: 3, Dataset: ArXiv

LIME (W)
LRP (W)

LRP (N)
DeepLIFT (W)

DeepLIFT (N)
Grad-CAM-Text (N)

DTs (N)

Figure 4.5.: Score distributions of the Amazon dataset and the ArXiv
dataset for all the three evaluation tasks.

when both CNNs predicted correctly. So, they can help humans identify

the poor model to some extent. However, there was no clear winner when

both CNNs predicted wrongly. One plausible reason is that evidence for an

incorrect class is usually not convincing when we do not set any condition

on the confidence of the predictions (unlike task 2 in which all predictions

have high confidence only).
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Additionally, based on our manual observation of the human answers,

when there were two explanations with comparable semantic quality (i.e.,

covering the same sets of concepts), humans usually selected the explanation

with more evidence text fragments as more reasonable. This is consistent

with the findings by Zemla et al. (2017). Conversely, the DTs method per-

formed in the opposite way. The DT of the better model usually focuses on a

few most relevant texts in the input and outputs fewer evidence texts. This

possibly causes the low performance of the DTs method in this task. Also,

we got qualitative feedback from the participants that they sometimes pe-

nalized an evidence text which is highlighted without syntax integrity, such

as “... greedy algorithm. In this paper, we ...”. Hence, in real applica-

tions, the syntax integrity issue should be taken into account to generate

explanations.

Overall, this task is challenging for all the tested explanation methods.

Seeing that the ideal score is 1 and the best average scores overall were only

0.07 (Amazon) and 0.12 (ArXiv), there is still large room for improvement

in this task. On the other hand, we may reduce the task difficulty by in-

creasing the ∆ parameter so that the difference between the two models

are clearer and more noticeable to humans via the explanations. Hopefully,

this will better differentiate between effective and ineffective explanation

methods. Another way that may help adjust the task difficulty is to set

some thresholds for selecting input texts to be questions as we did in Tasks

2 and 3. Besides, in this experiment, we trained the poor models by stop-

ping the training too early (as in the Amazon task) and training on a too

specific dataset (as in the ArXiv task). Other ways to generate the poor

models could be explored such as training on a noisy dataset with many

artifacts (Ribeiro et al., 2016). We leave these ideas for further improving

the evaluation task to be studied in future work.

4.3.2. Results for Task 2: Justifying the Predictions

Table 4.9 shows that LIME clearly achieved the best results in task 2 fol-

lowed by Grad-CAM-Text and DTs. These methods are class discrimina-

tive, being able to find good evidence for the predicted class regardless of

whether the prediction is correct.

We believe that LIME performed well because it tests that the absence
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Explanation
Method

Task 2: Justifying the predictions
Amazon ArXiv

A ✔ ✘ A ✔ ✘

Random (W) 0.06 0.10 0.02 0.07 0.09 0.04
Random (N) 0.12 0.13 0.12 0.29 0.32 0.25
LIME (W) 0.69 0.74 0.64 0.70 0.75 0.64
LRP (W) 0.13 0.26 -0.01 0.26 0.36 0.16
LRP (N) 0.26 0.45 0.08 0.44 0.49 0.39
DeepLIFT (W) 0.21 0.37 0.04 0.26 0.35 0.16
DeepLIFT (N) 0.23 0.47 -0.01 0.38 0.47 0.28
Grad-CAM-Text (N) 0.65 0.64 0.66 0.53 0.65 0.41
DTs (N) 0.64 0.68 0.59 0.51 0.69 0.32
Fleiss κ (Amazon) 0.274 / 0.371 N/A

Table 4.9.: The average scores and the inter-annotator agreement measure
for Task 2 – justifying the predictions. A, ✔, and ✘ refer to all,
correctly classified, and misclassified input texts, respectively.

of evidence words from the input text greatly reduces the probability of

the predicted class, so these words are semantically related to the predicted

class (given that the model is accurate). Meanwhile, the DTs method selects

evidence based on the most correlated class of the splitting features. So,

the evidence n-grams are more likely related to the predicted class than the

other classes. However, they may be less relevant than LIME’s as the evi-

dence is generated from a global explanation of the model (DTs). Besides,

Grad-CAM-Text worked relatively well here probably because it preserves

the class discriminative property of Grad-CAM (Selvaraju et al., 2017).

However, it is important to note that these three methods (LIME, DTs,

and Grad-CAM-Text) can justify even the incorrect predictions. On one

hand, this helps the model looks rational as the explanations supports the

predictions. On the other hand, this could be dangerous as the explana-

tions might not alarm humans that there may be something wrong with its

predictions.

By contrast, LRP and DeepLIFT generated acceptable evidence only for

the correct predictions with their scores under the ✔ columns not as high as

LIME, DTs, and Grad-CAM-Text. Meanwhile, when it comes to misclas-

sifications (✘), the evidence of LRP and DeepLIFT could not really justify

their predictions. This undermined their overall scores in this task, yet it

could be useful in other situations (e.g., in Task 3, discussed next). Also,

we can notice that the n-gram version of an explanation method is signifi-

100



Explanation
Method

Task 3: Investigating uncertain predictions
Amazon ArXiv

A ✔ ✘ A ✔ ✘

Random (W) 0.05 0.53 -0.43 0.01 0.32 -0.30
Random (N) -0.01 0.54 -0.55 0.02 0.29 -0.25
LIME (W) 0.02 0.50 -0.45 -0.02 0.31 -0.34
LRP (W) -0.02 0.50 -0.54 -0.06 0.33 -0.44
LRP (N) 0.08 0.60 -0.43 0.17 0.60 -0.26
DeepLIFT (W) -0.03 0.47 -0.53 -0.08 0.28 -0.44
DeepLIFT (N) 0.05 0.59 -0.49 0.02 0.33 -0.30
Grad-CAM-Text (N) 0.05 0.51 -0.42 0.06 0.56 -0.45
DTs (N) 0.10 0.60 -0.40 -0.11 0.29 -0.50
Fleiss κ (Amazon) 0.212 / 0.499 N/A

Table 4.10.: The average scores and the inter-annotator agreement measure
for Task 3 – investigating uncertain predictions. A, ✔, and ✘

refer to all, correctly classified, and misclassified input texts,
respectively.

cantly better than the word version of the same method. For instance, LRP

(N) and DeepLIFT (N) performed better than LRP (W) and DeepLIFT

(W) in both datasets. This might be because one evidence n-gram contains

more information than one evidence word. Nevertheless, even the Random

(N) method surpasses the LRP (W) and the DeepLIFT (W) for the ArXiv

dataset. Thereby, whenever we use LRP and DeepLIFT (as well as other

explanation methods), we should present to humans the most relevant words

together with their contexts in order to well justify the model predictions.

4.3.3. Results for Task 3: Investigating Uncertain

Predictions

The goal of this task is to provide important information for the humans

to correctly identify the correct class of the input texts. Particularly, when

the predictions from the model are incorrect (✘), the counter-evidence ex-

planation should be able to alarm the humans and make them distrust the

incorrect predictions. However, according to Table 4.10, the negative scores

under the ✘ columns show that using explanations to help humans rectify

the predictions is not easy. Many humans still trusted the model predictions

even when they were incorrect. Hence, the overall average scores of many

explanation methods stay close to zero.

DTs performed well on the Amazon dataset but not the ArXiv dataset.
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For DTs, the average numbers of n-grams per explanation are 2.00 and

1.77 for the Amazon and ArXiv datasets, respectively. Also, the reported

n-grams could be repetitive and overlapping because many features in the

decision nodes might pick the same or overlapping n-grams during the max-

pooling step. For example, a PH input text was classified as a CS text,

and the DT showed ⟨“data and theoretical models”, “experimental data”,

“and theoretical models”⟩ as evidence (ζ+3 ) for CS but showed nothing as

the counter-evidence (i.e., ζ−3 ≙ ⟨⟩). We can see that the text fragments in

ζ+3 are highly overlapping with each other, reducing the amount of useful

information displayed. Moreover, the decision path of this particular input

led to no counter-evidence being reported. The insufficient information by

DTs like this could make it difficult for humans to choose one of the CS,

MA, and PH categories, which are more similar to one another than the

positive and negative sentiments.

Meanwhile, LRP (N) performed consistently well on both datasets. This

is reasonable considering our discussions in task 2. To explain, on one hand,

LRP (N) generates good evidence for correct predictions, so it can gain high

scores in the ✔ columns. On the other hand, the evidence for incorrect

predictions (✘) is usually not convincing, so the counter-evidence (which is

likely to be the evidence of the correct class) can attract humans’ attention.

Furthermore, the fact that LRP is not always class discriminative does not

harm it in this task as humans can recognize an evidence text even if it is

selected by the LRP (N) as counter-evidence (and vice versa). For instance,

in the ArXiv dataset, we found a case in which the predicted scores are

0.07, 0.45, and 0.48 for the CS, MA, and PH categories, respectively, but

the actual class is CS. LRP (N) selected the following n-grams as evidence

for the class PH: ‘armed bandit settings with‘, ‘the Wasserstein distance‘,

and ‘derive policy gradients‘. However, these n-grams are not truly related

to the predicted class (PH). Rather, they revealed the true class of this text

(CS) and made a human choose the CS option with high confidence despite

the disputing predicted scores. Overall, these properties make LRP (N)

suitable for helping humans investigate uncertain predictions.

Regarding LIME, the situation is reversed as LIME effectively find both

good evidence and counter-evidence. These could make humans be inde-

cisive. When the predictions were already correct, the counter-evidence

looked rather convincing. When the predictions were incorrect, the evi-
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dence could also sound reasonable. Furthermore, LIME explanation was

presented at a word level (without any contexts). These factors did not

help humans select the right option in this task.

4.3.4. Model Complexity

Apart from the results of the three tasks, it is worth to discuss the size

of the DTs which mimic the four CNNs in our experiments. As shown in

Table 4.11, the size of the DTs can reflect the complexity of the CNNs.

Although the well-trained CNN of the Amazon dataset got 0.9 F1 score,

the DTs of this CNN needed more than 5,500 nodes to achieve 85% fidelity

(compared to only hundreds of nodes required for the ArXiv dataset). This

illustrates the high complexity of the Amazon task compared to the ArXiv

task even though both tasks can be managed effectively by the same CNN

architecture.

For the ArXiv dataset, the DTs of the poor CNN are smaller than the

ones of the well-trained CNN. This is likely because the poor CNN was

trained on a specific fragment of the dataset (i.e., selected subtopics of the

main categories), so it had to deal with fewer discriminative patterns in

texts compared to the first CNN trained using texts from all subtopics.

This quality of the DTs method can be potentially useful for measuring

model complexity (Bianchini and Scarselli, 2014) and for model compression

(Cheng et al., 2018). These are worth studying in the future although they

are out of the scope of this thesis.

4.4. Summary

We proposed three human tasks to evaluate local explanation methods for

text classification. Each of the tasks targets a specific downstream applica-

tion of explanations including revealing the model behavior, justifying the

predictions, and investigating uncertain predictions. Using these tasks, we

conducted experiments on 1D CNNs and nine forms of explanations, the

results of which show that different explanation methods are suitable for

different human tasks. Specifically, we found that (i) LIME is the most

class discriminative method, justifying predictions with relevant evidence;

(ii) LRP (N) works fairly well in helping humans investigate uncertain pre-
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#Nodes Depth #Leaves

Amazon: 1st CNN (well-trained) – F = 0.85
Negative 5535 38 2768
Positive 5537 45 2769

Amazon: 2nd CNN (underfitting) – F = 0.82
Negative 6405 40 3203
Positive 6369 40 3185

ArXiv: 1st CNN (well-trained) – F = 0.89
Computer Science 363 25 182
Mathematics 565 24 283
Physics 325 24 163

ArXiv: 2nd CNN (specific data) – F = 0.84
Computer Science 107 17 54
Mathematics 263 28 132
Physics 237 29 119

Table 4.11.: Metadata of the DTs in the experiments. F refers to fidelity of
the DTs (macro-average F1).

dictions; (iii) whenever using LRP and DeepLIFT, we should present to

humans the most relevant words together with their contexts; (iv) the size

of the DTs can also reflect the model complexity and (v) using explana-

tions to reveal model behavior is challenging and needs more research (i.e.,

improving the explanation methods or adjusting the difficulty of the eval-

uation task). Lastly, we consider evaluating on other datasets and other

advanced architectures beneficial future work as it may reveal further inter-

esting qualities of the explanation methods.

All the three purposes of explanation usage in this chapter finish at the

user side (e.g., the user choosing the better model or making a decision).

Even though we saw some flaws in the model via the explanations, we have

not yet improved the model accordingly. In the next chapter, we will focus

on another application of explanations which is model debugging, where we

provide explanations to humans and leverage on their feedback to improve

the underlying model. Basically, we will use LRP to help us understand

the patterns detected by each learned feature, enabling human investigation

and debugging. We choose LRP for this purpose, not other explanation

methods, because LRP can be easily adapted to explain individual neurons

in the model apart from explaining the model output. Taking the result

(iii) above to the next chapter, although we will not explain the predictions
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directly, we will show the explanations from LRP as word clouds of n-grams

to provide more contexts and information about the learned features to

human debuggers.
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5. Human-in-the-Loop Debugging

Deep Text Classifiers

As discussed in Section 2.1.3, supervised text classification can suffer from

imperfect training data and, therefore, produce suboptimal models. Often

times, we are not aware of the problems in the training dataset until the

explanations reveal them to us. For instance, attribution scores may show

that the model does not use the right reasons for its predictions, and this

undermines the model generalizability. Some existing works let humans de-

bug the suboptimal models by inspecting explanations for their predictions

and providing feedback in response, as explained in Section 3.3 under the

topic Explanation-based human debugging (EBHD). However, these existing

works mainly use local explanations and iterative improvement, preventing

the humans from seeing the big picture of the model when giving feedback

(Ribeiro et al., 2016; Teso and Kersting, 2019; Wu et al., 2019b). Further-

more, there is still no work using global explanations to perform EBHD

for deep NLP models. To narrow this gap, in this chapter, we propose a

framework which allows humans to debug simple deep text classifiers (with

limited number of features) by investigating hidden features learned by the

model and disabling the features that could undermine the prediction accu-

racy during testing. We name this framework Feature Investigation aNd

Disabling (FIND). As a part of the framework, we also propose a new

form of global explanation based on neuron analysis and word clouds to

help humans comprehend behaviors of the learned features and give ac-

curate feedback to improve the model. The main differences between our

work and existing work are: (i) first, FIND leverages human feedback on the

model components, not the individual predictions, to perform debugging;

(ii) second, FIND targets deep text classifiers which are more convoluted

than traditional classifiers used in existing work (such as Naive Bayes clas-

sifiers and Support Vector Machines).
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Figure 5.1.: Overview of the proposed debugging framework, FIND.

The rest of this chapter is organized as follows. Section 5.1 presents our

debugging framework, FIND. To demonstrate its effectiveness, we conduct

three human experiments with CNN text classifiers where the general setup

is explained in Section 5.2. The first experiment in Section 5.3 is a feasibil-

ity study confirming that, with our proposed word clouds as explanations,

humans can accurately assess the quality of learned features in a model.

Then the second and the third experiments (Sections 5.4-5.5) show that the

overall framework, by exploiting human feedback, can help mitigate gender

biases and deal with the dataset shift problem, respectively. After that,

Section 5.6 provides general discussions about the proposed framework as

well as its limitations. Finally, we summarize key messages of this chapter

in Section 5.7.

5.1. FIND: Feature Investigation and Disabling

Generally, deep text classifiers can be divided into two parts. The first part

performs feature extraction, transforming an input text into a dense vector

(i.e., a feature vector) which represents the input. There are several alter-

natives to implement this part such as using convolutional layers, recurrent

layers, and transformer layers. The second part performs classification pass-

ing the feature vector through a dense layer with softmax activation to get

predicted probability of the classes. These deep classifiers are not trans-

parent, as humans cannot interpret the meaning of either the intermediate

vectors or the model parameters used for feature extraction. This prevents

humans from applying their knowledge to modify or debug the classifiers.

In contrast, if we understand which patterns or qualities of the input are

captured in each feature, we can comprehend the overall reasoning mecha-
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nism of the model as the dense layer in the classification part then becomes

interpretable. In this chapter, we make this possible using layer-wise rele-

vance propagation (LRP)1 which can be adapted to find parts of the input

which are important for individual features in the model. By understanding

the model, humans can check whether the input patterns detected by each

feature are relevant for classification. Also, the features should be used by

the subsequent dense layer to support the right classes. If these are not

the case, debugging can be done by disabling the features which may be

harmful if they exist in the model. Figure 5.1 shows the overview of our

proposed debugging framework, FIND.

5.1.1. Model and Training

As a recap from Section 2.1.1, let us consider a text classification task with

∣C∣ classes where C is the set of all classes and let V be a set of unique words in

the corpus (the vocabulary). A training dataset D ≙ {(x1, y1), . . . , (xN , yN)}
is given, where xi is the i-th document containing a sequence of L words2,

∥xi1, xi2, ..., xiL∥, and yi ∈ C is the class label of xi. A deep text classifier

M trained on dataset D classifies a new input document x into one of the

classes (i.e., M(x) ∈ C). In addition, M can be divided into two parts

– a feature extraction part Mf and a classification part Mc. Formally,

M(x) ≙ (Mc ○Mf)(x); Mf(x) ≙ f ; M(x) ≙ Mc(f) ≙ softmax(Wf + b) ≙ p
where f ≙ ∥f1, f2, . . . , fd∥ ∈ Rd is the feature vector of x, while W ∈ R∣C∣×d

and b ∈ R∣C∣ are parameters of the dense layer of Mc. The final output is the

predicted probability vector p ∈ ∥0,1∥∣C∣, which in turn implies the predicted

class c ≙ argmaxcpc.

5.1.2. Understanding the Model

To understand how the model M works, we analyze the patterns or charac-

teristics of the input that activate each feature fi. Specifically, using LRP,

for each fi of an example xj in the training dataset, we calculate a relevance

vector rij ∈ R
L showing the relevance scores (the contributions) of each word

in xj for the value of fi. This is different from how we used LRP in the

1See Section 2.2.3 for more details on how LRP works.
2For xi that have more than L or less than L words, we trim or pad it to have exactly
L words, respectively.
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previous chapter where we explained individual predictions of a CNN. To re-

cap, in the previous chapter, we propagated an activation value of the target

output node back to the word embedding matrix. After that, the relevance

score of an input word equals the sum of relevance scores each dimension of

its word vector received. By contrast, in this chapter, we want to analyze

the hidden features rather than the output, so we start back propagating

from the hidden features instead to capture patterns of input words which

highly activate the features. After doing this for all d features of all training

examples, we can produce word clouds to help the users better understand

the model M .

Word clouds – For each feature fi, we create (one or more) word clouds

to visualize the patterns in the input texts which highly activate fi. This

can be done by analyzing rij for all xj in the training data and displaying,

in the word clouds, words or n-grams which get high relevance scores. Note

that different model architectures may have different ways to generate the

word clouds so as to effectively reveal the behavior of the features.

For CNNs, the classifiers we experiment with in this chapter, each fea-

ture has one word cloud containing the n-grams, from the training examples,

which were selected by the max-pooling of the CNNs. For instance, Figure

5.2, corresponding to a feature of filter size 2, shows bi-grams (e.g., “love

love”, “love my”, “loves his”, etc.) whose font size corresponds to the fea-

ture values of the bi-grams. This is similar to how previous works analyze

CNN features (Jacovi et al., 2018), and it is equivalent to back-propagating

the feature values to the input using LRP and cropping the consecutive

input words with non-zero LRP scores to show in the word clouds. Hence,

it follows what we learned from Chapter 4 that presenting n-grams as ex-

planations would provide more contexts and information to the users.

5.1.3. Disabling Features

As explained earlier, we want to know whether the learned features are

valid and relevant to the classification task and whether or not they get

appropriate weights from the next layer. This is possible by letting humans

consider the word cloud(s) of each feature and tell us which class the feature

is relevant to. A word cloud receiving human answers that are different from

the class it should support (as indicated by W) exhibits a flaw in the model.
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Figure 5.2.: A word cloud (or, literally, an n-gram cloud) of a feature from
a CNN.

For example, if the word cloud in Figure 5.2 represents the feature fi in a

sentiment analysis task but the ith column of W implies that fi supports

the negative sentiment class, we know the model is not correct here. If this

word cloud appears in a product categorization task, this is also problematic

because the phrases in the word cloud are not discriminative of any product

category. Hence, we provide options for the users to disable the features

which correspond to any problematic word clouds so that the features do

not play a role in the classification. To enable this to happen, we modify

Mc to be M ′

c where p ≙ M ′

c(f) ≙ softmax((W ⊙Q)f + b) and Q ∈ R∣C∣×d

is a masking matrix with ⊙ being element-wise multiplication. Initially,

all elements in Q are ones which enable all the connections between the

features and the output. To disable feature fi, we set the ith column of Q

to be a zero vector. After disabling features, we then freeze the parameters

of Mf and fine-tune the parameters of M ′

c (except the masking matrix Q)

with the original training dataset D in the final step. Unlike other existing

works, debugging using FIND is a one-off improvement. We do not update

the model iteratively because the explanations (i.e., the word clouds) do not

change after the model update due to the frozen Mf . As a result, no new

feedback is needed for further improving the model.

It is important for the FIND framework that all the problematic features

in f must be disabled. It is inefficient to disable only problematic features

which contribute largely to the output (e.g., features with the high corre-

sponding weights in W) because the model can switch to extensively exploit
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Exp Dataset ∣C∣ Train / Dev / Test

1
Yelp 2 500 / 100 / 38000
Amazon Products 4 100 / 100 / 20000

2
Biosbias 2 3832 / 1277 / 1278
Waseem 2 10144 / 3381 / 3382
Wikitoxic 2 - / - / 18965

3

20Newsgroups 2 863 / 216 / 717
Religion 2 - / - / 1819
Amazon Clothes 2 3000 / 300 / 10000
Amazon Music 2 - / - / 8302
Amazon Mixed 2 - / - / 100000

Table 5.1.: Datasets used in the experiments.

the remaining problematic features after retraining, leading to insignificant

model improvement. Therefore, FIND is not suitable for complex deep

learning models where the number of features in f (d) is too large. A model

with 500 features requires the investigation of 500 word clouds, and this

may be too expensive and impractical. We will discuss this issue in detail

in Section 5.6.

5.2. General Setup for the Experiments

The next three sections demonstrates how effective FIND was in three bug

scenarios including small training sets, biased training sets, and dataset

shift. All datasets and their splits used in the experiments are listed in

Table 5.1. We will explain each of them in the following sections. For this

section, we explain the general setup which was shared among the three

experiments. First, for each classification task, we ran and improved three

models, using different random seeds, independently of one another, and

the reported results are the average of the three runs.

Regarding the models, we used 1D CNNs with the same structures for

all the tasks and datasets. The convolution layer of the CNNs had three

filter sizes [2, 3, 4] with 10 filters for each size (i.e., d ≙ 10 × 3 ≙ 30). All the

activation functions were ReLU except the softmax at the output layer. The

input documents were padded or trimmed to have 150 words (L ≙ 150). We

used pre-trained 300-dim GloVe vectors (Pennington et al., 2014) as non-

trainable weights in the embedding layers. The total number of parameters
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for binary classification tasks, therefore, equalled 120,000,600 (for the fixed

word embeddings) + 27,030 (for the convolutional layers) + 62 (for the final

dense layer) + 60 (for the masked matrix Q). This also applied to a 4-class

classification task in experiment 1 except that the last two numbers of the

4-class task were + 124 (for the final dense layer) + 120 (for the masked

matrix Q). All the models were implemented using Keras and trained with

Adam optimizer. We used iNNvestigate (Alber et al., 2018) to run LRP

on CNN features. In particular, we used the LRP-ϵ propagation rule to

stabilize the relevance scores (ϵ ≙ 10−7). All the word clouds generated in

these experiments can be found at https://plkumjorn.github.io/FIND/.

In terms of the computing infrastructure, our machine (used for training,

explaining, and re-training the models) had an Intel Core i9-9900X (3.5GHz)

as its CPU, an 11GB NVIDIA GeForce RTX 2080 Ti as a GPU, and its

32GB Corsair Vengeance DDR4 as its RAM.

Finally, we used Amazon Mechanical Turk (MTurk) to collect crowd-

sourced responses for selecting features to disable. Each question was an-

swered by ten workers and the answers were aggregated using majority votes

or average scores depending on the question type (as explained next).

5.3. Experiment 1: Feasibility Study

In this feasibility study, we assessed the effectiveness of word clouds as visual

explanations to reveal the behavior of CNN features. Basically, if the quality

of word clouds as seen by human participants correlates positively with the

drop in the model predictive performance when the corresponding features

of the word clouds are removed, it meant that humans could understand

and accurately assess CNN features using word clouds.

5.3.1. Debugging Context and Materials

We used two datasets in this experiment. First, the Yelp dataset aims to

predict sentiments of restaurant reviews (positive or negative). We sampled

examples from the dataset provided by Zhang et al. (2015) here3. Second,

the Amazon Products dataset aims to classify product reviews into one of

four categories (Clothing Shoes and Jewelry, Digital Music, Office Products,

3https://github.com/zhangxiangxiao/Crepe
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Figure 5.3.: Example of user interface in Experiment 1 (Yelp).

or Toys and Games). We sampled examples from the datasets provided by

He and McAuley (2016) here4.

We then trained three CNN models for each dataset. To make the models

suitable for debugging, we used only a small number of training examples

so that the trained CNNs had features with different levels of quality. Some

features detected useful patterns, while others overfitted the training data.

Specifically, we sampled 500 and 100 examples to be the training data for

Yelp and Amazon Products, respectively. After that, using our method

described in Section 5.1.2, we generated word clouds for every feature fi of

every model. Doing the math, we had 2 datasets × 3 models / dataset ×

30 features (i.e., word clouds) / model = 180 word clouds to be assessed

by human participants. For each word cloud, we needed answers from ten

participants, so we generated 180 × 10 = 1800 questions altogether in this

experiment.

4http://jmcauley.ucsd.edu/data/amazon/
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Figure 5.4.: Example of user interface in Experiment 1 (Amazon Products).

Since we wanted to check whether each word cloud should be used to

support the class selected by W, we asked the participants which class

corresponded to the word cloud. In particular, for the Yelp dataset (which

is a binary sentiment analysis task), each question asked whether the word

cloud (mostly or partially) conveyed positive sentiment, negative sentiment,

or neither, as shown in Figure 5.3. For the Amazon Products dataset (which

is a multiclass classification task), we used a slightly different user interface

as shown in Figure 5.4. We asked the participants to select a class which

was most related to text fragments in the word cloud. However, we did not

provide the options for mostly and partly relatedness; otherwise, there would

have been nine options per question which are difficult for the participants

to answer especially when the word cloud is related to more than one class

but not all the classes.

114



5.3.2. Participants and Procedure

We recruited human participants via Amazon Mechanical Turk (MTurk).

As with Chapter 4, we posted on MTurk the tasks for two datasets sepa-

rately with short descriptions. An MTurk worker could select to do one or

more tasks. For each task, s/he could perform one or more HITs each of

which amounted to a set of seven questions to be answered in the MTurk

system.5 After a worker accepted to perform a HIT, s/he would saw a set

of instructions followed by three sample questions (with answers and rea-

sons for the answers) to familiarize her/himself with the task. Below the

instructions and the sample questions, we provided a list of seven questions

to be answered. At the end of the page, there was a feedback text box where

s/he could (optionally) leave any feedback or comment. The submit button

became clickable only after all the seven questions were answered. After

clicking submit to finish the HIT, the worker who wanted to do another

HIT could accept the new HIT immediately using the interface of MTurk.

To ensure the quality of crowdsourcing, we allowed only workers whose his-

tory had at least 50 approved HITs and more than 97% HITS approval rate

to do the tasks. Additionally, we required that the location of the workers

must be one of the following English-speaking countries: the United States,

the United Kingdom, Australia, and New Zealand to make certain that they

were proficient in English.

In total, we had 99 and 77 MTurk participants for the Yelp and the

Amazon Products datasets, respectively.

5.3.3. Data Collection and Analysis

We aimed to assign a score to gauge the quality of each feature based on

the answers its corresponding word cloud received from the MTurk partic-

ipants. After that, as each classifier had 30 original features (d ≙ 30), we

divided them into three ranks (A, B, and C) each of which with 10 fea-

tures. We expected that features in rank A were most relevant and useful

for the prediction task, features in rank C were the least relevant, poten-

tially undermining the performance of the model, and features in rank B

5Unlike Chapter 4, we did not create a separate website to collect the participants’
answers here because, in this chapter, all the participants were recruited via MTurk
whereas, in Chapter 4, we needed to collect answers from both crowdsourced partici-
pants and invited participants.
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were something between rank A and C.

For the Yelp dataset, if the answer matches how the model really uses

the feature (as indicated by W), the feature gets a positive score from this

human response. To illustrate, if the CNN feature of the word cloud in

Figure 5.3 is used by the model for the negative sentiment class, the scores

of the five options in the figure are -2, -1, 0, 1, 2, respectively. We collected

ten responses for each word cloud and used the average score to represent

the quality of the feature. Then we sorted all the 30 features in each CNN

descendingly. After sorting, the 1st-10th features, 11th-20th features, and

21st-30th features are considered as rank A, B, and C, respectively.

For the Amazon Products dataset with the user interface in Figure 5.4, we

gave a score to the feature fi based on the participant answer. To explain,

we re-scaled values in the ith column of W to be in the range [0,1] using

min-max normalization and gave the normalized value of the chosen class as

a score to the feature fi. If the participant selects None, this feature gets a

zero score. After computing the average score (from ten responses) of each

feature, we divided all the 30 features into rank A, B, and C by sorting and

splitting in the same way as we did for the Yelp dataset.

To show the effects of feature disabling, we compared the original model

M with the modified model M ′ with features in rank X disabled where

X ∈ {A, B, C, A and B, A and C, B and C}. Specifically, we observed the

macro-F1 of the original model and each modified model (averaged from all

the three random seeds).

5.3.4. Results and Discussions

Figure 5.5 shows the distribution of average feature scores from one of the

three CNN instances for the Yelp dataset. Examples of the word clouds from

each rank are displayed in Figure 5.6. We can clearly see dissimilar qualities

of the three features. The rank A feature in Figure 5.6 clearly captures

positive adjectives and got the perfect score from the participants. Some

participants answered that the rank B feature in Figure 5.6 was relevant

to the positive class (probably due to the words ‘delicious’ and ‘yum’), and

the weights of this feature in W agreed (Positive:Negative = 0.137:-0.135).

Interestingly, the rank C feature in Figure 5.6 got a negative score because

some participants believed that this word cloud was relevant to the positive
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Figure 5.5.: The distribution of average feature scores in a CNN model
trained on the Yelp dataset.

class, but actually the model used this feature as evidence for the negative

class (Positive:Negative = 0.209:0.385).

Considering all the three runs, Figure 5.7 (top) shows the average macro

F1 score of the original model (the blue line) and of each modified model.

The order of the performance drops is AB > A > AC > BC > B > Original >

C. This makes sense because disabling important features (rank A and/or B)

caused larger performance drops, and the overall results are consistent with

the average feature scores given by the participants (as in Figure 5.5). It

confirms that using word clouds is an effective way to assess CNN features.

Also, it is worth noting that the macro F1 of the model slightly increased

when we disabled the low-quality features (rank C). This shows that humans

can improve the model by disabling irrelevant features.

For the Amazon Products dataset, Figure 5.8 shows the distribution of

average feature scores from one of the three CNN instances. Considering

all the three runs, Figure 5.7 (bottom) shows that the CNNs of Amazon

Products also behaved in a similar way as we saw in the Yelp dataset,

except that disabling rank C features slightly undermined, not increased,

performance. This implies that even the rank C features contain a certain

amount of useful knowledge for this classifier.6

6We also conducted the same experiments here with bidirectional LSTM networks (BiL-
STMs) which required a different way to generate the word clouds (see Appendix
C.1).
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Rank A - Average score = 2.0

Rank B - Average score = 1.2

Rank C - Average score = -0.7
Figure 5.6.: Examples of word clouds of CNN features in ranks A, B, and

C (Experiment 1, Yelp – sentiment).
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Figure 5.7.: The average macro F1, from the three runs, of all the CNN
models for the Yelp dataset (top) and the Amazon Products
dataset (bottom). It shows that disabling both features in rank
A and rank B resulted in the worst macro F1, while disabling
features in rank C only affected the macro F1 slightly.
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Figure 5.8.: The distribution of average feature scores in a CNN model
trained on the Amazon Products dataset.
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5.4. Experiment 2: Training Data with Biases

Given a biased training dataset, a text classifier may absorb the biases and

produce biased predictions against some sub-populations. We hypothesize

that if the biases are captured by some of the learned features, we can apply

FIND to disable such features and reduce the model biases. Ultimately, this

experiment does not aim to remove bias existing in the data. Instead, it

aims to prevent the model from exploiting the existing bias which could be

unfair to some sub-populations during prediction.

5.4.1. Debugging Context and Materials

We focus on reducing gender bias of CNN models trained on two datasets

– Biosbias (De-Arteaga et al., 2019) and Waseem (Waseem and Hovy,

2016). For Biosbias, the task is predicting the occupation of a given bio

paragraph, i.e., whether the person is ‘a surgeon’ (class 0) or ‘a nurse’ (class

1). We created the training dataset using the code provided by De-Arteaga

et al. (2019) here7, and all the bios were from Common Crawl August 2018

Index. Due to the gender imbalance in each occupation, a classifier usu-

ally exploits gender information when making predictions. As a result, bios

of female surgeons and male nurses are often misclassified. For Waseem,

the task is abusive language detection – assessing if a given text is abusive

(class 1) or not abusive (class 0). The authors of (Waseem and Hovy, 2016)

kindly provided the dataset to us by email. We considered “racism” and

“sexism” examples in the original dataset as “Abusive” and “neither” ex-

amples as “Non-abusive”. Previous work found that this dataset contains

a strong negative bias against females (Park et al., 2018b). In other words,

texts related to females are usually classified as abusive although the texts

themselves are not abusive at all. Hence, we wanted to address this is-

sue in the experiment. In addition, we tested the models, trained on the

Waseem dataset, using another abusive language detection dataset, Wik-

itoxic (Thain et al., 2017), to assess generalizability of the models. The

Wikitoxic dataset can be downloaded here8. We used only examples which

were given the same label by all the annotators.

As with Experiment 1, we trained three CNN models with different ran-

7https://github.com/Microsoft/biosbias
8https://figshare.com/articles/Wikipedia_Talk_Labels_Toxicity/4563973
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dom seeds for each of the two training datasets (Biosbias and Waseem).

Thereby, we had 180 word clouds to be assessed by human participants.

This resulted in 1800 questions in total for this experiment. Unlike the

interface in Figure 5.3, for each word cloud, we asked the participants to

select the relevant class from three options. Specifically, for Biosbias, we

asked “Given this wordcloud, are the text fragments more relevant to Sur-

geon or Nurse?” and provided three options – Surgeon, Nurse, and It could

be either. Similarly, for Waseem, we asked “Given this wordcloud, is it

relevant to Abusive or Non-abusive texts?” with three options – Abusive,

Non-abusive, and It could be either.

5.4.2. Participants and Procedure

We also used Amazon MTurk to recruit human participants here, similar to

Experiment 1. We posted on MTurk the tasks for two datasets separately

with short descriptions. For the Waseem dataset, we additionally warned

the workers in the description that “This HIT may contain offensive content.

Worker discretion is advised.”. The three qualifications were still required

for a worker to participate in our experiment: (1) currently living in the

US, the UK, Australia, or New Zealand, (2) having at least 50 approved

HITs and (3) having more than 97% HITS approval rate so far. Again, an

MTurk worker who passed all the requirements could do as many tasks or

HITs as s/he wanted. The structure of a HIT is the same as in Experiment

1, consisting of the instructions, three sample questions (with answers and

reasons for the answers), seven questions to be answered, a feedback text

box, and a submit button. In the instructions of this experiment particu-

larly, we firmly stressed that gender-related terms should not be used as an

indicator for one or the other class to ensure that the participants do not

use their biases while answering our questions. After completing the seven

questions and clicking submit to finish the HIT, the worker could accept to

do the next HIT if they prefer.

In total, we had 39 and 63 MTurk participants for the Biosbias and the

Waseem datasets, respectively.
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5.4.3. Data Collection and Analysis

We aimed to use the human answers to decide whether we should disable

a feature or not. The features of which majority of the human answers

disagreed with the class suggested by the weight matrix W were disabled

before the model was re-trained9. We expected that the disabled features

included the ones causing gender bias in the model, and therefore the model

bias should be reduced after re-training.

To quantify gender biases, we adopted two metrics – false positive equality

difference (FPED) and false negative equality difference (FNED) (Dixon

et al., 2018). Formally,

FPED ≙∑
t∈T

∣FPR − FPRt∣ (5.1)

FNED ≙∑
t∈T

∣FNR − FNRt∣ (5.2)

where T is a set of all sub-populations we consider (i.e., T ≙ {male, female}).
FPR and FNR stand for false positive rate and false negative rate, respec-

tively. The subscript t means that we calculate the metrics using data exam-

ples mentioning the sub-population t only. We used the following keywords

to identify examples which are related to or mentioning the sub-populations.

Male gender terms:

“male”, “males”, “boy”, “boys”, “man”, “men”, “gentleman”, “gentle-

men”, “he”, “him”, “his”, “himself”, “brother”, “son”, “husband”, “father”,

“uncle”, “dad”, “boyfriend”

Female gender terms:

“female”, “females”, “girl”, “girls”, “woman”, “women”, “lady”, “ladies”,

“she”, “her”, “herself”, “sister”, “daughter”, “wife”, “mother”, “aunt”,

“mom”, “girlfriend”

According to Equation 5.1, FPED will be zero when the false positive

rate of input texts mentioning gender terms equals the false positive rate

of the whole dataset. FNED is also defined in an analogous way to FPED.

Therefore, the lower these metrics are, the less biases the model has. To

demonstrate the effectiveness of our debugging framework, we compared the

bias metrics before and after debugging. Also, we observed the macro F1

9We disabled features with tie scores (having more than one majority answer) as well.
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changes to see how much bias removal affected the model performance on

the original test set. Note that all the reported results are the average of

the three runs.

5.4.4. Results and Discussions

The results of this experiment are displayed in Figure 5.9. For Biosbias, on

average, the participants’ responses suggested us to disable 11.33 out of 30

CNN features. By doing so, the FPED of the models decreased from 0.250

to 0.163, and the FNED decreased from 0.338 to 0.149. After investigating

the word clouds of the CNN features, we found that some of them detected

patterns containing both gender-related terms and occupation-related terms

such as “his surgical expertise” and “she supervises nursing students”. Most

of the MTurk participants answered that these word clouds were relevant

to the occupations, and thus the corresponding features were not disabled.

However, we believe that these features might contain gender biases. So, we

considered all the word clouds again and manually disabled every feature for

which the prominent n-gram patterns contained any gender-related terms,

no matter whether the patterns detect occupation-related terms. With this

new brutal disabling policy, 12 out of 30 features were disabled on average,

and the model biases further decreased, as shown in Figure 5.9 (Debugged

(One)). The side-effect of disabling 33% of all the features here was only

a slight drop in the macro F1 from 0.950 to 0.933. Hence, our framework

was successful in reducing gender biases without severe negative effects in

classification performance.

Concerning the abusive language detection task, on average, the MTurk

participants’ responses suggested us to disable 12 out of 30 CNN features.

Unlike Biosbias, disabling features based on MTurk responses unexpect-

edly increased the gender bias for both Waseem and Wikitoxic datasets.

However, we found one similar finding to Biosbias, that many of the CNN

features captured n-grams which were both abusive and related to a gender

such as ‘these girls are terrible’ and ‘of raping slave girls’. The participants

considered these word clouds as abusive, agreeing with the weight matrix

W. So, these features were not disabled. So, we tried applying the bru-

tal policy manually to this dataset – disabling all features which involved

gender words even though some of them also detected abusive words. By
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Figure 5.9.: The average FPED and FNED of the CNN models in Experi-
ment 2 (the lower, the better).

disabling 18 out of 30 features on average, the gender biases were reduced for

both datasets (except FPED on Wikitoxic which stayed close to the original

value). Another consequence was that we sacrificed 4% and 1% macro F1

on the Waseem and Wikitoxic datasets, respectively. The macro F1 drop

for the Waseem dataset was larger because, in this dataset, some gender

terms have strong correlation with abusive or non-abusive texts. Disabling

the features related to genders also turned down the chance to exploit su-

perficial clues to the correct answers. This finding is consistent with (Park

et al., 2018b) that reducing the bias and maintaining the classification per-

formance at the same time is very challenging.

5.5. Experiment 3: Dataset Shift

Dataset shift is a problem where the joint distribution of inputs and out-

puts differs between training and test stage (Quionero-Candela et al., 2009).

Many classifiers perform poorly under dataset shift because some of the

learned features are inapplicable (or sometimes even harmful) to classify

test documents. We hypothesize that FIND is useful for investigating the

learned features and disabling the overfitting ones to increase the general-

izability of the model.
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5.5.1. Debugging Context and Materials

We considered two tasks in this experiment. For each task, we had one

dataset for training and at least one (slightly) different dataset for test-

ing. The first task aims to classify “Christianity” vs “Atheism” documents

from the 20Newsgroups dataset (Lang, 1995). We downloaded the stan-

dard splits of the dataset using scikit-learn10. The header and the footer

of each text were removed. This dataset is special because it contains a

lot of artifacts – tokens (e.g., person names, punctuation marks) which are

not relevant, but strongly co-occur with one of the classes. This prevents

the models from generalizing effectively to the target dataset with the ab-

sence of these artifacts. For evaluation, we used the Religion dataset by

Ribeiro et al. (2016), downloaded from here11, as a target dataset. It con-

tains “Christianity” and “Atheism” web pages to be classified; however, the

artifacts found in the 20Newsgroups dataset do not exist in the Religion

dataset. The second task is sentiment analysis. We used, as a training

dataset, Amazon Clothes, with reviews of clothing, shoes, and jewelry

products, and as test sets three out-of-distribution datasets – Amazon

Music, Amazon Mixed, and the Yelp dataset (which was used in Exper-

iment 1). Amazon Music contains only reviews from the “Digital Music”

product category which was found to have an extreme distribution shift from

the clothes category (Hendrycks et al., 2020). Amazon Mixed compiles the

reviews from various kinds of products, while Yelp focuses on restaurant re-

views. The Amazon Clothes and Amazon Music datasets we used were

sampled from the datasets provided by He and McAuley (2016)12, whereas

the Amazon Mixed dataset was sampled from the datasets provided by

Zhang et al. (2015).

We trained three CNN models with different random seeds for each of

the two training datasets (20Newsgroups and Amazon Clothes). In total,

we had 180 word clouds (i.e., 1800 questions) in this experiment. As with

Experiments 2, for each word cloud, we asked the participants to select the

relevant class from three options. In particular, for 20Newsgroups, we asked

“Given this wordcloud, is it more relevant to Atheism or Christianity?” and

provided three options – Atheism, Christianity, and None of the two options.

10https://scikit-learn.org/
11https://github.com/marcotcr/lime-experiments
12http://jmcauley.ucsd.edu/data/amazon/
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Similarly, for Amazon Clothes, we asked “Given this wordcloud, does it

convey negative or positive sentiment in the context of product reviews?”

with three options – Negative, Positive, and Neither.

5.5.2. Participants and Procedure

Most of the procedure in this experiment is the same as in Experiment 2.

In particular, we used Amazon MTurk to recruit human participants The

three qualifications were still required: (1) currently living in the US, the

UK, Australia, or New Zealand, (2) having at least 50 approved HITs and

(3) having more than 97% HITS approval rate so far. A single HIT consists

of the instructions, three sample questions (with answers and reasons for

the answers), seven questions to be answered, a feedback text box, and a

submit button. The worker could submit a HIT after s/he answered all

the seven questions while the feedback was completely optional. After that,

s/he could stop, accept to do the next HIT, or switch to another task as they

wish. In total, we had 48 and 35 MTurk participants for the 20Newsgroups

and the Amazon Clothes datasets, respectively.

5.5.3. Data Collection and Analysis

Again, we used the human answers to decide which features to disable.

When the majority vote from the ten human answers disagreed with the

weight matrix W, we disabled that corresponding feature. Following the

FIND framework, we then re-trained the model and observed the perfor-

mance (mainly the macro F1) on both the original test set and the out-

of-domain test set(s) before and after re-training. We hypothesized that

the disabled features were specific to the training set; therefore, the model

should generalize better after the model update. The reported results were

averaged over three runs.

5.5.4. Results and Discussions

For the first task, on average, 14.33 out of 30 features were disabled and

the macro F1 scores of the 20Newsgroups before and after debugging are

0.853 and 0.828, respectively. The same metrics of the Religion dataset

are 0.731 and 0.799. This shows that disabling irrelevant features mildly

undermined the predictive performance on the in-distribution dataset, but

126



20Newsgroups Religion-10.00

-5.00

0.00

5.00

10.00

Re
la

tiv
e 

M
ac

ro
 F

1 
Ch

an
ge

 (%
)

Clothes Music Mixed Yelp
-10.00

-5.00

0.00

5.00

10.00

Figure 5.10.: The relative Macro F1 changes (in %) of the CNN models for
both tasks in Experiment 3.

clearly enhanced the performance on the out-of-distribution dataset (see

Figure 5.10, left). This is especially evident for the Atheism class for which

the F1 score increased around 15% absolute. We noticed from the word

clouds that many prominent words for the Atheism class learned by the

models are person names (e.g., Keith, Gregg, Schneider) and these are not

applicable to the Religion dataset. Forcing the models to use only relevant

features (detecting terms like ‘atheists’ and ‘science’), therefore, increased

the macro F1 on the Religion dataset.

Unlike 20Newsgroups, Amazon Clothes does not seem to have obvious

artifacts. Still, the responses from crowd workers suggested that we disable

6 features. The disabled features were correlated to, but not the reason for,

the associated class. For instance, one of the disabled features was highly

activated by the pattern “my .... year old” which often appeared in positive

reviews such as “my 3 year old son loves this.”. However, these correlated

features are not very useful for the three out-of-distribution datasets (Music,

Mixed, and Yelp). Disabling them made the model focus more on the right

evidence and increased the average macro F1 for the three datasets, as

shown in Figure 5.10 (right). Nonetheless, the performance improvement

here was not as apparent as in the previous task because, even without

feature disabling, the majority of the features are relevant to the task and

can lead the model to the correct predictions in most cases.13

13See Appendix C.2 for the full results from all experiments.
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Figure 5.11.: A word cloud representing a CNN feature for the 20Newsgroup
dataset. It mainly detects April 1993 (followed by an unknown
token and a time zone).

5.6. General Discussions

5.6.1. Ensuring Model Improvement

Obviously, the effectiveness of the FIND framework depends largely on the

quality of human feedback. In the experiments, we tried to ensure the

quality by specifying qualifications for MTurk workers who were allowed to

participate in our experiments. Moreover, for each word cloud, we made the

enabling/disabling decision based on the average scores or the majority of

ten answers so as to dilute the effect of low-quality individual answers. How-

ever, this could work only under the assumption that majority of the MTurk

workers are trustworthy, and we had nothing to guarantee this assumption.

This could be a reason why the second experiment on bias mitigation was

not very successful when we used only answers from MTurk workers.

Even though the humans who provide feedback perform the task at their

best, it does not necessarily lead to the best model. Das et al. (2013) found

that users assess importance of features based on the concept relatedness be-

tween the features and the target classes (e.g., according to a commonsense

knowledge base (Liu and Singh, 2004)). However, this may not correlate

perfectly with discriminative powers of the features when it comes to classi-

fication. Moreover, the model may find some patterns which are truly useful

but humans do not understand why and, hence, disable them. For example,

Figure 5.11 displays a word cloud of a CNN feature for the 20Newsgroups

dataset. It mainly detects April 1993 followed by an unknown token and

a time zone which seems to be artifacts in the training data. Among the
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ten human participants who checked this word cloud, nine answered that

it is relevant to neither Atheism nor Christianity, whereas the other one

answered that it is relevant to Atheism. As a result, this CNN feature was

disabled in our experiment. Nonetheless, we found out later that April is

an important month of Atheism for two reasons. First, some sources claim

that April 1st is National Atheist Day14. Second, some also claim that Na-

tional Ask An Atheist Day has always been observed annually in April15.

Therefore, having a feature detecting April in the CNN might actually be

more helpful than harmful. Indeed, the weight the CNN gave to this feature

supported the Atheism class (Atheism:Christianity = 0.475:0.179).

In practice, to ensure before deployment that the overall human feedback

is more helpful than harmful, we may check whether the performance of the

updated model is better than that of the original model using a small set of

labeled examples from the test distribution (if we have it). In Experiment 1

and 2, we could in fact use a development set and measure the performance

using macro-F1 and FPED/FNED, respectively. If possible, in Experiment

3, we could use a labeled development set of each test dataset (not shown

in Table 5.1) and measure the macro-F1. This data availability condition is

similar to the setting of semi-supervised domain adaptation where we are

allowed to access a small set of labeled data as well as a set of unlabeled

data from the target domain (Daumé III et al., 2010). If we have only

unlabeled data of the target domain (which is equivalent to unsupervised

domain adaptation (Ganin and Lempitsky, 2015)), we may generate word

clouds using the unlabeled data instead of the original training data. This

helps us make enabling/disabling decisions more accurately since we can see

patterns the CNN features would likely detect when running on the target

distribution.

5.6.2. Integration to an AI Development Process

The FIND framework is helpful for model verification and improvement.

Therefore, it could be used after the training process to let humans verify

what the model has learned and improve it if necessary. In practice, we do

14https://www.holidayinsights.com/moreholidays/April/atheist-day.htm and
https://happydays365.org/atheist-day/national-atheist-day-april-1/ (Ac-
cessed on 28 November 2021)

15https://www.worldnationaldays.com/national-ask-an-atheist-day/ and
shorturl.at/xAGQZ (Accessed on 28 November 2021)
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not need ten people and aggregate their answers as we did in our experiments

to reduce the effect of bad annotators. Only one person who knows the

domain well would be enough to provide feedback. This person could be

a model developer (who is usually a machine learning expert) or a domain

expert in the development team. In the former case, we may also show the

weights (in W) of each feature as additional information which is especially

helpful for multi-class classification tasks where a feature may contribute to

more than one class.

5.6.3. Generalization to Other Models

Although the ultimate goal of FIND is to tackle deep text classifiers in

general, dealing with more complex deep models would be inevitably an

ambitious attempt. As discussed in Section 5.1.3, the more hidden features

the model has, the more human effort FIND needs for debugging. For

instance, applying FIND to BERT-base (Devlin et al., 2019), which has 768

features (before the final dense layer), would require lots of human effort to

perform investigation. In this case, it would be more efficient to use FIND to

disable attention heads rather than individual features (Voita et al., 2019).

Still, the best way to visualize attention heads for debugging needs to be

researched (Vig, 2019; DeRose et al., 2020). We further discuss this in the

future work part (Section 7.2).

Another issue is that it is not clear how to divide Mf and Mc in com-

plex models in order to yield good results. One factor which makes our

framework effective in the experiments is the fact that Mc is just a linear

layer, showing clearly how the features contribute to the output nodes. For

some deep models (such as BERT) and some classification tasks, however,

features in a lower layer are more suitable to be investigated because seman-

tic properties which are relevant to the task emerge at that layer (Tenney

et al., 2019). If we wait until a higher layer, these properties may already

be mixed up, making feature disabling more difficult. However, we need to

answer two additional questions if we want to divide Mf and Mc at a lower

layer. First, what is the best dividing point? We may need to consult recent

research analyzing knowledge emerging at different layers of such complex

models (Rogers et al., 2020). Second, how does each feature contribute to

output nodes given that there is more than a linear layer between the two?
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A possible solution is to compute the partial derivative of the output nodes

with respect to the feature, similar to what we did for Grad-CAM-Text

in Chapter 4. Whether there is a better solution in the context of model

debugging is an open research question.

5.6.4. Generalization to Other Tasks

FIND is suitable for any single-input text classification tasks where a model

might learn irrelevant or harmful features during training. It is also conve-

nient to use since only the trained model and the training data are required

as input (if we do not evaluate the updated model before deployment to en-

sure performance improvement as discussed in Section 5.6.1). Moreover, it

can address many problems simultaneously such as removing religious and

racial bias together with gender bias even if we might not be aware of such

problems before using FIND.

It would be interesting to extend FIND to other NLP tasks, e.g., question

answering and natural language inference. However, this will require some

modifications to understand how the features capture relationships between

two input texts. Meanwhile, applying FIND beyond textual domain is quite

challenging because we are not sure whether humans can truly understand

visualization of each feature. For example, in computer vision, we may

utilize activation maximization (Erhan et al., 2009) to find an artificial

input image that would maximize the value of each neuron, telling us which

kind of pattern the neuron is looking for. However, because the image is

synthesized to optimize the neuron value, it could be difficult for humans to

recognize and decide whether it is relevant to the classification task or not.

Another way to visualize a neuron is to use a collection of real input images

with the relevant part highlighted such as network dissection (Bau et al.,

2017). This is more similar to our word cloud but the users may need to

look at multiple images to grasp the semantics of the node unless we have

an effective way to collate them as we did for texts using word clouds.

5.6.5. Other Limitations

There are a few additional limitations of FIND worth discussing here. First,

the word clouds may reveal sensitive contents in the training data to human

debuggers. So, this framework may not be suitable if we do not want the
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humans who provide feedback to partially see the content in the training

dataset unless we use another dataset to generate the word clouds instead.

However, if the dataset used is unrelated to the distribution of the target

domain, the resulting word clouds may be less useful since they do not reveal

the model behavior under the scenario of interest.

Besides, it is possible that one feature detects several patterns (Jacovi

et al., 2018), and it will be difficult to disable the feature if some of the

detected patterns are useful while the others are harmful. Hence, it would be

interesting to apply FIND to models with disentangled text representations

(Cheng et al., 2020) so that it is easier to make enabling/disabling decisions.

5.7. Summary

We proposed FIND, a framework which enables humans to debug simple

deep text classifiers by disabling irrelevant or harmful features. Using the

proposed framework on CNN text classifiers, we found that (i) word clouds

generated by running LRP on the training data accurately revealed the be-

haviors of CNN features, (ii) some of the learned features might be more

useful to the task than the others and (iii) disabling the irrelevant or harm-

ful features could improve the model predictive performance and reduce

unintended biases in the model.

In this chapter, we focused on the learned intermediate features and ver-

ified whether they are relevant for the classification. In the next chapter,

in contrast, we will study relations among features of a more interpretable

model, using computational argumentation, in order to generate local ex-

planations that align better with human perceptions.
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6. Argumentative Explanations for

Text Classification

In Chapter 5, we learned that hidden features in a CNN captures some pat-

terns that are useful for classification, as shown in Figure 5.6 for examples.

Each of the feature may detect more than one pattern, and some of the

patterns are not easy for humans to interpret. This is not a problem for a

machine learning model aiming to get high scores for a given classification

task. However, this may not be convenient for humans to learn or to ex-

tract knowledge from the trained model. This inspires us to study a more

transparent model in which we can precisely see the patterns the model ex-

ploits for classification. Specifically, this chapter focuses on pattern-based

(binary) logistic regression models, whose patterns are drawn by means of

the GrASP algorithm (Shnarch et al., 2017), explained in Section 6.1. As

discussed in Chapter 3 that explanation methods for interpretable models

have been scarcely studied in the literature, this chapter also aims to fill

the gap by devising a local explanation method which is likely to generate

more plausible explanations for the pattern-based logistic regression.

Given that the learned patterns interact by disagreeing or agreeing with

classifications for input text, we choose to extract argumentation frame-

works to explain to humans this type of classifier in particular. These argu-

mentation frameworks may be non-flat, unearthing chains of arguments in

explanations (see Section 6.2). We call the resulting explanatory framework

AXPLR. After that, the experimental setup for AXPLR is described in

Section 6.3, followed by one empirical experiment in Section 6.4 and two

human experiments (to assess the amenability of the argumentation under-

pinning AXPLR specifically) in Sections 6.5 and 6.6 to show the strengths

of AXPLR. Lastly, we discuss the method complexity and other possible

uses of AXPLR in Section 6.7 and summarize the chapter in Section 6.8.
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6.1. Pattern-Based Logistic Regression

As explained in Section 2.1.2, logistic regression (LR) is a traditional ma-

chine learning model that can be used for text classification. Before we can

use LR, we need to perform the feature extraction step. The easiest way to

do is using n-gram features together with TF-IDF vectorization. However,

we will use patterns as features in this chapter because patterns are more

generalizable than n-grams and easier for humans to learn from.

Logistic Regression. Given an input text x, we extract the feature vec-

tor f ≙ ∥f1, f2, . . . , fd∥ ∈ {0,1}d where fi is a binary feature and d is the

number of textual patterns used. fi equals 1 if the input x contains the

pattern pi; otherwise, fi equals 0. Then we use the standard binary logistic

regression with the binary cross-entropy loss to learn from the training data.

To recap from Section 2.1.2,

P (y ≙ 1∣x) ≙ sigmoid(wT f + b)
≙ sigmoid( d

∑
i=1

wifi + b)
≙ sigmoid(w1f1 +w2f2 + ... +wdfd + b)

(6.1)

The next questions are “How do the d patterns look like?” and “How can

we obtain them?”. We envisage that a pattern should be able to indicate

high-level characteristics of words in the pattern in addition to specifying

exact words or lemmas. These high-level characteristics include both syn-

tactic attributes (such as part-of-speech tags) and semantic attributes (such

as synonyms and hypernyms). Thereby, we choose GrASP for this purpose.

GrASP: GReedy Augmented Sequential Patterns. GrASP is a su-

pervised algorithm which learns expressive patterns characterizing linguis-

tic phenomena (Shnarch et al., 2017). To illustrate, examples 1–3 in Table

6.1 are all SMS spam messages from the dataset by (Almeida et al., 2011).

While there is little word overlap between them, their commonality is appar-

ent, even if hard to name. The GrASP algorithm can reveal an underlying

structure which generalizes these three realizations of spams: a positive-

sentiment word, closely followed by a determiner, and then by a proper

noun.
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Sentences matched
You are awarded a SiPix Digital Camera...
...to WIN a FREE Bluetooth Headset...
...for Free ! Call The Mobile Update...

GrASP pattern
[[SENTIMENT:pos], [POS:DET], [POS:PROPN]]
(A positive-sentiment word, closely followed by
a determiner, and then by a proper noun)

Table 6.1.: Example of GrASP pattern capturing the common structure in
a variety of surface forms – the sentences matched. Matched
words are in bold. The description of the pattern is provided
below it, in parenthesis.

The input for the algorithm amounts to two sets of texts: in one (the pos-

itive set) the target phenomenon appears in all examples, and in the other

(the negative set) it does not. GrASP looks for commonalities prominent

within the texts of one set but not shared across the sets. To be able to

recognize common aspects of texts, beyond their surface form realizations,

all input tokens are augmented with a variety of linguistic attributes such

as part-of-speech tags, named entity information, or pertinence to a lexicon

(e.g., of sentiment words). Attributes are selected to maximize a score (by

default their information gain about the label). Then, they are combined

by a greedy algorithm to generate patterns which are most indicative either

to the positive or the negative set.

Since the patterns are a combination of readable attributes, they are

human interpretable. So, they can be used to provide insights about the

data and contribute to explainability. For instance, the first sentence in

Table 6.1 is a spam message because it contains the phrase “awarded a

SiPix”. With this strength, we decide to use GrASP patterns as our features

in the binary logistic regression model.

The Overall Process. During training, given a dataset D ≙ {(x1, y1), . . . ,
(xN , yN)} where yi ∈ {0,1}, we first split D into D+ and D−, containing pos-

itive examples (yi ≙ 1) and negative (yi ≙ 0) examples, respectively. Next,

we feed D+ and D− to the GrASP algorithm along with some hyperpa-

rameters (e.g., the number of patterns d, the number of gaps allowed in a

pattern, and the set of linguistic attributes for augmenting input tokens).

After obtaining the d patterns, we extract the binary feature vector f for

each training example xi and use it to train the logistic regression model
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Input: There is nothing better than hot sausages of this restaurant.
Matched patterns:

p1 ≙ ∥∥TEXT:nothing∥, ∥SENTIMENT:pos∥∥ w1f1 ≙ −0.9

p2 ≙ ∥∥TEXT:nothing∥∥ w2f2 ≙ −0.4

p3 ≙ ∥∥SENTIMENT:pos∥∥ w3f3 ≙ 1.2

p4 ≙ ∥∥TEXT:hot∥, ∥TEXT:sausages∥∥ w4f4 ≙ 0.5

b ≙ −0.1

Predicted class: 1 (Positive)
Prob.: sigmoid(-0.9-0.4+1.2+0.5-0.1) = sigmoid(0.3) = 0.5744.

Figure 6.1.: An illustrative example of using pattern-based logistic regres-
sion for sentiment analysis.

together with the class label yi.

During testing, given an unseen document x, we get the prediction by

extracting the feature vector f using the d GrASP patterns and running

the logistic regression model on f. Since logistic regression is inherently

transparent, we can generate a local explanation by reporting parts of x that

match top-k patterns of this example. Formally, let cj be the contribution

of the pattern pj for the prediction ŷ. According to Equation 6.1, we can

see that when ŷ ≙ 1, cj ≙ wjfj . When ŷ ≙ 0, cj ≙ −wjfj . So, we can combine

both cases to be cj ≙ (−1)ŷ+1wjfj . Then we return, as the local explanation

for ŷ, a list of (pj′ , π(pj′ , x), cj) triplets where cj′ is one of the k highest cj ,

cj′ ≠ 0, and π(pj′ , x) is a part of x that matches the pattern pj′ . We call

this explanation the flat logistic regression explanation (FLX).

However, one problem of FLX is that it does not take into account rela-

tionships among the d patterns. Consider the example in Figure 6.1, the

input text matches four patterns, and the model predicts positive. If we

use FLX with top-1 pattern, it will return p3 (having a positive word in the

input) as the reason for predicting positive (due to the highest contribution

of 1.2). Nevertheless, the model has actually weakened the effect of p3 by p1

because the positive word in this case follows the word “nothing” and the

model no longer considers it strongly positive. What really makes the model

answer positively is rather p4, which is not selected by FLX. Although the

136



contribution of p4 (0.5) is lower than that of p3, it is not overridden by

other patterns. We could see that these four patterns are arguing to make

the prediction, in that each pattern is an argument for or against the pre-

diction. Some patterns have dialectical relations with one another (such

as the disagreement between p1 and p3). Hence, to improve plausibility of

the explanations, it is likely promising to apply computational argumenta-

tion (as introduced in Section 2.3) to generate local explanations for this

pattern-based LR model.

6.2. AXPLR: Argumentative Explanations for

Pattern-Based Logistic Regression

In this section, we introduce our AXPLR explanation where its overall gen-

eration process is shown in Figure 6.2 with the illustrative example from

Figure 6.1. The part above the bold purple line is the standard prediction

process which has been shown in Figure 6.1, starting from extracting the

feature vector from the input text and then computing the predicted prob-

ability using the model weights (w and b). Below the purple line, it shows

the four main steps for generating AXPLR. Using the feature vector and

the model weights, the first step constructs a quantitative bipolar argumen-

tation framework (QBAF) to represent relationships between four pattern

features found in the input text (as well as the bias term of the model).

The second step computes the dialectical strength of each argument con-

sidering its attacker(s) and supporter(s). The dialectical strengths of some

arguments might be less than zero which are difficult to interpret, so we

do post-processing in the third step, making all the strength values to be

positive and adjusting the arguments and the relations accordingly in a way

that preserves the meaning of the argumentation graph. Finally, using the

post-processed QBAF, the fourth step generates the AXPLR explanation

which could be a shallow AXPLR (using only top-level arguments in the ex-

planation) or a deep AXPLR (using arguments at the top-level and deeper

in the explanation). The background color of text fragments matching the

patterns reflects the post-processed strengths of the corresponding argu-

ments. We then can present the AXPLR explanations to assist humans to

perform a human-AI collaboration task (such as learning to detect deceptive
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Figure 6.2.: Overview of the AXPLR generation process. Above the bold
purple line, it shows the standard prediction process of pattern-
based logistic regression. Below the bold purple line, it shows
the four main steps to generate AXPLR explanations. τ+ and
τ− indicate that the base scores of the arguments are positive
and negative, respectively. Similarly, σ+ and σ− indicate that
the dialectical strengths of the arguments are positive and neg-
ative, respectively. Note that here we use a bottom-up QBAF
(BQBAF). Other details will be explained throughout this sec-
tion.

reviews in Section 6.6).

This section provides details for each step of the AXPLR generation pro-

cess. Sections 6.2.1, 6.2.2, 6.2.3, and 6.2.5 explain steps 1, 2, 3, and 4,

respectively. In Section 6.2.4, before step 4, we prove formal properties of

(original and post-processed) QBAFs, providing formal guarantees about

their suitability to give rise to explanations.
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6.2.1. Argumentation Framework

We aim to use a quantitative bipolar argumentation framework (QBAF) to

simulate how the pattern-based LR model works on an input text. Then we

will derive the local explanation, called AXPLR, from the QBAF. To begin

with, we define how two patterns can be related using the concept of speci-

ficity. Particularly, Definition 9 defines more specific than or equivalent and

more specific than in line with other definitions in argumentation literature,

e.g., (Baroni et al., 2019).

Definition 9. A pattern p1 is more specific than or equivalent to another

pattern p2 (written as p1 ⪰ p2) if and only if for every text t matched by p1,

t is also matched by p2. In addition, p1 is more specific than p2 (written as

p1 ≻ p2) if and only if p1 ⪰ p2 but p2 ⪰̸ p1.

For instance, we can say from Figure 6.1 that p1 ⪰ p3 because every

text matched by p1 is guaranteed to have a positive sentiment word which

makes it matched by p3. However, p3 ⪰̸ p1 because a text matched by p3 is

guaranteed to have a positive word but it may not have the word “nothing”

followed by a positive word. These two facts also imply p1 ≻ p3. Similarly,

p1 ≻ p2.

Lemma 1. The relation ≻ is not reflexive, not symmetric, but transitive.

Proof. Let us consider each of the properties.

• Not reflexive: Proof by contradiction. Assume that ≻ is reflexive.

Thus, p ≻ p. According to Definition 9, it implies that p ⪰ p and p ⪰̸ p,

resulting in contradiction. Hence, ≻ is not reflexive.

• Not symmetric: Assume p1 ≻ p2. By Definition 9, we obtain that

p1 ⪰ p2 and p2 ⪰̸ p1. So, p2 ⊁ p1, implying that ≻ is not symmetric.

• Transitive: Before proving that ≻ is transitive, we will prove that ⪰

is transitive first. Assume that p1 ⪰ p2 and p2 ⪰ p3. Because p1 ⪰ p2,

by Definition 9, every text t matched by p1 is also matched by p2.

Similarly, because p2 ⪰ p3, every text t matched by p2, including those

matched by p1, is also matched by p3. Therefore, p1 ⪰ p3, implying

that ⪰ is transitive.
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Next, we will prove that ≻ is transitive using proof by contradiction.

Assume that p1 ≻ p2, p2 ≻ p3, but p1 ⊁ p3. Because p1 ≻ p2, by

Definition 9, we get that p1 ⪰ p2 and p2 ⪰̸ p1. Similarly, because

p2 ≻ p3, we get that p2 ⪰ p3 and p3 ⪰̸ p2. Due to the transitivity of

⪰, we know that p1 ⪰ p3. Now, let us consider p1 ⊁ p3. It is true iff

p1 ⪰̸ p3 or p3 ⪰ p1. Still, we know that p1 ⪰̸ p3 cannot be true, so it

must be the case that p3 ⪰ p1. Due to the transitivity of ⪰, p3 ⪰ p1 and

p1 ⪰ p2 imply that p3 ⪰ p2. However, this contradicts with the result

of p2 ≻ p3. With this contradiction, p1 ⊁ p3 cannot be true. In other

words, p1 ≻ p3, implying that ≻ is transitive.

Next, we extract a QBAF for a trained pattern-based LR model and an

input text x. This QBAF will be the core underlying our local explanations.

We know that arguments for two patterns that have the “more specific than”

relation should have a dialectical relation between them. However, we are

uncertain whether the more specific one should be the attacker/supporter

or should be attacked/supported.1 So, we propose two variations of the

extracted QBAF which are the top-down QBAF and the bottom-up QBAF.

Definition 10. Given a trained binary logistic regression model based on

the feature patterns p1, . . . , pd with the weights ⟨w1, . . . ,wd, b⟩ and an input

text x with the binary feature vector f ≙ ∥f1, . . . , fd∥, the extracted top-down

QBAF (TQBAF) and the extracted bottom-up QBAF (BQBAF) are 5-tuples

⟨A,R−T ,R+T , τ, c⟩ and ⟨A,R−B,R+B, τ, c⟩, respectively, such that:

• A ≙ {αi∣fi ≙ 1}∪ {δ} is the set of arguments where αi is the argument

for the pattern pi that appears in x, whereas δ is the default argument,

corresponding to the bias term in the trained model.

• τ ∶ A → ∥0,∞) is the base score function where τ(αi) ≙ ∣wi∣ and τ(δ) ≙
∣b∣.

• c ∶ A → {0,1} is the function mapping an argument to the class it

supports. Here, c(αi) ≙ 1 if wi ≥ 0; otherwise, c(αi) ≙ 0. Similarly,

1In this chapter, we abuse terminology and use the term ‘support’ with two meanings:
an argument may support a class (by means of the function c in Definition 10 below)
or an argument may support another argument in a dialectical sense (relations R−T
and R−B in Definition 10 below).
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c(δ) ≙ 1 if b ≥ 0; otherwise, c(δ) ≙ 0.

• R−T ⊆ A ×A is the set of all attacks for TQBAF where

R
−

T ≙{(αi, δ)∣c(αi) ≠ c(δ) ∧ ∄j∥αj ∈ A ∧ pi ≻ pj∥}∪
{(αi, αj)∣c(αi) ≠ c(αj) ∧ pi ≻ pj ∧ ∄k∥αk ∈ A ∧ pi ≻ pk ≻ pj∥}.

• R+T ⊆ A ×A is the set of all supports for TQBAF where

R
+

T ≙{(αi, δ)∣c(αi) ≙ c(δ) ∧ ∄j∥αj ∈ A ∧ pi ≻ pj∥}∪
{(αi, αj)∣c(αi) ≙ c(αj) ∧ pi ≻ pj ∧ ∄k∥αk ∈ A ∧ pi ≻ pk ≻ pj∥}.

• R−B ⊆ A ×A is the set of all attacks for BQBAF where

R
−

B ≙{(αi, δ)∣c(αi) ≠ c(δ) ∧ ∄j∥αj ∈ A ∧ pj ≻ pi∥}∪
{(αj , αi)∣c(αi) ≠ c(αj) ∧ pi ≻ pj ∧ ∄k∥αk ∈ A ∧ pi ≻ pk ≻ pj∥}.

• R+B ⊆ A ×A is the set of all supports for BQBAF where

R
+

B ≙{(αi, δ)∣c(αi) ≙ c(δ) ∧ ∄j∥αj ∈ A ∧ pj ≻ pi∥}∪
{(αj , αi)∣c(αi) ≙ c(αj) ∧ pi ≻ pj ∧ ∄k∥αk ∈ A ∧ pi ≻ pk ≻ pj∥}.

To explain, both TQBAF and BQBAF use the same A, τ , and c. If the

input text x matches n patterns, A will have n + 1 arguments. Amongst

them, n arguments (those of the form αi) are for the n matched patterns,

while the other one is for the default argument (δ) corresponding to the bias

term b in the LR model. Therefore, the QBAFs always have at least one

argument, which is the default. The supported class (c) of each argument

depends on whether the corresponding weight in the LR model is positive

or negative. If wi is positive, it means that the existence of the pattern pi

contributes to the positive class. So, the supported class of αi should be

positive (1). For the default argument, we consider the sign of the bias term

b instead. Because the supported class has represented the sign, the base

score (τ) of the argument will be only the absolute value of the corresponding

weight.

The differences between TQBAF and BQBAF are the R− and R+ com-
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δ

τ(δ) ≙ 0.1
σ(δ) ≙ −0.3

α2

[[TEXT:nothing]]
τ(α2) ≙ 0.4
σ(α2) ≙ 0.85

α3

[[SENTIMENT:pos]]
τ(α3) ≙ 1.2
σ(α3) ≙ 0.75

α4

[[TEXT:hot], [TEXT:sausages]]
τ(α4) ≙ 0.5
σ(α4) ≙ 0.5

α1

[[TEXT:nothing], [SENTIMENT:pos]]
τ(α1) ≙ 0.9
σ(α1) ≙ 0.9

+ – –

+ –

Figure 6.3.: The extracted top-down QBAF for the example in Figure 6.1.
Here and everywhere in this chapter we show QBAFs as graphs,
with nodes representing the arguments and labelled edges rep-
resenting attack (-) or support (+). The color of the nodes
represents the supported class (i.e., green for positive (1) and
red for negative (0)). (The meaning of the equalities of the form
τ(x) ≙ v and σ(x) ≙ v will be explained later.)

ponents. For TQBAF, (arguments for) more specific patterns attack or

support (arguments for) more general patterns. The most general patterns,

in turn, attack or support the default argument. Hence, the more general

patterns will stay closer to the default. That is why we call it top-down.

Conversely, for BQBAF, (arguments for) more general patterns attack or

support (arguments for) more specific patterns. The most specific patterns,

in turn, attack or support the default argument. Therefore, the more spe-

cific patterns will stay closer to the default argument, so we call it bottom-up.

To decide whether a relation is attack or support, we check the classes both

arguments support. If they support the same class, the relation is support;

otherwise, it is attack. The extracted TQBAF and BQBAF for the exam-

ple in Figure 6.1 are shown in Figures 6.3 and 6.4, respectively. We believe

that both top-down and bottom-up arrangements may be legitimate, but

in different situations. Later, we will show that, in TQBAF, we explain

to users with general patterns first and provide more specific patterns as
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δ

τ(δ) ≙ 0.1
σ(δ) ≙ −0.3

α2

[[TEXT:nothing]]
τ(α2) ≙ 0.4
σ(α2) ≙ 0.4

α3

[[SENTIMENT:pos]]
τ(α3) ≙ 1.2
σ(α3) ≙ 1.2

α4

[[TEXT:hot], [TEXT:sausages]]
τ(α4) ≙ 0.5
σ(α4) ≙ 0.5

α1

[[TEXT:nothing], [SENTIMENT:pos]]
τ(α1) ≙ 0.9
σ(α1) ≙ 0.1

+ –

–+

Figure 6.4.: The extracted bottom-up QBAF for the example in Figure 6.1.
The color represents the supported class (i.e., green for positive
(1) and red for negative (0)). (The meaning of the equalities of
the form τ(x) ≙ v and σ(x) ≙ v will be explained later.)

details when requested. In BQBAF, by contrast, we explain to users with

specific patterns first (as they contain more information) and mention gen-

eral patterns as supporting or opposing reasons.

After this point, when we mention a QBAF in this chapter, we mean that

it could be either TQBAF or BQBAF, unless otherwise stated.

Lemma 2. Given a QBAF ⟨A,R−,R+, τ, c⟩, then δ ∉R−(a) and δ ∉R+(a)
for all a ∈ A. So, the out-degree of δ is 0.

Indeed, we can see from R−T , R+T , R−B, and R+B in Definition 10 that δ

never attacks or supports any other argument. So, its out-degree equals 0,

and therefore we usually put it at the top of the argumentation framework

figures (as shown in Figures 6.3 and 6.4).

Next, we show that the graph structures underlying TQBAFs and BQBAFs

are directed acyclic graphs (DAGs).

Theorem 1. The graph structure of TQBAFs (i.e., ⟨A,R−T ,R+T ⟩) is a di-

rected acyclic graph (DAG). So is for BQBAFs.

Proof. Let us consider the TQBAF first. From the graph theory perspective,
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our graph ⟨A,R−T ,R+T ⟩ is equivalent to G ≙ ⟨V,E⟩ where V ≙ A is a set of

vertices and E ≙ R−T ∪R
+

T is a set of edges. According to Definition 10, we

can write E explicitly as

E ≙R−T ∪R
+

T

E ≙{(αi, δ)∣c(αi) ≠ c(δ) ∧ ∄j∥αj ∈ A ∧ pi ≻ pj∥}∪
{(αi, αj)∣c(αi) ≠ c(αj) ∧ pi ≻ pj ∧ ∄k∥αk ∈ A ∧ pi ≻ pk ≻ pj∥}∪
{(αi, δ)∣c(αi) ≙ c(δ) ∧ ∄j∥αj ∈ A ∧ pi ≻ pj∥}∪
{(αi, αj)∣c(αi) ≙ c(αj) ∧ pi ≻ pj ∧ ∄k∥αk ∈ A ∧ pi ≻ pk ≻ pj∥}

E ≙{(αi, δ)∣∄j∥αj ∈ A ∧ pi ≻ pj∥}∪
{(αi, αj)∣pi ≻ pj ∧ ∄k∥αk ∈ A ∧ pi ≻ pk ≻ pj∥}

We will prove the result by contradiction. Assume that the graph G is not

a DAG. Hence, there must be a non-trivial path which forms a cycle in G.

Assume that the path is αi0 , αi1 , . . . , αik , αi0 with k ≥ 1. In this path, there

must not be δ since the out-degree of δ is 0 (from Lemma 2). So, every

edge in this path must be in the second set of the union above. Hence, we

obtain that pi0 ≻ pi1 , pi1 ≻ pi2 , . . . , pik ≻ pi0 . Because ≻ is transitive (from

Lemma 1), pi0 ≻ pi0 , but this is impossible since ≻ is not reflexive (also from

Lemma 1). Here is the contradiction. Thus, the graph structure of the

TQBAF is a DAG.

The proof for BQBAFs is similar to the proof for TQBAFs. We will

obtain that

E ≙R−B ∪R
+

B

E ≙{(αi, δ)∣∄j∥αj ∈ A ∧ pj ≻ pi∥}∪
{(αj , αi)∣pi ≻ pj ∧ ∄k∥αk ∈ A ∧ pi ≻ pk ≻ pj∥}

Assume the directed cyclic path in G is αi0 , αi1 , . . . , αik , αi0 with k ≥ 1.

Hence, pi0 ≻ pik (from the last edge in the path), pik ≻ pik−1 (from the second

last edge), . . . , pi1 ≻ pi0 (from the first edge). Because ≻ is transitive, pi0 ≻

pi0 , but this is impossible since ≻ is not reflexive. Here is the contradiction.

Thus, the graph structure of BQBAFs is also a DAG.
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6.2.2. Semantics

After we obtain the QBAFs, the next step is to calculate the dialectical

strength of each argument. To make this strength faithful to the underlying

LR model, we propose the logistic regression semantics with the strength

function σ, defined next.

Definition 11. The strength according to the logistic regression semantics

is defined as σ ∶ A → R, where for any a ∈ A

σ(a) ≙ τ(a) + ∑
b∈R+(a)

σ(b)
ν(b) − ∑

b∈R−(a)

σ(b)
ν(b) (6.2)

where τ(a) is the base score of a and ν(b) is the out-degree of b.

This semantics can be applied to both TQBAFs and BQBAFs. According

to Equation 6.2, the strength of an argument starts from its base score,

and it is increased and decreased by the strengths of its supporters and its

attackers, respectively. However, the strength of each supporter/attacker

must be divided by its out-degree (i.e., ν(b)) before being combined with

the base score. Note that ν(b) in Equation 6.2 is always greater than or

equal to 1 because b ∈ R−(a) or b ∈ R+(a), meaning that b attacks or

supports at least one argument (which is a). So, the divide-by-zero never

happens with this equation. Additionally, any argument a with no attackers

or supporters (i.e., R−(a) ≙ R+(a) ≙ ∅) will have the strength equal to its

base score, by Definition 11.

Because the QBAFs are DAGs (thanks to Theorem 1), we can use topo-

logical sorting to define the order to compute the strengths. As a re-

sult, the computational complexity of this semantics applied to the ex-

tracted TQBAFs and BQBAFs is O(∣A∣), and the worst case happens when

∣A∣ ≙ d + 1 (i.e., the input text matches all the patterns). Considering the

TQBAF in Figure 6.3, for example, α1 and α4 do not have any attacker or

supporter, so their strengths equal their base scores. Next, we can calculate
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the strengths of α2 and α3, and then δ.

σ(α2) ≙ τ(α2) + ∑
b∈R+(α2)

σ(b)
ν(b) − ∑

b∈R−(α2)

σ(b)
ν(b)

≙ 0.4 + ∑
b∈{α1}

σ(b)
ν(b) −∑b∈∅

σ(b)
ν(b) ≙ 0.4 +

0.9

2
≙ 0.85

σ(α3) ≙ τ(α3) + ∑
b∈R+(α3)

σ(b)
ν(b) − ∑

b∈R−(α3)

σ(b)
ν(b)

≙ 1.2 +∑
b∈∅

σ(b)
ν(b) − ∑

b∈{α1}

σ(b)
ν(b) ≙ 1.2 −

0.9

2
≙ 0.75

σ(δ) ≙ τ(δ) + ∑
b∈R+(δ)

σ(b)
ν(b) − ∑

b∈R−(δ)

σ(b)
ν(b)

≙ 0.1 + ∑
b∈{α2}

σ(b)
ν(b) − ∑

b∈{α3,α4}

σ(b)
ν(b)

≙ 0.1 +
0.85

1
−

0.75

1
−

0.5

1
≙ −0.3

All the results are displayed in Figure 6.3. Similarly, the strengths are

computed for the BQBAF and shown in Figure 6.4. We can see that the

strength of the default arguments δ of both TQBAF and BQBAF is equal

to the absolute of the logit
d

∑
i=1

wifi + b of the LR model.

Theorem 2. For a given QBAF, the prediction of the underlying LR model

can be inferred from the strength of the default argument:

1. The predicted probability for the class c(δ) equals sigmoid(σ(δ)).
2. Hence, if σ(δ) > 0, the LR model predicts class c(δ). Otherwise, it

predicts the opposite class (i.e., 1 − c(δ)).
Proof. First, we will prove that the predicted probability for the class c(δ)
equals sigmoid(σ(δ)). In other words, we need to prove that, for c(δ) ≙ 1,

sigmoid(σ(δ)) ≙ sigmoid( d

∑
i=1

wifi + b), i.e., σ(δ) ≙ d

∑
i=1

wifi + b. Also, we

need to prove that, for c(δ) ≙ 0, sigmoid(σ(δ)) ≙ 1 − sigmoid( d

∑
i=1

wifi + b) ≙
sigmoid(− d

∑
i=1

wifi − b), i.e., σ(δ) ≙ − d

∑
i=1

wifi − b.
2

Case 1: c(δ) ≙ 1 – The class supported by δ is Positive.

21 − sigmoid(x) = sigmoid(−x).
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Each argument αi ∈ A − {δ} supports class c(αi) ∈ {0,1}. We partition

A − {δ} into two sets – one with Positive (1) as the supported class and

the other with Negative (0) as the supported class. We use A+ and A− to

represent the two sets, respectively.

Applying Definition 11 to δ, we obtain

σ(δ) ≙ τ(δ) + ∑
g∈R+(δ)

σ(g)
ν(g) − ∑

g∈R−(δ)

σ(g)
ν(g)

Because c(δ) ≙ 1, we know from Definition 10 that the bias term of the

underlying LR model is b ≥ 0. Hence, τ(δ) ≙ ∣b∣ ≙ b. Furthermore, R+(δ) ⊆
A+ and R−(δ) ⊆ A−. So, we obtain that

b ≙ σ(δ) − ∑
g∈R+(δ)

σ(g)
ν(g) + ∑

g∈R−(δ)

σ(g)
ν(g) (6.3)

Next, for αi in A+, we know that c(αi) ≙ 1, so the corresponding weight in

the LR model is wi ≥ 0. Hence, τ(αi) ≙ ∣wi∣ ≙ wi. Again, R+(αi) ⊆ A+ and

R−(αi) ⊆ A−. By Definition 11,

wi ≙ τ(αi) ≙ σ(αi) − ∑
g∈R+(αi)

σ(g)
ν(g) + ∑

g∈R−(αi)

σ(g)
ν(g) (6.4)

For αj ∈ A
−, in contrast, we know that c(αj) ≙ 0, so the corresponding

weight in the LR model is wj < 0. Hence, τ(αj) ≙ ∣wj ∣ ≙ −wj . By Defini-

tion 10, all the supporters must support the same class whereas all the at-

tackers must support the opposite class. So, R+(αj) ⊆ A− andR−(αj) ⊆ A+.
By Definition 11,

wj ≙ −τ(αj) ≙ −σ(αj) + ∑
g∈R+(αj)

σ(g)
ν(g) − ∑

g∈R−(αj)

σ(g)
ν(g) (6.5)

By Definition 10, A − {δ} ≙ A+ ∪A− ≙ {αi∣fi ≙ 1}, so
d

∑
i=1

wifi + b ≙ ∑
αi∈A

+

wi +

∑
αj∈A

−

wj + b. By summing up Equations 6.3, 6.4 (for all αi ∈ A
+), and 6.5
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(for all αi ∈ A
−), we obtain that

d

∑
i=1

wifi + b ≙ σ(δ) + ∑
αi∈A

+

σ(αi) − ∑
αj∈A

−

σ(αj)
− ∑

g∈R+(δ)

σ(g)
ν(g) + ∑

g∈R−(δ)

σ(g)
ν(g)

+ ∑
αi∈A

+

⎛
⎝− ∑

g∈R+(αi)

σ(g)
ν(g) + ∑

g∈R−(αi)

σ(g)
ν(g)

⎞
⎠

+ ∑
αj∈A

−

⎛
⎝ ∑
g∈R+(αj)

σ(g)
ν(g) − ∑

g∈R−(αj)

σ(g)
ν(g)

⎞
⎠

d

∑
i=1

wifi + b ≙ σ(δ) + ∑
αi∈A

+

σ(αi) − ∑
αj∈A

−

σ(αj)

−
⎛
⎝ ∑
g∈R+(δ)

σ(g)
ν(g) + ∑αi∈A

+

∑
g∈R+(αi)

σ(g)
ν(g) + ∑αj∈A

−

∑
g∈R−(αj)

σ(g)
ν(g)

⎞
⎠

+
⎛
⎝ ∑
g∈R−(δ)

σ(g)
ν(g) + ∑αi∈A

+

∑
g∈R−(αi)

σ(g)
ν(g) + ∑αj∈A

−

∑
g∈R+(αj)

σ(g)
ν(g)

⎞
⎠

Next, we will show that ∑
αi∈A

+

σ(αi) and the blue part above are equal. As

αi ∈ A
+, it can appear as g only in the blue part. In other words, αi can

either support another argument in A+ or δ or attack another argument in

A−. If αi supports or attacks ν(αi) arguments in total (where ν(αi) is the

out-degree of αi), we will find exactly ν(αi) terms of
σ(αi)
ν(αi)

in the blue part,

and they sum up to σ(αi). Hence, for every σ(αi) in ∑
αi∈A

+

σ(αi), we can

find the equivalent amount in the blue part. Meanwhile, g in the blue part

must come from A+ only (not δ or A− according to Definition 10). Thereby,

∑
αi∈A

+

σ(αi) and the blue part are equal and cancelling each other.

Similarly, αj ∈ A
− can either support another argument in A− or attack

another argument in A+ or δ. With the same logic as for the blue part, we

obtain that ∑
αj∈A

−

σ(αj) and the magenta part are equal and cancelling each

other.

Finally, we obtain
d

∑
i=1

wifi + b ≙ σ(δ) as required.

Case 2: c(δ) ≙ 0 – The class supported by δ is Negative.

The proof of this case is similar to the previous case, so we will highlight

only the differences here. First, because c(δ) ≙ 0, the bias term of the LR
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model is b < 0. Hence, τ(δ) ≙ ∣b∣ ≙ −b. Equation 6.3 then becomes

b ≙ −σ(δ) + ∑
g∈R+(δ)

σ(g)
ν(g) − ∑

g∈R−(δ)

σ(g)
ν(g) (6.6)

However, Equations 6.4 and 6.5 remain the same. By summing up Equa-

tions 6.6, 6.4 (for all αi ∈ A
+), and 6.5 (for all αi ∈ A

−), we obtain that

d

∑
i=1

wifi + b ≙ −σ(δ) + ∑
αi∈A

+

σ(αi) − ∑
αj∈A

−

σ(αj)

−
⎛
⎝ ∑
g∈R−(δ)

σ(g)
ν(g) + ∑αi∈A

+

∑
g∈R+(αi)

σ(g)
ν(g) + ∑αj∈A

−

∑
g∈R−(αj)

σ(g)
ν(g)

⎞
⎠

+
⎛
⎝ ∑
g∈R+(δ)

σ(g)
ν(g) + ∑αi∈A

+

∑
g∈R−(αi)

σ(g)
ν(g) + ∑αj∈A

−

∑
g∈R+(αj)

σ(g)
ν(g)

⎞
⎠

Because αi ∈ A
+ can either support another argument in A+ or attack

another argument in A− or δ, with the same logic as in the previous case,

we obtain that ∑
αi∈A

+

σ(αi) and the blue part are equal and cancelling each

other. Similarly, ∑
αj∈A

−

σ(αj) and the magenta part are equal and cancelling

each other. What remains is
d

∑
i=1

wifi + b ≙ −σ(δ). So, σ(δ) ≙ − d

∑
i=1

wifi − b as

required.

Finally, the second point of the theorem is pretty obvious. Using the

result from the first point, the predicted probability of class c(δ) equals

sigmoid(σ(δ)) which is greater than 0.5 if σ(δ) > 0. So, it predicts c(δ).
Otherwise, sigmoid(σ(δ)) < 0.5, and it predicts the other class which is

1 − c(δ).
In other words, we can read the prediction from the default argument δ,

and this proves the faithfulness3 of our QBAF and the logistic regression

semantics to the underlying LR model. The negative strength of δ implies

that the argument can no longer support its supported class; therefore, the

prediction must be the opposite class. Since σ(δ) is computed from τ(δ)
and the strengths of the attackers and the supporters of δ, we can use these

attackers and supporters as explanation for the prediction. Furthermore,

we may generalize the results of Theorem 2 to other arguments αi ∈ A.

3See the definition of faithfulness in Section 3.2.1, Definition 7.
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For instance, in Figure 6.4, we could say that the pattern [[TEXT:nothing],

[SENTIMENT:pos]] of α1 (weakly) supports the negative class with a strength

of 0.1, but it is not sufficient to make the prediction become negative.

6.2.3. Post-Processing

We know from the previous section that we can extract an explanation

from the QBAF and the dialectical strengths. Nevertheless, the negative

final strengths may render the human interpretation of these explanations

difficult. Using Figure 6.3 as an example, we can see that argument α2

([[TEXT:nothing]]), supporting the negative class, supports argument δ,

which represents the final prediction. However, the prediction now is the

positive class due to the negative σ(δ). So, it is counterintuitive to say

that a pattern for the negative class supports the prediction of the positive

class. Hence, we propose a post-processing step for QBAF to make the

explanations (to be generated) align better with human interpretation.

Definition 12. Given a QBAF ⟨A,R−,R+, τ, c⟩ with the calculated strength

σ(a) for every a ∈ A, the corresponding post-processed QBAF (QBAF’) is

defined as ⟨A′,R−′,R+′, τ ′, c′⟩ where
• A′ ≙ A.

• τ ′ ∶ A → R and c′ ∶ A → {0,1} are defined such that, for each a ∈ A,

– If σ(a) ≥ 0, then τ ′(a) ≙ τ(a) and c′(a) ≙ c(a).
– If σ(a) < 0, τ ′(a) ≙ −τ(a) and c′(a) ≙ 1 − c(a).

• R−′ ≙ {(a, b) ∈R− ∪R+∣c′(a) ≠ c′(b) ∧ σ(a) ≠ 0}.
• R+′ ≙ {(a, b) ∈R− ∪R+∣c′(a) ≙ c′(b) ∧ σ(a) ≠ 0}.

Theorem 3. Given a QBAF ⟨A,R−,R+, τ, c⟩ and the corresponding QBAF’

⟨A′,R−′,R+′, τ ′, c′⟩, using the logistic regression semantics, we use σ(a) and
σ(a)′ to represent the strengths of a ∈ A ≙ A′ in QBAF and QBAF’, respec-

tively. The following statements are true for a ∈ A ≙ A′.

• If σ(a) ≥ 0, then σ(a)′ ≙ σ(a).
• If σ(a) < 0, σ(a)′ ≙ −σ(a).
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Proof. According to Theorem 1, G ≙ ⟨V,E⟩ for the QBAF is a DAG where

V ≙ A and E ≙ R− ∪ R+. Let G′ ≙ ⟨V ′,E′⟩ be the graph structure of

QBAF’ where V ′ ≙ A′ and E′ ≙R−′ ∪R+′. By Definition 12, we know that

V ′ ≙ A′ ≙ A ≙ V and E′ ≙R−′∪R+′ ⊆R−∪R+ ≙ E. Hence, G′ is a subgraph

of G and also a DAG4.

Then we can obtain the topological ordering t of arguments in V ′ which

is the ordering of strength computation for QBAF’. Assume that the order

t is a1, a2, . . . , ak. Obviously, a1 must be an argument in V ′ that has no

attack or support. Furthermore, we can divide the vertices in t into two

groups (corresponding to the two bullet points of this theorem), one with

σ(ai) ≥ 0 and the other with σ(ai) < 0. We name arguments in the former

group and the latter group as g1, . . . , gr and l1, . . . , ls, respectively, where gi

must be before gi+1 in t, li must be before li+1 in t, and r+s ≙ k. So, t could

be written as, for example, g1, g2, l1, g3, l2, l3, . . . , gr, ls−1, ls. In any case,

g1 must be a1 since a1 has neither attacker nor supporter and, therefore,

σ(a1) ≙ τ(a1) ≥ 0. In general, the first part of t must be g1, . . . , gr∗ , l1, . . .

where 1 ≤ r∗ ≤ r, and arguments after l1 could be from either g or l. We

will use mathematical induction on this topological ordering t to prove the

two bullet points of this theorem.

• For g1 (the base case): Because it has neither attacker nor supporter,

σ(g1) ≙ τ(g1) and σ(g1)′ ≙ τ ′(g1). Since σ(g1) ≥ 0, by Definition 12,

τ ′(g1) ≙ τ(g1). Hence, σ(g1)′ ≙ σ(g1) as required.

• For gi with i ≤ r∗ (using strong induction): We have shown that

σ(g1)′ ≙ σ(g1). Next, assuming that σ(gh)′ ≙ σ(gh) for 1 ≤ h ≤ i < r∗,

we need to show that σ(gi+1)′ ≙ σ(gi+1) where i + 1 ≤ r∗.

Due to the topological ordering, all the original attackers and sup-

porters of gi+1 must be in {gh∣1 ≤ h ≤ i}. As a result, for a ∈

R−(gi+1) ∪ R+(gi+1), τ ′(a) ≙ τ(a), c′(a) ≙ c(a), and σ(a)′ ≙ σ(a).
Also, τ ′(gi+1) ≙ τ(gi+1) and c′(gi+1) ≙ c(gi+1) because σ(gi+1) ≥ 0

by the definition of g. Since the classes of both gi+1 and its original

attackers and supporters do not change, R−′(gi+1) ≙ R−(gi+1) and

R+′(gi+1) ≙R+(gi+1)5.
4A subgraph of a DAG must be a DAG, since it cannot contain a cycle that does not
exist in the supergraph.

5For simplicity, we include the attackers and supporters a where σ(a) = 0 in R−′(gi+1)
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Applying Definition 11 to gi+1 in QBAF’, we obtain

σ(gi+1)′ ≙ τ ′(gi+1) + ∑
b∈R+′(gi+1)

σ(b)′
ν(b) − ∑

b∈R−′(gi+1)

σ(b)′
ν(b)

≙ τ(gi+1) + ∑
b∈R+(gi+1)

σ(b)
ν(b) − ∑

b∈R−(gi+1)

σ(b)
ν(b)

≙ σ(gi+1)
Hence, σ(gi+1)′ ≙ σ(gi+1) where i + 1 ≤ r∗ as required.

• For l1: Because σ(l1) < 0 by the definition of l, we need to show that

σ(l1)′ ≙ −σ(l1).
According to the ordering t, all the original attackers and supporters

of l1 must be in {gh∣1 ≤ h ≤ r∗}. As a result, for a ∈ R−(l1) ∪R+(l1),
τ ′(a) ≙ τ(a), c′(a) ≙ c(a), and σ(a)′ ≙ σ(a) (as proven above).

In contrast, since σ(l1) < 0, by Definition 12, τ ′(l1) ≙ −τ(l1) and

c′(l1) ≙ 1 − c(l1). In other words, the base score and the supported

class of l1 are flipped after post-processing. Because the classes of

the attackers and supporters are not change whereas the class of l1 is

flipped, R−′(l1) ≙R+(l1) and R+′(l1) ≙R−(l1).
Applying Definition 11 to l1 in QBAF’, we obtain

σ(l1)′ ≙ τ ′(l1) + ∑
b∈R+′(l1)

σ(b)′
ν(b) − ∑

b∈R−′(l1)

σ(b)′
ν(b)

≙ −τ(l1) + ∑
b∈R−(l1)

σ(b)
ν(b) − ∑

b∈R+(l1)

σ(b)
ν(b)

≙ −
⎛
⎝τ(l1) + ∑

b∈R+(l1)

σ(b)
ν(b) − ∑

b∈R−(l1)

σ(b)
ν(b)

⎞
⎠

≙ −σ(l1)
Hence, σ(l1)′ ≙ −σ(l1) as required.

• For any argument ai in t after l1 (using strong induction): So far,

we have shown that this theorem is true for g1, . . . , gr∗ and l1. Next,

assuming that the theorem is true for any argument a1, . . . , ai, we need

and R+′(gi+1), respectively, as they play no role when computing σ(gi+1)
′ anyway.

The same logic also applies to the next cases in this proof.
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to show that the theorem is also true for ai+1 regardless of the group

it belongs to.

If ai+1 belongs to the g group (i.e., σ(ai+1) ≥ 0), we obtain that

τ ′(ai+1) ≙ τ(ai+1) and c′(ai+1) ≙ c(ai+1). The supported class of ai+1

is not flipped after post-processing. The original attackers of ai+1

could belong to either the g group or the l group. We use R−g (ai+1)
and R−l (ai+1) to represent those sets of original attackers, respectively.

After post-processing, the attackers in R−g (ai+1) will still be attackers

(due to the unchanged supported classes on both sides of the rela-

tions) whereas the ones in R−l (ai+1) will become supporters (due to

the supported class flipped only on one side). Similarly, the original

supporters of ai+1 could be split into R+g (ai+1) and R+l (ai+1). After

post-processing, those in R+g (ai+1) will still be supporters while those

in R+l (ai+1) will become attackers. To sum up, R+′(ai+1) is the union

of two disjoint sets – R+g (ai+1) and R−l (ai+1). Meanwhile, R−′(ai+1)
is the union of two disjoint sets – R−g (ai+1) and R+l (ai+1).
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Applying Definition 11 to ai+1 in QBAF’, we obtain

σ(ai+1)′ ≙ τ ′(ai+1) + ∑
b∈R+′(ai+1)

σ(b)′
ν(b) − ∑

b∈R−′(ai+1)

σ(b)′
ν(b)

≙ τ(ai+1) + ∑
b∈R+g(ai+1)

σ(b)′
ν(b) + ∑

b∈R−
l
(ai+1)

σ(b)′
ν(b)

− ∑
b∈R−g(ai+1)

σ(b)′
ν(b) − ∑

b∈R+
l
(ai+1)

σ(b)′
ν(b)

≙ τ(ai+1) + ∑
b∈R+g(ai+1)

σ(b)
ν(b) + ∑

b∈R−
l
(ai+1)

−σ(b)
ν(b)

− ∑
b∈R−g(ai+1)

σ(b)
ν(b) − ∑

b∈R+
l
(ai+1)

−σ(b)
ν(b)

≙ τ(ai+1) + ⎛⎜⎝ ∑
b∈R+g(ai+1)

σ(b)
ν(b) + ∑

b∈R+
l
(ai+1)

σ(b)
ν(b)

⎞⎟⎠
−
⎛⎜⎝ ∑
b∈R−g(ai+1)

σ(b)
ν(b) + ∑

b∈R−
l
(ai+1)

σ(b)
ν(b)

⎞⎟⎠
≙ τ(ai+1) + ∑

b∈R+(ai+1)

σ(b)
ν(b) − ∑

b∈R−(ai+1)

σ(b)
ν(b)

≙ σ(ai+1)
Hence, for ai+1 where σ(ai+1) ≥ 0, σ(ai+1)′ ≙ σ(ai+1) as the theorem

stated.

Analogously, if ai+1 belongs to the l group (i.e., σ(ai+1) < 0), we

obtain that τ ′(ai+1) ≙ −τ(ai+1) and c′(ai+1) ≙ 1 − c(ai+1). After post-

processing, the supported class of ai+1 is flipped. Also, the attackers

inR−g (ai+1) will become supporters (due to the supported class flipped

only on one side of the relations at ai+1) whereas the ones in R−l (ai+1)
will still be attackers (due to the supported class flipped on both

sides). Similarly, the supporters in R+g (ai+1) will become attackers,

while those in R+l (ai+1) will still be supporters. To sum up, R+′(ai+1)
is the union of two disjoint sets – R+l (ai+1) and R−g (ai+1). Meanwhile,

R−′(ai+1) is the union of two disjoint sets – R−l (ai+1) and R+g (ai+1).
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Applying Definition 11 to ai+1 in QBAF’, we obtain

σ(ai+1)′ ≙ τ ′(ai+1) + ∑
b∈R+′(ai+1)

σ(b)′
ν(b) − ∑

b∈R−′(ai+1)

σ(b)′
ν(b)

≙ − τ(ai+1) + ∑
b∈R+

l
(ai+1)

σ(b)′
ν(b) + ∑

b∈R−g(ai+1)

σ(b)′
ν(b)

− ∑
b∈R−

l
(ai+1)

σ(b)′
ν(b) − ∑

b∈R+g(ai+1)

σ(b)′
ν(b)

≙ − τ(ai+1) + ∑
b∈R+

l
(ai+1)

−σ(b)
ν(b) + ∑

b∈R−g(ai+1)

σ(b)
ν(b)

− ∑
b∈R−

l
(ai+1)

−σ(b)
ν(b) − ∑

b∈R+g(ai+1)

σ(b)
ν(b)

≙ − τ(ai+1) − ⎛⎜⎝ ∑
b∈R+g(ai+1)

σ(b)
ν(b) + ∑

b∈R+
l
(ai+1)

σ(b)
ν(b)

⎞⎟⎠
+
⎛⎜⎝ ∑
b∈R−g(ai+1)

σ(b)
ν(b) + ∑

b∈R−
l
(ai+1)

σ(b)
ν(b)

⎞⎟⎠
≙ − τ(ai+1) − ∑

b∈R+(ai+1)

σ(b)
ν(b) + ∑

b∈R−(ai+1)

σ(b)
ν(b)

≙ − σ(ai+1)
Hence, for ai+1 where σ(ai+1) < 0, σ(ai+1)′ ≙ −σ(ai+1) as the theorem

stated.

From both cases, the induction step is completed.

Our proof has covered all the arguments in the topological ordering t. Thus,

the theorem is true for a ∈ A ≙ A′.

Corollary 1. Given a QBAF and the corresponding QBAF’, σ(a)′ ≙ ∣σ(a)∣
for all a ∈ A ≙ A′.

Corollary 2. Theorem 2 also applies to QBAF’.

To explain, the goal of the post-processing step is to flip all the negative

strengths to be positive, so we adjust the QBAF accordingly, while pre-

serving the interpretations of the arguments. For instance, if the original

argument a has τ(a) ≙ 0.3, c(a) ≙ 1 and σ(a) ≙ −0.5, the meaning is that
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δ

τ(δ) ≙ −0.1
σ(δ) ≙ 0.3

α2

[[TEXT:nothing]]
τ(α2) ≙ 0.4
σ(α2) ≙ 0.85

α3

[[SENTIMENT:pos]]
τ(α3) ≙ 1.2
σ(α3) ≙ 0.75

α4

[[TEXT:hot], [TEXT:sausages]]
τ(α4) ≙ 0.5
σ(α4) ≙ 0.5

α1

[[TEXT:nothing], [SENTIMENT:pos]]
τ(α1) ≙ 0.9
σ(α1) ≙ 0.9

– + +

+ –

Figure 6.5.: The extracted top-down QBAF in Figure 6.3 after being post-
processed.

the argument initially supports the positive class with the base score of 0.3,

but after taking into account dialectical relations, it supports the negative

class instead with the strength of 0.5. After post-processing, we will obtain

τ ′(a) ≙ −0.3, c′(a) ≙ 0 and σ(a)′ ≙ 0.5 with the meaning that the argument

supports the negative class with the strength of 0.5 though previously it

supported the opposite class with the base score of 0.3. We can see that

the two meanings are equivalent. In addition, with Corollary 2, the QBAF’

with the logistic regression semantics is faithful to the underlying LR model

since we can read the model prediction directly from σ(δ)′.
Note that, during the post-processing step, we remove any edges where

the strengths of the attackers or the supporters equal 0 since they no longer

attack or support. Then we re-label attacks and supports to the remaining

relations according to the new supported classes c′ while keeping the direc-

tion of the edges intact. In conclusion, the original QBAF started from the

non-negative base scores, whereas the post-processed QBAF enforces the

non-negative strengths and the rest is adjusted accordingly.

Figures 6.5 and 6.6 show the post-processed QBAFs of Figures 6.3 and

6.4, respectively. We can see that all the strengths become positive now.

156



δ

τ(δ) ≙ −0.1
σ(δ) ≙ 0.3

α2

[[TEXT:nothing]]
τ(α2) ≙ 0.4
σ(α2) ≙ 0.4

α3

[[SENTIMENT:pos]]
τ(α3) ≙ 1.2
σ(α3) ≙ 1.2

α4

[[TEXT:hot], [TEXT:sausages]]
τ(α4) ≙ 0.5
σ(α4) ≙ 0.5

α1

[[TEXT:nothing], [SENTIMENT:pos]]
τ(α1) ≙ 0.9
σ(α1) ≙ 0.1

– +

–+

Figure 6.6.: The extracted bottom-up QBAF in Figure 6.4 after being post-
processed.

GP 1 2 3 4 5 6 7 8 9 10 11

⟨QBAF,σ⟩ ✔ ✘ ✘ ✘ ✘ ✔ ✘ ✘ ✔ ✘ ✘⟨QBAF ′, σ⟩ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✘

Table 6.2.: Summary of the group properties for gradual semantics (Baroni
et al., 2019) satisfied or unsatisfied by the logistic regression
semantics σ when applied on QBAF and QBAF’.

6.2.4. Analyzing Properties

In this section, we will analyze the properties of the logistic regression se-

mantics σ when applied to QBAF and QBAF’ according to 11 group prop-

erties of gradual semantics proposed by Baroni et al. (2019) (as introduced

earlier in Section 2.3.3). These properties have been used to evaluate many

argumentation frameworks and semantics in the literature (Albini et al.,

2020; Potyka, 2021; Sukpanichnant et al., 2021) in order to ensure that

the resulting frameworks and dialectical strengths will lead to explanations

that are consistent with general human reasoning and debate. Table 6.2

summarizes the results of our analysis. When conducting the proofs, we

may use the QBAF and the corresponding QBAF’ in Figures 6.7 and 6.8,

respectively, as a counterexample.
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δ (0.1, 0.9)

α1

(0.4, 0.3)

α2

(0.4, 0.5)

α3

(0.4, 0.4)

α4

(0.8, 0.4)

α5

(0.8, 0.5)

α6

(0.2, 0.5)

α7

(0.2, 0.6)

α8 (0.3, -0.2)

α9 (0.5, 0.5)

α10

(0.4, 0.4)

α11

(0.6, 0.6)

α12

(0.4, 0.4)

– + – + + – +

+ –

–

– – + +

Figure 6.7.: Example of QBAF used as a counterexample in Section 6.2.4.
With each argument, there is a value pair (x, y) where x and y

represent the base score and the strength (based on the logis-
tic regression semantics σ) of the argument, respectively. The
color represents the argument’s supported class (i.e., green for
positive (1) and red for negative (0)).

GP1. If R−(α) ≙ ∅ and R+(α) ≙ ∅, then σ(α) ≙ τ(α).
Proof. According to Definition 11, with R−(α) ≙ ∅ and R+(α) ≙ ∅, we have

σ(α) ≙ τ(α) +∑b∈∅
σ(b)
ν(b) −∑b∈∅

σ(b)
ν(b) ≙ τ(α) as required.

Hence, both ⟨QBAF,σ⟩ and ⟨QBAF ′, σ⟩ satisfy GP1.

GP2. If R−(α) ≠ ∅ and R+(α) ≙ ∅, then σ(α) < τ(α).
Proof. According to Definition 11, with R+(α) ≙ ∅, we have

σ(α) ≙ τ(α) +∑
b∈∅

σ(b)
ν(b) − ∑

b∈R−(α)

σ(b)
ν(b) ≙ τ(α) − ∑

b∈R−(α)

σ(b)
ν(b) .

In QBAF, σ(b) could be either positive or negative, so it is possible that

∑b∈R−(α)
σ(b)
ν(b) < 0, making σ(α) > τ(α). α2 in Figure 6.7 is one counterex-

ample of this GP. By contrast, in QBAF’, we have removed any attacker
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and supporter of which the strength is zero. According to this and Corol-

lary 1, σ(b) > 0 for b ∈ R−(α). Therefore, ∑b∈R−(α)
σ(b)
ν(b) > 0, resulting in

σ(α) < τ(α) as required.

Hence, ⟨QBAF,σ⟩ does not satisfy GP2, but ⟨QBAF ′, σ⟩ does.

GP3. If R−(α) ≙ ∅ and R+(α) ≠ ∅, then σ(α) > τ(α).
Proof. According to Definition 11, with R−(α) ≙ ∅, we have

σ(α) ≙ τ(α) + ∑
b∈R+(α)

σ(b)
ν(b) −∑b∈∅

σ(b)
ν(b) ≙ τ(α) + ∑

b∈R+(α)

σ(b)
ν(b) .

As in the proof of GP2, for QBAF, ∑b∈R+(α)
σ(b)
ν(b) could be negative, ren-

dering σ(α) < τ(α). α1 in Figure 6.7 is one counterexample of this GP.

Meanwhile, in QBAF’, ∑b∈R+(α)
σ(b)
ν(b) > 0. Therefore, σ(α) > τ(α) as re-

quired.

Hence, ⟨QBAF,σ⟩ does not satisfy GP3, but ⟨QBAF ′, σ⟩ does.

GP4. If σ(α) < τ(α), then R−(α) ≠ ∅.

Proof. From σ(α) < τ(α) with Definition 11, we obtain that

σ(α) ≙ τ(α) + ∑
b∈R+(α)

σ(b)
ν(b) − ∑

b∈R−(α)

σ(b)
ν(b) < τ(α).

Therefore,

∑
b∈R+(α)

σ(b)
ν(b) − ∑

b∈R−(α)

σ(b)
ν(b) < 0.

For QBAF, it is possible that R−(α) ≙ ∅ because ∑b∈R+(α)
σ(b)
ν(b) could be

negative, satisfying the inequality. So, the property is not satisfied. α1

in Figure 6.7 is one counterexample of this GP. In contrast, for QBAF’,

let us proof by contradiction. Assume that R−(α) ≙ ∅. We will obtain

∑b∈R+(α)
σ(b)
ν(b) < 0 which is impossible under QBAF’ where σ(b) > 0. There-

fore, it must be the case that R−(α) ≠ ∅.

Hence, ⟨QBAF,σ⟩ does not satisfy GP4, but ⟨QBAF ′, σ⟩ does.

GP5. If σ(α) > τ(α), then R+(α) ≠ ∅.
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Proof. From σ(α) > τ(α) with Definition 11, we obtain that

σ(α) ≙ τ(α) + ∑
b∈R+(α)

σ(b)
ν(b) − ∑

b∈R−(α)

σ(b)
ν(b) > τ(α).

Therefore,

∑
b∈R+(α)

σ(b)
ν(b) − ∑

b∈R−(α)

σ(b)
ν(b) > 0.

As in the proof of GP4, for QBAF, it is possible that R+(α) ≙ ∅ because

∑b∈R−(α)
σ(b)
ν(b) could be negative, satisfying the inequality. So, the property is

not satisfied. α2 in Figure 6.7 is one counterexample of this GP. In contrast,

for QBAF’, let us proof by contradiction. Assume that R+(α) ≙ ∅. We will

obtain −∑b∈R−(α)
σ(b)
ν(b) > 0. Thus, ∑b∈R−(α)

σ(b)
ν(b) < 0 which is impossible under

QBAF’ where σ(b) > 0. Therefore, it must be the case that R+(α) ≠ ∅.

Hence, ⟨QBAF,σ⟩ does not satisfy GP5, but ⟨QBAF ′, σ⟩ does.

GP6. If R−(α) ≙ R−(β), R+(α) ≙ R+(β), and τ(α) ≙ τ(β), then σ(α) ≙
σ(β).
Proof. According to Definition 11, we have

σ(α) ≙ τ(α) + ∑
b∈R+(α)

σ(b)
ν(b) − ∑

b∈R−(α)

σ(b)
ν(b) .

Because R−(α) ≙ R−(β), R+(α) ≙ R+(β), and τ(α) ≙ τ(β), we can re-

place τ(α), R+(α), and R−(α) with τ(β), R+(β), and R−(β), respectively.

Therefore,

σ(α) ≙ τ(β) + ∑
b∈R+(β)

σ(b)
ν(b) − ∑

b∈R−(β)

σ(b)
ν(b) ≙ σ(β).

Hence, both ⟨QBAF,σ⟩ and ⟨QBAF ′, σ⟩ satisfy GP6.

GP7. If R−(α) ⊂ R−(β), R+(α) ≙ R+(β), and τ(α) ≙ τ(β), then σ(α) >
σ(β).
Proof. Since R−(α) ⊂R−(β), we can partition R−(β) into two disjoint sets

which are R−(α) and a non-empty set of arguments X ≙ R−(β) −R−(α).
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According to Definition 11, we have

σ(β) ≙ τ(β) + ∑
b∈R+(β)

σ(b)
ν(b) − ∑

b∈R−(β)

σ(b)
ν(b)

≙ τ(β) + ∑
b∈R+(β)

σ(b)
ν(b) − ∑

b∈R−(α)

σ(b)
ν(b) − ∑b∈X

σ(b)
ν(b)

Because R+(α) ≙R+(β) and τ(α) ≙ τ(β), we obtain that

σ(β) ≙ τ(α) + ∑
b∈R+(α)

σ(b)
ν(b) − ∑

b∈R−(α)

σ(b)
ν(b) − ∑b∈X

σ(b)
ν(b)

≙ σ(α) − ∑
b∈X

σ(b)
ν(b)

As in the previous proofs, for QBAF, it is possible that ∑b∈X
σ(b)
ν(b) < 0,

rendering σ(α) < σ(β) and unsatisfying GP7. We can find a counterexample

in Figure 6.7 with α ≙ α3 and β ≙ α2. In contrast, for QBAF’, σ(b) > 0.

Therefore, ∑b∈X
σ(b)
ν(b) is always greater than 0. As a result, σ(α) > σ(β) as

required.

Hence, ⟨QBAF,σ⟩ does not satisfy GP7, but ⟨QBAF ′, σ⟩ does.

GP8. If R−(α) ≙ R−(β), R+(α) ⊂ R+(β), and τ(α) ≙ τ(β), then σ(α) <
σ(β).
Proof. Since R+(α) ⊂R+(β), we can partition R+(β) into two disjoint sets

which are R+(α) and a non-empty set of arguments X ≙ R+(β) −R+(α).
According to Definition 11, we have

σ(β) ≙ τ(β) + ∑
b∈R+(β)

σ(b)
ν(b) − ∑

b∈R−(β)

σ(b)
ν(b)

≙ τ(β) + ∑
b∈R+(α)

σ(b)
ν(b) + ∑b∈X

σ(b)
ν(b) − ∑

b∈R−(β)

σ(b)
ν(b)

Because R−(α) ≙R−(β) and τ(α) ≙ τ(β), we obtain that

σ(β) ≙ τ(α) + ∑
b∈R+(α)

σ(b)
ν(b) − ∑

b∈R−(α)

σ(b)
ν(b) + ∑b∈X

σ(b)
ν(b)

≙ σ(α) + ∑
b∈X

σ(b)
ν(b)
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As in the previous proofs, for QBAF, it is possible that ∑b∈X
σ(b)
ν(b) < 0,

rendering σ(α) > σ(β) and unsatisfying GP8. We can find a counterexample

in Figure 6.7 with α ≙ α3 and β ≙ α1. In contrast, for QBAF’, σ(b) > 0.

Therefore, ∑b∈X
σ(b)
ν(b) is always greater than 0. As a result, σ(α) < σ(β) as

required.

Hence, ⟨QBAF,σ⟩ does not satisfy GP8, but ⟨QBAF ′, σ⟩ does.

GP9. If R−(α) ≙ R−(β), R+(α) ≙ R+(β), and τ(α) < τ(β), then σ(α) <
σ(β).
Proof. Let us proof by contradiction. Assume that σ(α) ≥ σ(β). Applying

Definition 11, we obtain

τ(α) + ∑
b∈R+(α)

σ(b)
ν(b) − ∑

b∈R−(α)

σ(b)
ν(b) ≥ τ(β) + ∑

b∈R+(β)

σ(b)
ν(b) − ∑

b∈R−(β)

σ(b)
ν(b)

Because R−(α) ≙R−(β) and R+(α) ≙R+(β),
τ(α) + ∑

b∈R+(α)

σ(b)
ν(b) − ∑

b∈R−(α)

σ(b)
ν(b) ≥ τ(β) + ∑

b∈R+(α)

σ(b)
ν(b) − ∑

b∈R−(α)

σ(b)
ν(b)

τ(α) ≥ τ(β)
However, this contradicts the given statement that τ(α) < τ(β), so σ(α) ≥
σ(β) cannot be true. Thus, σ(α) < σ(β) as required.

Hence, both ⟨QBAF,σ⟩ and ⟨QBAF ′, σ⟩ satisfy GP9.

As a recap from Section 2.3, the definition of < between two sets used

in GP10 and GP11 is defined as follows. Given P and Q are subsets of

A, P ≤ Q iff there exists an injective mapping f from P to Q such that

∀α ∈ P,σ(α) ≤ σ(f(α)). Furthermore, P < Q iff P ≤ Q but Q ≰ P .

GP10. If R−(α) < R−(β), R+(α) ≙ R+(β), and τ(α) ≙ τ(β), then σ(α) >
σ(β).
Proof. Counterexamples of this GP for QBAF and QBAF’ are in Figures 6.7

and 6.8, respectively, where α ≙ α4 and β ≙ α5. We can see that R−(α) ≤
R−(β) as we have a mapping from R−(α) to R−(β), f ≙ {(α10, α11)},
where ∀a ∈R−(α), σ(a) ≤ σ(f(a)). In this case, σ(α10) ≤ σ(α11). However,

R−(β) ≰R−(α). So, R−(α) <R−(β). In addition, R+(α) ≙R+(β) ≙ ∅ and
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δ (0.1, 0.9)

α1

(0.4, 0.3)

α2

(0.4, 0.5)

α3

(0.4, 0.4)

α4

(0.8, 0.4)

α5

(0.8, 0.5)

α6

(0.2, 0.5)

α7

(0.2, 0.6)

α8 (-0.3, 0.2)

α9 (0.5, 0.5)

α10

(0.4, 0.4)

α11

(0.6, 0.6)

α12

(0.4, 0.4)

– + – + + – +

– +

+

– – + +

Figure 6.8.: The corresponding QBAF’ of the QBAF in Figure 6.7, used as a
counterexample in Section 6.2.4. With each argument, there is
a value pair (x, y) where x and y represent the base score and
the strength (based on the logistic regression semantics σ) of
the argument, respectively. The color represents the argument’s
supported class (i.e., green for positive (1) and red for negative
(0)).

τ(α) ≙ τ(β) ≙ 0.4. Nevertheless, σ(α) ≙ 0.4 and σ(β) ≙ 0.5, so σ(α) > σ(β)
is not true.

Hence, both ⟨QBAF,σ⟩ and ⟨QBAF ′, σ⟩ do not satisfy GP10. (This is

because σ considers not only the strengths of the attackers and the support-

ers but also their out-degrees.)

GP11. If R−(α) ≙ R−(β), R+(α) < R+(β), and τ(α) ≙ τ(β), then σ(α) <
σ(β).
Proof. Counterexamples of this GP for QBAF and QBAF’ are in Figures 6.7

and 6.8, respectively, where α ≙ α7 and β ≙ α6. We can see that R+(α) ≤
R+(β) as we have a mapping from R+(α) to R+(β), f ≙ {(α12, α11)},
where ∀a ∈R+(α), σ(a) ≤ σ(f(a)). In this case, σ(α12) ≤ σ(α11). However,

R+(β) ≰R+(α). So, R+(α) <R+(β). In addition, R−(α) ≙R−(β) ≙ ∅ and
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τ(α) ≙ τ(β) ≙ 0.2. Nevertheless, σ(α) ≙ 0.6 and σ(β) ≙ 0.5, so σ(α) < σ(β)
is not true.

Hence, both ⟨QBAF,σ⟩ and ⟨QBAF ′, σ⟩ do not satisfy GP11. (This is

because σ considers not only the strengths of the attackers and the support-

ers but also their out-degrees.)

In conclusion, ⟨QBAF ′, σ⟩ satisfies nine out of the eleven group proper-

ties, while ⟨QBAF,σ⟩ satisfies only three. It means that our post-processing

step is important to make the argumentation framework align better with

human interpretations and become more suitable for generating local expla-

nations.

6.2.5. Generating Explanations

Presenting the whole QBAF’ as a local explanation to lay users is probably

not a good idea since the graph could be very complicated (in terms of the

number of arguments, relations, and the depth). Also, the notions of attacks

and supports may not be familiar to the users. So, the last step of AXPLR

is extracting the explanation from the QBAF’. We know from Theorem 2

and Corollary 2 that the prediction of the LR model is associated to the

strength of δ. Hence, we can explain the prediction based on how σ(δ)′
was calculated. The value of σ(δ)′ depends on τ ′(δ) (corresponding to the

bias term in LR) and the strength σ of all the attackers and supporters

of δ. Therefore, we return, as the local explanation for c′(δ), a list of

(pj , π(pj , x), σ(αj)′) triplets where x is the input text, αj (representing the

pattern pj) is one of the k strongest supporters of δ, and π(pj , x) is a part

of x that matches the pattern pj . If we want both evidence for and counter-

evidence against the prediction, we can show (pj , π(pj , x), σ(αj)′) for the

top supporters and top attackers with the highest σ(αj)′. We call this

explanation the shallow AXPLR. Figure 6.9 shows an example of shallow

AXPLR (extracted from a BQBAF’) for the deceptive review detection

task where the color intensity represents the strengths of the arguments.

Shallow AXPLR is similar to the flat logistic regression explanation (FLX)

introduced in Section 6.1. The only differences are that (i) FLX selects top

k patterns based on the size of wjfj (which is equivalent to τ(αj)) while the

shallow AXPLR selects top k arguments based on the dialectical strength

σ(αj) and (ii) any patterns matched in x can be in the FLX whereas only
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Figure 6.9.: Example of shallow AXPLR for deceptive review detection. The
meaning of each pattern is also provided. The color and its
intensity represent the supported class and the strengths of the
arguments, respectively.

attackers and supporters of δ can be in the shallow AXPLR.

The shallow AXPLR leverages only the attackers and supporters of δ al-

though we have more information. Therefore, we propose another variation

of AXPLR, called deep AXPLR, which also uses other arguments in the

QBAF’. Basically, it shows what the shallow AXPLR shows but addition-

ally allows the users to expand the arguments shown to see their attackers

and supporters (if any). They can expand further to see deeper arguments

in the QBAF’ until there is no attacker or supporter for that argument.

Figure 6.10 is a deep AXPLR, explaining the same example and using the

same BQBAF’ as the shallow AXPLR in Figure 6.9 does.

Actually, QBAF’ has potential to be used for generating other forms of

explanations such as conversational explanations (Cocarascu et al., 2019)

and counterfactual explanations (Albini et al., 2021). These interesting

directions, however, are left for future work.
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Figure 6.10.: Example of deep AXPLR for deceptive review detection. A
user can expand some patterns to see their sub-patterns (i.e.,
their attackers and/or supporters). The meaning of each pat-
tern is provided as a tooltip. The color and its intensity repre-
sent the supported class and the strengths of the arguments,
respectively.

6.3. Experimental Setup

To evaluate AXPLR, we conducted both empirical and human evaluations.

For the empirical evaluation, we calculated some statistics for the QBAFs

extracted for target examples and performed analyses concerning sufficiency

of the generated explanations. For the human evaluation, we (i) assessed

plausibility of the explanations (i.e., how well the explanations from AX-

PLR align with human explanations compared to a standard method for

explaining logistic regression results) and (ii) assessed how well AXPLR

can teach and support humans to perform a new task.

In the experiments, we targeted binary text classification using three En-

glish datasets as shown in Table 6.3. The table also shows the classes we

consider as positive and negative classes when running GrASP and AXPLR.

• SMS Spam Collection (Almeida et al., 2011) focusing on detecting

spams in a collection of SMS (short message service) messages. The

dataset is imbalanced, containing 13.40% spam messages and 86.60%

ham messages (i.e., non-spams).

• Amazon Clothes (He and McAuley, 2016), the same dataset as in

Chapter 5, focusing on classifying whether a review (of clothing, shoes,

and jewelry products) has positive or negative sentiment. The overall
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Dataset Positive Negative Train / Dev / Test

SMS Spam Collection Spam Not spam 3567 / 892 / 1115
Amazon Clothes Positive Negative 3000 / 300 / 10000
Deceptive Hotel Reviews Deceptive Truthful 1024 / 256 / 320

Table 6.3.: Datasets used in the experiments.

Dataset
Positive

F1
Negative

F1
Macro

F1
Accuracy

SMS Spam Collection 0.891 0.986 0.939 0.975
Amazon Clothes 0.836 0.836 0.836 0.836
Deceptive Hotel Reviews 0.847 0.859 0.853 0.853

Table 6.4.: Performance of the pattern-based LR models on the test sets.

dataset is balanced.

• Deceptive Hotel Reviews (Ott et al., 2011, 2013) focusing on iden-

tifying whether a given hotel review is truthful (genuine) or deceptive

(fake). There are 1600 reviews in total for 20 hotels. For each hotel,

there are 20 truthful positive, 20 truthful negative, 20 deceptive pos-

itive, and 20 deceptive negative reviews. (Positive and negative here

refer to the review sentiment.)

For the LR classifiers of the first two datasets, the GrASP patterns were

constructed with lemma, part-of-speech tags (POS), wordnet hypernyms,

and sentiment attributes. We used alphabet size of 200, allowed two gaps

in the patterns, and generated 100 patterns in total. For the last dataset

(Deceptive Hotel Reviews), the settings were the same except that we used

text attributes (capturing the whole word) instead of the lemma attributes

and we generated 200 patterns in total. The performance of the LR classi-

fiers of the three datasets are reported in Table 6.4.

6.4. Experiment 1: Empirical Evaluation

We divide the empirical evaluation into two parts. The first part discusses

the statistics for QBAF and QBAF’ we generated from the test sets. This

helps us understand what the graphs look like on average. The second part

focuses on sufficiency, aiming to answer “How many supporting arguments
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are needed on average so as to sufficiently make the model predicts what it

predicts?”. This helps us decide how many arguments we should show in

AXPLR generally.

6.4.1. Statistics for QBAF and QBAF’

Tables 6.5-6.7 show the statistics of the QBAF and QBAF’ for the SMS

Spam Collection, Amazon Clothes, and Deceptive Hotel Reviews, respec-

tively. Due to space limitation, we introduce a few new symbols for using

in the tables.

A
+,δ ≙ {a ∈ A∣c(a) ≙ 1}
A
−,δ ≙ {a ∈ A∣c(a) ≙ 1}
R ≙R− ∪R+

R/δ ≙ {(a, b) ∈R∣b ≠ δ}
Basically, A+,δ and A−,δ are sets of arguments (possibly including δ) that

support the positive class and the negative class, respectively. R is the set

of all relations in the QBAF or QBAF’. R/δ is the set of all relations that

are not connected to δ. If R/δ ≙ ∅, the generated AXPLR will look like

FLX where we do not consider relationships between features.

Number of arguments. According to the result tables, the spam dataset

had the minimum average number of arguments (∼ 10 arguments per exam-

ple as shown by ∣A∣ in Table 6.5). However, if we look at examples of which

the prediction is positive (i.e., both TP and FP), we can see that they had 36

arguments per example on average. Looking at the underlying PLR model,

we found that the default argument δ before post processing supported the

negative class with τ(δ) ≙ 5.800, which was very high compared to the base

scores of other arguments. It means that the classifier answered “Not spam”

by default unless there is sufficient evidence to answer “Spam”. Even true

negative examples (TN) had around three arguments for the negative class

on average, including δ. Interestingly, false negative examples (FN) had

relatively higher arguments than true negatives, but still less than those

of true positives. It implies that the false negatives usually had some, but

insufficient, evidence for the positive class, compared to the true negatives
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Measurement TQBAF TQBAF’ BQBAF BQBAF’

# Examples 1115 (TP: 115, TN: 972, FP: 5, FN: 23)

∣A∣ 10.08±11.55 10.08±11.55 10.08±11.55 10.08±11.55
- TP 35.98±12.26 35.98±12.26 35.98±12.26 35.98±12.26
- TN 6.66±6.01 6.66±6.01 6.66±6.01 6.66±6.01
- FP 36.00±11.98 36.00±11.98 36.00±11.98 36.00±11.98
- FN 19.30±9.66 19.30±9.66 19.30±9.66 19.30±9.66

∣A+,δ ∣ 5.86±7.12 6.25±7.77 5.86±7.12 6.47±8.07

- TP 22.36±7.17 24.68±7.70 22.36±7.17 25.42±7.52
- TN 3.70±3.57 3.85±3.69 3.70±3.57 4.00±4.01
- FP 20.40±6.31 22.20±6.87 20.40±6.31 24.20±6.02
- FN 11.26±4.73 11.74±4.83 11.26±4.73 12.48±5.69

∣A−,δ ∣ 4.22±4.63 3.83±4.14 4.22±4.63 3.61±3.81

- TP 13.63±5.60 11.30±5.37 13.63±5.60 10.57±5.41
- TN 2.96±2.66 2.81±2.65 2.96±2.66 2.66±2.33
- FP 15.60±5.77 13.80±5.50 15.60±5.77 11.80±6.06
- FN 8.04±5.17 7.57±5.29 8.04±5.17 6.83±4.25

∣R∣ 11.64±16.77 11.64±16.77 13.82±21.40 13.82±21.40
- TP 49.31±19.63 49.31±19.63 61.43±26.11 61.43±26.11
- TN 6.69±8.17 6.69±8.17 7.57±10.37 7.57±10.37
- FP 50.60±21.14 50.60±21.14 64.20±28.35 64.20±28.35
- FN 23.96±14.27 23.96±14.27 29.17±19.09 29.17±19.09

∣R/δ ∣ 8.32±14.76 8.32±14.76 8.32±14.76 8.32±14.76

- TP 40.81±18.81 40.81±18.81 40.81±18.81 40.81±18.81
- TN 4.06±7.09 4.06±7.09 4.06±7.09 4.06±7.09
- FP 43.40±21.41 43.40±21.41 43.40±21.41 43.40±21.41
- FN 18.43±13.93 18.43±13.93 18.43±13.93 18.43±13.93

∣R−∣ 6.39±8.48 5.31±6.33 7.51±10.90 5.73±7.93
- TP 24.92±9.91 16.50±8.10 31.50±13.48 20.22±11.75
- TN 3.95±4.43 3.74±4.15 4.36±5.43 3.75±4.71
- FP 26.60±10.83 20.60±10.36 32.40±14.84 22.40±12.95
- FN 12.78±7.11 12.13±6.59 15.30±9.18 13.35±7.79

∣R+∣ 5.24±8.49 6.33±10.88 6.31±10.72 8.10±13.88
- TP 24.39±10.38 32.81±12.21 29.93±13.40 41.22±15.19
- TN 2.74±3.99 2.95±4.28 3.21±5.20 3.82±5.85
- FP 24.00±10.89 30.00±11.07 31.80±14.04 41.80±15.69
- FN 11.17±7.51 11.83±7.95 13.87±10.33 15.83±11.62

Table 6.5.: Statistics (Average ± SD) of QBAF and QBAF’ for the SMS
Spam Collection dataset. TP, TN, FP, and FN stand for true
positives, true negatives, false positives, and false negatives, re-
spectively. Please find the meanings of A+,δ,A−,δ,R and R/δ in

Section 6.4
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Measurement TQBAF TQBAF’ BQBAF BQBAF’

# Examples 10000 (TP: 4176, TN: 4186, FP: 848, FN: 790)

∣A∣ 16.09±8.13 16.09±8.13 16.09±8.13 16.09±8.13
- TP 14.85±7.57 14.85±7.57 14.85±7.57 14.85±7.57
- TN 17.45±8.21 17.45±8.21 17.45±8.21 17.45±8.21
- FP 14.99±8.14 14.99±8.14 14.99±8.14 14.99±8.14
- FN 16.57±9.31 16.57±9.31 16.57±9.31 16.57±9.31

∣A+,δ ∣ 7.39±4.36 7.45±4.50 7.39±4.36 7.43±4.88

- TP 8.91±4.18 9.74±4.07 8.91±4.18 10.22±4.51
- TN 5.93±3.98 5.20±3.76 5.93±3.98 4.75±3.68
- FP 7.80±4.27 8.47±4.12 7.80±4.27 8.49±4.34
- FN 6.65±4.55 6.10±4.29 6.65±4.55 5.84±4.37

∣A−,δ ∣ 8.70±5.23 8.64±5.89 8.70±5.23 8.65±6.24

- TP 5.94±3.99 5.10±4.18 5.94±3.99 4.63±4.27
- TN 11.52±4.96 12.25±5.36 11.52±4.96 12.71±5.53
- FP 7.19±4.18 6.52±4.38 7.19±4.18 6.50±4.44
- FN 9.92±5.14 10.47±5.49 9.92±5.14 10.73±5.57

∣R∣ 17.64±10.25 17.64±10.25 21.68±13.29 21.68±13.29
- TP 16.33±9.78 16.33±9.78 20.55±12.49 20.55±12.49
- TN 19.10±10.20 19.10±10.20 23.07±13.47 23.07±13.47
- FP 16.38±10.47 16.38±10.47 20.06±13.57 20.06±13.57
- FN 18.18±11.57 18.18±11.57 22.03±15.32 22.03±15.32

∣R/δ ∣ 12.71±8.73 12.71±8.73 12.71±8.73 12.71±8.73

- TP 12.34±8.42 12.34±8.42 12.34±8.42 12.34±8.42
- TN 13.30±8.74 13.30±8.74 13.30±8.74 13.30±8.74
- FP 11.68±9.01 11.68±9.01 11.68±9.01 11.68±9.01
- FN 12.65±9.77 12.65±9.77 12.65±9.77 12.65±9.77

∣R−∣ 5.27±3.79 5.11±3.96 8.10±5.54 4.08±3.47
- TP 4.74±3.55 5.50±4.38 8.20±5.18 3.72±3.43
- TN 5.73±3.86 4.56±3.27 8.00±5.70 4.12±3.31
- FP 5.20±3.82 6.30±4.66 8.09±5.73 5.15±3.75
- FN 5.61±4.25 4.68±3.67 8.14±6.31 4.72±3.84

∣R+∣ 12.38±7.04 12.53±7.20 13.58±8.44 17.59±10.52
- TP 11.59±6.76 10.83±5.97 12.35±7.72 16.83±9.79
- TN 13.37±6.98 14.54±7.64 15.06±8.65 18.95±10.82
- FP 11.18±7.16 10.08±6.30 11.97±8.35 14.91±10.26
- FN 12.56±7.92 13.49±8.52 13.89±9.65 17.32±11.89

Table 6.6.: Statistics (Average ± SD) of QBAF and QBAF’ for the Amazon
Clothes dataset. TP, TN, FP, and FN stand for true positives,
true negatives, false positives, and false negatives, respectively.
Please find the meanings of A+,δ,A−,δ,R and R/δ in Section 6.4
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Measurement TQBAF TQBAF’ BQBAF BQBAF’

# Examples 320 (TP: 130, TN: 143, FP: 26, FN: 21)

∣A∣ 19.44±6.82 19.44±6.82 19.44±6.82 19.44±6.82
- TP 19.54±6.54 19.54±6.54 19.54±6.54 19.54±6.54
- TN 20.24±6.86 20.24±6.86 20.24±6.86 20.24±6.86
- FP 17.77±6.48 17.77±6.48 17.77±6.48 17.77±6.48
- FN 15.48±7.34 15.48±7.34 15.48±7.34 15.48±7.34

∣A+,δ ∣ 9.14±4.46 9.89±5.02 9.14±4.46 10.34±5.00

- TP 12.06±4.27 13.58±4.53 12.06±4.27 13.85±4.50
- TN 6.85±3.11 6.92±3.21 6.85±3.11 7.43±3.32
- FP 9.50±3.56 10.77±3.74 9.50±3.56 11.42±4.09
- FN 6.19±3.60 6.29±3.61 6.19±3.60 7.10±3.96

∣A−,δ ∣ 10.30±4.91 9.55±5.33 10.30±4.91 9.10±5.13

- TP 7.48±3.16 5.96±3.14 7.48±3.16 5.69±2.93
- TN 13.39±4.77 13.32±4.81 13.39±4.77 12.81±4.68
- FP 8.27±3.34 7.00±3.27 8.27±3.34 6.35±2.86
- FN 9.29±4.23 9.19±4.19 9.29±4.23 8.38±3.77

∣R∣ 22.03±9.43 22.03±9.43 21.48±9.62 21.48±9.62
- TP 23.96±9.93 23.96±9.93 23.12±10.32 23.12±10.32
- TN 21.41±8.69 21.41±8.69 21.01±8.67 21.01±8.67
- FP 20.04±8.88 20.04±8.88 20.00±9.75 20.00±9.75
- FN 16.81±9.35 16.81±9.35 16.29±9.37 16.29±9.37

∣R/δ ∣ 8.19±6.35 8.19±6.35 8.19±6.35 8.19±6.35

- TP 10.69±7.09 10.69±7.09 10.69±7.09 10.69±7.09
- TN 6.47±5.13 6.47±5.13 6.47±5.13 6.47±5.13
- FP 7.35±5.64 7.35±5.64 7.35±5.64 7.35±5.64
- FN 5.52±4.59 5.52±4.59 5.52±4.59 5.52±4.59

∣R−∣ 9.30±4.35 7.00±3.43 8.43±4.25 6.13±3.24
- TP 11.41±4.43 6.45±3.34 10.43±4.50 5.98±3.51
- TN 7.75±3.48 7.55±3.34 6.96±3.29 6.32±2.96
- FP 9.58±4.03 7.12±3.84 8.81±4.04 6.38±3.65
- FN 6.52±3.75 6.52±3.75 5.52±3.14 5.48±2.91

∣R+∣ 12.73±6.18 15.03±7.09 13.05±6.45 15.34±7.35
- TP 12.55±6.27 17.52±7.66 12.69±6.54 17.14±7.66
- TN 13.66±6.03 13.86±6.11 14.06±6.25 14.69±6.81
- FP 10.46±5.58 12.92±5.59 11.19±6.15 13.62±6.66
- FN 10.29±6.29 10.29±6.29 10.76±6.74 10.81±7.10

Table 6.7.: Statistics (Average ± SD) of QBAF and QBAF’ for the Decep-
tive Hotel Review dataset. TP, TN, FP, and FN stand for true
positives, true negatives, false positives, and false negatives, re-
spectively. Please find the meanings of A+,δ,A−,δ,R and R/δ in

Section 6.4
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which almost have nothing.

Unlike the SMS Spam Collection dataset, the base scores of δ for the

Amazon Clothes and the Deceptive Hotel Reviews datasets were 0.2597

and 0.6932 supporting the negative class, respectively. In order to push the

prediction to either positive or negative, we needed evidence. Hence, the

average number of arguments for these two datasets were similar for both

classes (as shown by ∣A∣ of TP, TN, FP, FN in Tables 6.6-6.7). Examples

predicted as positive, therefore, had higher number of arguments for the

positive class (∣A+,δ ∣) than those predicted as negative, and vice versa.

Number of relations. The number of relations, ∣R∣, had the similar trend

as the number of arguments. Texts predicted as spams had significantly

higher attacks and supports than those predicted as non-spams (see ∣R−∣
and ∣R+∣ in Table 6.5). For the other two datasets, they usually had more

supports than attacks, especially after post-processing, to provide sufficient

evidence for the predictions. In any case, all the three datasets had ∣R/δ ∣
from 8 to 12, on average, this sure made the explanations extracted from

QBAF’ (i.e., AXPLR) different from the standard explanations for logistic

regressions (i.e., FLX) due to many relations between features.

Other remarks. Finally, we could make a few interesting remarks from

these result tables. First, the number of arguments ∣A∣ for TQBAF, TQBAF’,

BQBAF, and BQBAF’ for the same example are always equal. This is ex-

pected from Definition 10 and 12. Second, ∣R∣ of TQBAF and BQBAF are

different but their ∣R/δ ∣ are the same. This is because TQBAF and BQBAF

have the same relations between two non-default arguments except that

the directions are reversed. For the relations with the default argument,

TQBAF connects the arguments of the most general patterns to the default

whereas BQBAF connects the most specific patterns to the default. That is

why ∣R∣ was different between TQBAF and BQBAF. Lastly, post-processing

does not change the number of total relations in the experiments as you can

see from ∣R∣ of TQBAF and TQBAF’ and ∣R∣ of BQBAF and BQBAF’. In

theory, it could possibly change as the relations (a, b) with σ(a) ≙ 0 are re-

moved. However, because all the base scores in QBAF are from the weights

of the trained LR model, each of which has around 15 decimal points, it is

hardly possible to find the argument a with σ(a) ≙ 0 in practice. So, none
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of the relations are removed during post-processing.

6.4.2. Sufficiency

Next, given a QBAF’, we were interested in the number of supporting ar-

guments needed in order to sufficiently explain the prediction. Here, suffi-

ciently means that given the base score of δ and all the attacking arguments,

the strengths given by these supporting arguments are enough to make the

strength of δ greater than 0. This is analogous to the meaning of sufficiency

for input rationales, defined in Section 3.2.1 Definition 7, with an adapta-

tion to the context of argumentation frameworks. In other words, for each

test example, we wanted to find the smallest k such that S ⊆R+′(δ), ∣S∣ ≙ k
and

τ ′(δ) +∑
b∈S

σ(b)
ν(b) − ∑

b∈R−′(δ)

σ(b)
ν(b) > 0 (6.7)

Furthermore, we extended our question to other arguments in QBAF’ which

had at least one attacker or supporter. (We call them intermediate argu-

ments.) We wondered how many supporting arguments were needed to

make the strength of the argument greater than 0, taking into account the

base score and all the strengths from the attackers. Knowing the answers

to these questions helps us decide how many arguments we should show to

the users for explaining the final prediction or the intermediate arguments,

especially when we have limited space.

Figures 6.11-6.13 show the results of this experiment. The x-axis of each

plot is the number of supporting arguments used (k), whereas the y-axis

shows the percentage of arguments (default or intermediate) of which the

strength can be greater than 0 by using only k supporting arguments.

Considering plots on the left-hand side of the three figures, we can see

that the numbers of supporting arguments needed for δ were different for

each dataset. The SMS Spam Collection dataset seemed to need the least.

However, this was the case only for examples predicted as negative, i.e.,

the supported class was not flipped after post-processing, corresponding

to Figure 6.11(c). The reason was that the base score of δ was relatively

high. It could outnumber the strengths from the attackers even without

the strengths from the supporters. Nevertheless, this was not true when

the supported class flips from negative to positive as it required 4-6 sup-
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(a) Default δ (All) (b) Intermediate αi (All)

(c) Default δ (Class not flipped) (d) Intermediate αi (Class not flipped)

(e) Default δ (Class flipped) (f) Intermediate αi (Class flipped)

Figure 6.11.: Plots showing the percentage of arguments (the default argu-
ments δ or intermediate arguments αi) of which the strength
can be greater than 0 using only k supporting arguments.
These arguments are extracted from test examples of the SMS
Spam Collection dataset. Class flipped means the supported
class changes after post-processing.

porting arguments to make 80% of the test set have sufficient explanations.

Meanwhile, the Amazon Clothes and the Deceptive Hotel Reviews datasets

required approximately 1-3 and 3-4 supporting arguments, respectively, for
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(a) Default δ (All) (b) Intermediate αi (All)

(c) Default δ (Class not flipped) (d) Intermediate αi (Class not flipped)

(e) Default δ (Class flipped) (f) Intermediate αi (Class flipped)

Figure 6.12.: Plots showing the percentage of arguments (the default argu-
ments δ or intermediate arguments αi) of which the strength
can be greater than 0 using only k supporting arguments.
These arguments are extracted from test examples of the Ama-
zon Clothes dataset. Class flipped means the supported class
changes after post-processing.

sufficient explanations of 80% of the test set (regardless of the predicted

class).

Besides, for the SMS Spam Collection and the Amazon Clothes datasets,
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(a) Default δ (All) (b) Intermediate αi (All)

(c) Default δ (Class not flipped) (d) Intermediate αi (Class not flipped)

(e) Default δ (Class flipped) (f) Intermediate αi (Class flipped)

Figure 6.13.: Plots showing the percentage of arguments (the default argu-
ments δ or intermediate arguments αi) of which the strength
can be greater than 0 using only k supporting arguments.
These arguments are extracted from test examples of the De-
ceptive Hotel Reviews dataset. Class flipped means the sup-
ported class changes after post-processing.

BQBAF’ required more supporting arguments than TQBAF’. This was

likely because BQBAF’ connected the arguments representing the most spe-

cific patterns to the default. For these two datasets, they outnumbered the
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most general patterns TQBAF’ connected to the default. So, the default

argument of BQBAF’ had more supporters where the strengths were dis-

tributed. Therefore, more supporters were required to make the sufficient

explanation.

Considering the plots on the right side of Figures 6.11-6.13, only one

supporting argument was usually sufficient to explain the supported class

of an intermediate argument αi. Even without any supporters, only the

base score was sufficient in most cases if the supported class is not flipped

after post-processing. Hence, if a user wants to see supporting information

for an intermediate argument, when the space is limited, showing only 1-2

supporters are totally acceptable.

6.5. Experiment 2: Plausibility

In this section, we aimed to evaluate the plausibility of AXPLR, compared

to FLX, to confirm our hypothesis that it is essential to consider relations

between features (i.e., patterns) when we generate local explanations. So,

we compared the feature scores given by the explanation methods to scores

reflecting how humans consider the features. For instance, if a machine

explanation says that p1 is a main reason for predicting the positive class

and humans also think that p1 is truly a sign of the positive class, we can

say that the machine explanation has high plausibility (i.e., aligning well

with human judgement). Therefore, in this experiment, we used FLX and

AXPLR to generate explanations for a number of test examples. Then we

collected humans’ opinions on the explanations and computed the correla-

tions between machine explanation scores and human judgement so as to

quantify plausibility of the explanations.

6.5.1. Datasets and Materials

Datasets. We used the SMS Spam Collection (spam classification) and

the Amazon Clothes (sentiment analysis) datasets since humans generally

perform well on these two tasks and can identify evidence for each of the

classes. In contrast, we did not conduct this experiment on the Deceptive

Hotel Reviews dataset as lay humans are not adept at identifying deceptive
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reviews6, so we cannot trust human judgement on machine explanations in

this task. We would work on the deceptive review detection task in the next

experiment instead.

Models and inputs. In this experiment, we still used the LR models

explained in Section 6.3. For each of the two chosen datasets, we gener-

ated machine explanations for 500 test examples and then collected human

opinions on these explanations. As in Section 4.1.2, the test examples we

(randomly) selected must have the predicted probability of the output class

greater than 0.9 to ensure that the bad quality of the explanation was not

due to low model accuracy or text ambiguity.

Machine explanations. Concerning explanation methods, we compared

AXPLR to FLX, which is the standard way to explain LR predictions.

As discussed in Section 6.2.5, both FLX and AXPLR use (pj , π(pj , x), sj)
triplets as explanations where sj is the score of the pattern pj or the match

π(pj , x) in the input x. Hence, after we generated explanations for the

input x, the pattern pj and the matched phrase π(pj , x) would obtain sj

from both FLX and AXPLR. For FLX, sj for the positive class equals wjfj .

For AXPLR, we tried using both τ ′ and σ as sj so that we could observe

the usefulness of our logistic regression semantics. In fact, τ ′ and σ needs to

be interpreted with the supported class. To simplify this issue, we adjusted

sj for AXPLR to be self-contained by multiplying τ ′(αj) and σ(αj)′ of

AXPLR with 1 if c′(αj) ≙ 1, or with -1 if c′(αj) ≙ −1. This made the higher

sj always imply the stronger evidence for the positive class (similar to FLX).

Questions. To measure plausibility, we then collected human scores hj

for pj and π(pj , x) in order to compare them with sj from FLX and AX-

PLR. To collect hj for pj , we generated two types of questions. The first

type, so called the pattern question, showed pj to human participants and

asked them whether pj was likely the evidence for the positive or the neg-

ative class. Since the pattern pj only may be difficult to understand, we

provided the translation to help the participants, as shown in Figure 6.14

(a). Even with the translation, humans may not be able to understand

6The human accuracy on deceptive review detection was only around 55% in (Lai et al.,
2020).
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(a) An example question for a pattern.

(b) An example question for a group of phrases sampled from the pattern.

(c) An example question for a matched phrase.

Figure 6.14.: Examples of questions (from the Amazon Clothes dataset)
posted on Amazon Mechanical Turk to elicit human scores.

the pattern and its role in the classification task clearly. So, the second

type of questions, so called the samples question, showed samples of phrases

(from the training set) matched by the pattern pj instead and asked the

participants the same question, that is, whether the phrases were likely the

evidence for the positive or the negative class. In each question, we showed

five unique samples per pattern7, as displayed in Figure 6.14 (b). To collect

hj for π(pj , x), we used the third type of questions, so called the matched

phrase question. It was the simplest type of questions because it showed

only a single matched phrase π(pj , x) and asked the participants the same

question, as shown in Figure 6.14 (c).

For all question types, the participants were provided five options, similar

to Chapter 4. For the sentiment analysis task, the options included definitely

positive, positive, not sure, negative, and definitely negative. For the spam

7If we have less than five unique matched phrases in the training set, we just show all
of them.
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classification task, these options were instead definitely spam, spam, not

sure, non-spam, and definitely non-spam. For both tasks, the corresponding

human scores hj of these options were 2, 1, 0, -1, and -2, respectively, so

the higher hj meant the stronger evidence for the positive class according to

human judgement. Each question would be answered by five participants,

and the scores were averaged before comparing with machine explanation

scores.

6.5.2. Participants and Procedure

We recruited human participants via Amazon Mechanical Turk (MTurk),

and we also used MTurk to host our questions. With two datasets and three

question types, we created and posted six tasks on MTurk. As with the

case in Chapter 5, each task contained a short description, and an MTurk

worker could select to do as many tasks/HITs as s/he wanted. Each HIT

consisted of four sections including the instructions, three example questions

with explanations, a set of actual questions, and a text box for an optional

feedback. For the tasks of pattern questions, we also included descriptions

on how to read the patterns (such as the attribute types and the structure)

in the instructions. Concerning the number of questions per HIT, for the

first and the second types of questions (patterns and samples), a single HIT

contained 10 questions to be answered. For the third type of questions

(matched phrases) which was easier to answer, a single HIT contained 20

questions. The worker was required to answer all the assigned questions

before clicking submit. After that, s/he could accept to perform the next

HIT if they wanted. As in Chapter 5, we set three required qualifications

for MTurk workers who wanted to perform our tasks: (1) currently living in

the US, the UK, Australia, or New Zealand, (2) having at least 50 approved

HITs and (3) having more than 97% HITS approval rate so far.

Concerning the payment for answering questions, we paid the MTurk

workers $0.30 per 10 pattern questions, $0.20 per 10 group-of-phrases ques-

tions, and $0.20 per 20 matched phrase questions. At the end, there were

256 participants helping complete 1,726 HITs in total. The minimum and

the maximum numbers of HITs per participant are 1 and 90, respectively,

while the mean and the standard deviation are 4.92 and 12.06, respectively.
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6.5.3. Data Collection and Analysis

As each question was answered by five participants, we averaged their scores

before comparing it with sj . Additionally, we calculated the inter-rater

agreement measure (Fleiss’ kappa) (Fleiss, 1971) of the human answers.

After that, for each pj in an input x, we had three (averaged) hj for the

pattern, the samples, and the matched phrase. Using as an evaluation

measure for plausibility, we calculated Pearson’s correlation of the three hj

and the machine explanation scores sj for different explanation methods

and settings. A higher correlation score implies a higher plausibility of the

explanation method.

Turning to consider machine explanations, because any pj with a rela-

tively high FLX score sj can be chosen as a part of FLX explanation, we

compared sj of FLX with the three averaged human scores hj for every

pj . By contrast, shallow AXPLR uses only arguments in the top level of

the underlying QBAF, i.e., arguments attacking or supporting δ, as expla-

nations. Meanwhile, deep AXPLR can use any arguments in the QBAF.

So, for AXPLR, we calculated the Pearson’s correlation for both cases, i.e.,

using sj for top-level arguments only and using sj for all arguments (except

δ). Furthermore, since the sj of AXPLR depends on whether the QBAF is

TQBAF or BQBAF, we computed the correlation for both scenarios. Note

that sj of AXPLR could be either τ ′ or σ. However, we did not have the

setting where τ ′ is used as sj for arguments from all levels since this setting

is actually equivalent to FLX.

6.5.4. Results

Tables 6.8 and 6.9 report the Pearson’s correlations between the machine

explanation scores and the human scores collected from Amazon Mechanical

Turk for both datasets. The last row of each table shows inter-rater agree-

ment measures (Fleiss’ kappa). We observe that the agreement measures

for the SMS Spam Collection dataset were very close to zero (especially for

the questions for patterns and samples), while the agreement rates for the

Amazon Clothes dataset (sentiment analysis task) were significantly higher.

This was likely because evidence from the sentiment analysis task (including

patterns, samples, matched phrases) usually conveys clear meanings even

without contexts, whereas evidence from the spam detection task often re-
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Human scores
Explanation scores Pattern Samples Matched Phrase

FLX 0.227 0.175 -0.022

TQBAF’
sj ≙ τ

′(αj) (top level) 0.687 0.533 -0.019
sj ≙ σ(αj)′ (top level) 0.520 0.462 0.125
sj ≙ σ(αj)′ (all levels) 0.176 0.100 0.005

BQBAF’
sj ≙ τ

′(αj) (top level) 0.197 -0.005 -0.047
sj ≙ σ(αj)′ (top level) 0.240 0.175 0.046
sj ≙ σ(αj)′ (all levels) 0.271 0.308 0.053

Fleiss κ 0.001 0.068 0.118

Table 6.8.: Pearson’s correlation between explanation scores and human
scores for the SMS Spam Collection dataset.

Human scores
Explanation scores Pattern Samples Matched Phrase

FLX 0.503 0.525 0.529

TQBAF’
sj ≙ τ

′(αj) (top level) 0.423 0.491 0.487
sj ≙ σ(αj)′ (top level) 0.632 0.693 0.688
sj ≙ σ(αj)′ (all levels) 0.490 0.503 0.501

BQBAF’
sj ≙ τ

′(αj) (top level) 0.442 0.466 0.486
sj ≙ σ(αj)′ (top level) 0.599 0.621 0.634
sj ≙ σ(αj)′ (all levels) 0.610 0.627 0.627

Fleiss κ 0.210 0.297 0.358

Table 6.9.: Pearson’s correlation between explanation scores and human
scores for the Amazon Clothes dataset.

quires contexts for humans to make decisions. For example, upset, worthless,

and disappointed were surely for negative reviews. In contrast, mobile, win,

and call could appear both in spam and non-spam texts. This caused higher

disagreements in human answers though the model used these words cer-

tainly as evidence for the spam class. As a result, the human scores for the

spam task were less reliable than the scores for the sentiment analysis task.

Consequently, the overall correlations in Table 6.8 were also less than the

scores in Table 6.9.

Hence, we focused on discussing the results in Table 6.9 with more reli-
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able human scores. For each row, the correlation between the explanations

and the human scores for patterns was lower than for samples and matched

phrase. Hence, we should show not only the patterns but also some matched

samples of the patterns to generate better plausible explanations. In addi-

tion, for TQBAF’ and BQBAF’, the strengths of top-level arguments σ(αj)′
were better than the base scores τ ′(αj) in terms of the alignment with hu-

man judgement. The correlations were also significantly higher than FLX.

This confirmed the advantage of the prominent feature of AXPLR, i.e., con-

sidering interactions between patterns when generating local explanations.

However, by extending from arguments in the top level to all levels in the

QBAF’, only the correlations in BQBAF’ remained high, while the correla-

tions in TQBAF’ dropped. Therefore, deep AXPLR, utilizing arguments of

all levels in the graph, would go along better with BQBAF’ than TQBAF’.

It also implied that the base scores of the most specific patterns, which

equaled their strengths in TQBAF’, required some adjustments to align

well with human judgement.

6.6. Experiment 3: Tutorial and Real-time

Assistance

Among the three datasets, the deceptive review detection task is the most

difficult tasks for humans. In this experiment, we follow Lai et al. (2020) to

evaluate how effective AXPLR can be used to teach and support humans

to perform deceptive review detection.

6.6.1. Participants and Procedure

We recruited participants via Amazon Mechanical Turk with the same set

of required qualifications as in Experiment 2. After MTurk workers ac-

cepted to perform the task, we redirected them to our a survey created

using Qualtrics8. The survey aimed to assess the capability of humans to

detect deceptive hotel reviews before and after they learn from explanations.

It consisted of five parts.

1. Attention-check questions (4 questions) – The participant needed to

answer all the questions in this part correctly to proceed.

8https://imperial.eu.qualtrics.com/
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2. Pre-test (10 questions) – For each question, the participant was asked

whether a given hotel review was truthful or deceptive.

3. Tutorial (10 questions) – The format was the same as part 2, but then,

we revealed to the participant the correct answer and the AI-generated

prediction and explanation for them to learn from.

4. Post-test (20 questions) – For the first ten questions, the questions and

the format were the same as part 2. We additionally showed what the

participant had answered during the pre-test as a reference. The next

ten questions were the same as the first ten except that we also pro-

vided AI explanations (without the predictions) for these questions, as

real-time assistance (Lai et al., 2020). The format of the explanations

was the same as what s/he had seen during the tutorial phase. The

corresponding previous answer (from the first ten questions) was also

provided when the participant answered each of the last ten questions.

5. Additional questions (5 questions) – The participant was asked general

questions before finishing the survey. These include, for example,

how they detected deceptive and truthful reviews and any (free-text)

feedback they might want to tell us.

At the end of the survey, each participant was given a Reference ID as a

proof that s/he had completed the task (i.e., the HIT) for claiming the

reward from the MTurk system. The improved performance of humans

after being trained and assisted by the explanations showed how useful the

explanations were. To motivate the participants to pay attention to the

tasks, we divided the payment into two parts.

• A guaranteed reward ($2.00) was given after the participant completed

the whole survey.

• A bonus reward – The participant was given an additional bonus re-

ward of $0.10 for each question answered correctly (both in the pre-

test and in the post-test). Therefore, the maximum bonus reward

each participant could get was $0.10 x 30 = $3.00.

In total, we had 100 participants (to be explained in Section 6.6.3). At

the end of the experiment, the average of the bonus payments was $1.756

per person, whereas the standard deviation was $0.333.
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Figure 6.15.: Example of SVM explanation during the tutorial phase

6.6.2. Materials: Explanations

We compared four explanation methods in this experiment including SVM,

FLX, shallow AXPLR, and deep AXPLR. We selected linear SVM since

Lai et al. (2020) had shown that tutorials from simple models such as linear

SVM worked better than tutorials from deep models such as BERT (Devlin

et al., 2019). To train the SVM, we used TF-IDF vectorizer and employed

exhaustive search to find the best hyperparameter C ∈ {1,10,100,1000}. As

a result, the model achieved the accuracy and the macro F1 of 0.891. We

generated the explanations for the SVM model by showing the most impor-

tant 10 words according to the absolute value of SVM coefficients. We also

highlighted these words in text with the color and the intensity reflecting

the sign and the magnitude of the coefficient, respectively. An example of

SVM explanations during the tutorial phase is shown in Figure 6.15.

FLX, shallow AXPLR, and deep AXPLR were extracted from the same

pattern-based LR model, of which the performance was shown in Table 6.4.

Note that the LR model underperformed the SVM model, with the accuracy

of 0.853 and 0.891, respectively. We decided to use BQBAF’ for both shal-

low and deep AXPLR due to two reasons. First, the top-level arguments of

BQBAF’ provided more contexts than those of TQBAF’, and the experi-

ments in chapter 4 demonstrated that n-gram explanations were better than

word-level explanations thanks to more contexts provided. Second, deep
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AXPLR went along better with BQBAF’ than TQBAF’ as discussed in Sec-

tion 6.5. Both FLX and shallow AXPLR showed top 10 patterns/arguments

and share the same presentation, as shown in Figure 6.9. Deep AXPLR also

started from the top 10 arguments but allowed the users to expand them to

see attacking and supporting arguments, as shown in Figure 6.10. Moreover,

we provided the input text with highlights similar to SVM explanations to

help the users locate where the patterns appear in the input. The intensity

of the highlight represented the sum of the explanation scores of all patterns

that the word matched. For AXPLR, we summed the scores from only the

top-level patterns as the scores from other levels had been aggregated into

the top level.

6.6.3. Materials: Question Selection

For test questions, we randomly selected 50 questions from the test set

of the Deceptive Hotel Reviews dataset. Then we partitioned them into

five question sets. One participant was assigned one set of test questions

and one explanation method (for tutorial and real-time assistance). Each

pair of explanation method and question set was assigned to five people.

Overall, we had 4 explanation methods × 5 question sets × 5 annotations

= 100 surveys in total. So, we recruited exactly 100 participants on MTurk

without allowing a participant to do the survey twice.

For the ten tutorial questions for each explanation method, we selected

them from the development set of the Deceptive Hotel Reviews dataset using

submodular pick (Ribeiro et al., 2016) to ensure that the selected examples

covered important features of the task. Although submodular pick is a

greedy algorithm, it provides a constant-factor approximation guarantee of

1−e−1 to the optimum (Krause and Golovin, 2014). This made the tutorial

questions different for each explanation method except that shallow AXPLR

and deep AXPLR share the same set of tutorial questions.

6.6.4. Data Collection and Analysis

We are interested in the number of questions humans answered correctly

in the pre-test, the post-test without real-time assistance, and the post-test

with real-time assistance for different explanation methods. Particularly,

the most interesting part is the jump from the pre-test scores to each of
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the two post-test scores. As each explanation method had 25 surveys (5

question sets × 5 annotations), we averaged the scores before comparing

the results. Moreover, we compared the human scores to AI scores (i.e.,

accuracy scores of the SVM and the pattern-based LR models) to see how

large the performance gap was after training and real-time assistance.

6.6.5. Results

The average scores of human participants are displayed in Table 6.10. Us-

ing the pre-test scores as a baseline, we observe that the tutorial phase

only did not help the participants perform better as the post-test scores

without real-time assistance were not significantly greater than the base-

line. However, the real-time assistance after the tutorial indeed helped. By

the approximate randomization test with 1,000 iterations and a significance

level of 0.05 (Noreen, 1989; Graham et al., 2014), the post-test scores with

real-time assistance from the explanations were significantly higher than

the pre-test scores and the post-test scores with no assistance of the same

explanation methods. Nevertheless, we see no significant difference across

explanation groups, so we can conclude only that FLX, shallow AXPLR,

and deep AXPLR are competitive with SVM for providing explanations to

teach and support humans to detect deceptive reviews.

The last column in Table 6.10 shows the average performance of the

underlying AI model on the same set of questions. SVM achieved 9 out of

10 in three question sets and 10 out of 10 in the other two, whereas the

LR model (underlying FLX and AXPLR) got 7, 7, 8, 9, and 10 for the five

question sets (regardless of the order). The total numbers of people that

scored better than or equal to the AI during the pre-test, post-test with no

assistance, and post-test with assistance are 6, 8, and 26 out of 100 people,

respectively. This again shows the effectiveness of real-time assistance after

the participants learned from the tutorial.

Finally, we asked the participants in the final part of the survey how they

detected deceptive and truthful reviews. We manually selected interesting

answers from the participants who got 8 correct answers or more during

the post-test with AI assistance. The answers are shown in Tables 6.11

and 6.12. As expected, participants learning from SVM explanations rarely

mentioned patterns but individual words. Some used the majority of high-
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Explanation Pre-test score
Post-test score

Model
No assistance + assistance

SVM 5.68±1.60 5.12±1.24 6.56±1.87 9.40±0.50
FLX 5.64±1.38 5.68±1.44 6.56±1.73 8.20±1.19
Shallow AX. 5.40±1.53 5.60±1.35 6.56±1.89 8.20±1.19
Deep AX. 5.24±1.36 5.44±1.61 6.76±1.79 8.20±1.19

Table 6.10.: Scores of the human participants (Average ± SD) in the tutorial
and real-time assistance experiment using the Deceptive Hotel
Reviews dataset. AX. stands for AXPLR. The last column
shows the average score of the model that provides real-time
assistance. The maximum score is 10.

lighting colors as a heuristic (which was surprisingly effective, probably due

to the good performance of SVM). Since FLX was extracted from the LR

model with GrASP patterns, we noticed some patterns and generalizations

noted by participants who learned from FLX such as “when my was closely

followed by 1 and hotel was followed by different words” and “the language

used, and symbols and punctuation”. Similarly, we also saw patterns noted

by participants who learned from both types of AXPLR such as “It uses

pronouns closely together” and “The patterns of specific words close to-

gether stood out, like luxury hotel.”, as well as implicit patterns such as

“There’s also much less usage of city and hotel names”. On the other hand,

they could also cover word-level cues, as we can see from the comments like

“I would also assume it was deceptive if the reviewer said “I” a lot.”. How-

ever, there was no participant in the deep AXPLR group mentioning the

usefulness of sub-patterns (which could be expanded or collapsed). Also,

the average scores of both types of AXPLR were not significantly different.

It could imply that shallow AXPLR is already sufficient for tutorial and

real-time assistance, without the need to go deep. Last but not least, we

found two interesting comments from the deep AXPLR group. One con-

trasted deceptive and truthful reviews – “If the review said “location” as

apposed to naming the city, I was more likely to assume it was true, or if

it mentioned the elevators or doormen. If it said “we” instead of “I” I was

usually more inclined say it was truthful.”. The other theorized the reason

behind prominent patterns – “human phrasing that doesn’t have hallmarks

of being algorithmically generated or designed with the obvious intent to be

picked up by a search engine (repeatedly mentioning the word Chicago was
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Explanation Score Answer

SVM
10 If it seems too biased and sounds exaggerated.
9 Certain key words are used repeatedly and

unnaturally.
8 If it has more red than green.

FLX
9 Extreme and/or superlative language.
8 when my was closely followed by 1 and hotel was

followed by different words
8 because of the words used, and naming the

location, etc

Shallow
AXPLR

10 A city was not capitalized or the overuse and
closeness of “my” and “I”.

9 There were methods to look at the text or the
type, as well as sentiment and identify some un
natural responses. The patterns of specific words
close together stood out, like luxury hotel.

8 It uses pronouns closely together, uses proper
names for hotels and cities oddly, and so on.

Deep
AXPLR

9 The review mentioned the city by name a few
times and was accompanied by odd sounding and
separated facts.

8 If the review kept mentioning the name of the
city or referring to things as being luxurious or
smelly, then I would generally assume that the
review was deceptive. I would also assume it was
deceptive if the reviewer said “I” a lot.

8 It uses certain turns of phrase that are highly
improbable or likely to come from a genuine
human. Syntax issues can also be indicative of a
deceptive review.

Table 6.11.: Some answers from the participants on how they knew that
a review was deceptive. These answers were manually picked
from the participants who got 8 correct answers or more during
the post-test with AI assistance. We also show the explanation
method they were assigned and the final scores they got.

one example of this used).”.
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Explanation Score Answer

SVM
10 It sounds truthful and may sometimes talk about

both the good and bad of the experience.
9 Words are not frequently repeated and they are

used in a natural manner.
8 If it has more green than red

FLX
9 Down to earth. Pros and cons are expressed in a

balanced, not hyperbolic way.
8 when the text wasnt too long and sounded

realistic
8 the language used, and symbols and punctuation

Shallow
AXPLR

10 The use of brackets or parentheses.
9 The way the sentence was structured was far

different then the other ones. The deceptive ones
tried to appear truthful but the other ones just
came off as natural.

8 It describes the layout and number of things in a
more detailed fashion. There’s less of a focus on
repetitious usage of pronouns. There’s also much
less usage of city and hotel names.

Deep
AXPLR

9 The review spoke on a personal level and did
mention city names many times.

8 If the review said “location” as apposed to
naming the city, I was more likely to assume it
was true, or if it mentioned the elevators or
doormen. If it said “we” instead of “I” I was
usually more inclined say it was truthful. I also
just payed attention to the overall vibe of the
review.

8 Review features ordinary, human phrasing that
doesn’t have hallmarks of being algorithmically
generated or designed with the obvious intent to
be picked up by a search engine (repeatedly
mentioning the word Chicago was one example of
this used).

Table 6.12.: Some answers from the participants on how they knew that
a review was truthful. These answers were manually picked
from the participants who got 8 correct answers or more during
the post-test with AI assistance. We also show the explanation
method they were assigned and the final scores they got.
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6.6.6. Discussion

We may conclude from the results of Experiment 3 that AXPLR is competi-

tive with SVM and FLX in terms of assisting humans in detecting deceptive

reviews. Also, according to the qualitative analysis, AXPLR helps humans

capture non-obvious patterns which are helpful to perform the task to some

degree. Still, there is a gap between human performance and model perfor-

mance as we can notice in the last two columns of Table 6.10. To narrow

down this gap further, there are some interesting directions that could be

explored. First, how could we make the tutorial part more effective? We

hypothesize that submodular pick might not be the best method to select

tutorial questions. In fact, Lai et al. (2020) have tried the spaced repetition

strategy where humans are presented with important features repeatedly

(with some space in-between). However, it cannot be concluded from their

experiment that spaced repetition is significantly better than submodular

pick when it comes to selecting tutorial examples. It would be interesting

to study whether there is a better method to select and arrange tutorial

questions for supporting human learning.

Additionally, in our experiment, AXPLR transformed QBAF’ into a local

input-based explanation, identifying important parts in the input together

with the associated patterns. However, there are other forms of explanations

which could be extracted from QBAF’ and might be more suitable for this

task. One is counterfactual explanation, showing which arguments should

be added or removed from the current QBAF’ in order to change the model

prediction. This may help humans better learn relative importance of the

patterns. It is likely possible to extract counterfactual explanation from our

QBAF’, in line with a recent work by Albini et al. (2021) extracting counter-

factual explanations from argumentation frameworks for PageRank (Page

et al., 1999). Besides, if needed, we could generate synthetic example(s)

and/or QBAF’(s) to teach humans cases which are interesting but do not

exist in the training data. For example, an input x1 has a group of patterns

strongly supporting the positive class, while an input x2 has another group

of patterns strongly supporting the negative class. What would happen if

the two groups of patterns appeared in the same input? The answer to this

question could aid humans in prioritizing knowledge learned from individual

real examples. Combining groups of patterns is easier to do with AXPLR,
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but not FLX since FLX does not group related patterns together. Thus,

overall, although AXPLR did not outperform existing methods significantly

in this experiment, the experiment is a first step towards several possible

extensions of AXPLR that may be worth exploring to better support human

learning of new tasks.

6.7. General Considerations on AXPLR

In this section, we discuss complexity of AXPLR as well as its deployability

in other settings.

6.7.1. Method Complexity

According to Section 6.2, AXPLR consists of four steps including QBAF

extraction, computing dialectical strengths, post-processing, and generating

explanations. Practically, if we want to explain many predictions of the

same pattern-based LR classifier, we can pre-compute all possible arguments

and relations of the classifier beforehand in order to speed up the local

explanation generation phase. Let us analyze the complexity of both phases.

For the pre-computation phase, assume we are given a trained LR classifier

with d pattern features learned from GrASP. There are three steps we need

to do. First, based on the parameters of the trained model, we initialize all

possible arguments αi with necessary information, i.e., the corresponding

pattern pi, the base score τ(αi), and the original supported class c(αi).
Since we have d pattern features, the runtime of this step is in O(d). Second,

we check specificity relations of all the arguments which will later become

either attack or support relations in the QBAF. The number of argument

pairs we need to check is in O(d2). The time complexity of the specificity

check process depends on the method used. In our implementation, we

employ the most basic method, finding a set of training examples matched

by each corresponding pattern and checking if one set is a subset of the

other.9 For each pair of arguments, it takes a runtime in O(∣D∣) where

∣D∣ is the number of training examples. Hence, the runtime of this second

9This method relies on the training dataset, so it may not be perfect especially when the
training set is small. Checking specificity of two patterns formally is challenging as
it needs to take into account the semantics of the attributes and the number of gaps
allowed. We leave this problem as a possible future work.
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step is in O(d2∣D∣). Finally, we remove non-immediate specificity relations.

To explain, for pi ≻ pk ≻ pj , the second step also returns that pi ≻ pj ,

but this relation cannot appear in the QBAF since there is pk in between

(according to the definitions ofR− andR+ (of both TQBAF and BQBAF) in

Definition 10). This step takes O(dE) runtime where E is the number of all

specificity relations from the second step including the non-immediate ones.

All in all, for the pre-computation phase, the runtime is in O(d2∣D∣ + dE).
In general, the number of training examples ∣D∣ is significantly larger than

the number of specificity relations E, making the second step dominate the

whole pre-computation phase. Hence, we may conclude that the runtime is

in O(d2∣D∣). This number is quite large but still acceptable since the pre-

computation phase is a one-time computation. However, we believe that

with good data structures, this phase could be further optimized (though

this optimization is not a focus of this thesis).

Concerning the local explanation generation phase, as AXPLR is a post-

hoc explanation method, we can assume that the model has already com-

puted the prediction of the target input x. Therefore, we know the feature

vector f ∈ {0,1}d of x. Let us analyze the four steps of AXPLR. First, to

construct the QBAF, we need to find the set of arguments using O(∣A∣)
runtime, find all the relations between pattern arguments using O(∣A∣2)
runtime, and connect some pattern arguments with the default argument

using O(∣A∣) runtime. Thus, the overall runtime for QBAF construction is

O(∣A∣2). Next, to compute the dialectical strengths of the arguments, we

perform topological sort using O(∣A∣ + ∣R∣) runtime to find the order for

strength computation and then compute the strength for all the arguments

using O(∣A∣) runtime. In total, this step uses O(∣A∣ + ∣R∣) runtime. After

that, the post-processing step checks every argument to refine the supported

class using O(∣A∣) runtime and checks every relation to refine the relation

type (attack or support) using O(∣R∣) runtime. Hence, the post-processing

step also takes O(∣A∣ + ∣R∣) runtime. Lastly, for the explanation generation

step, shallow AXPLR needs arguments in the top layer, so it uses O(∣A∣)
runtime. Meanwhile, deep AXPLR needs to perform either breadth first

search or depth first search to compute the hierarchical explanation, so it

takes O(∣A∣+ ∣R∣) runtime. In conclusion, most of the steps in this phase use

O(∣A∣+ ∣R∣) runtime except QBAF construction which uses O(∣A∣2). When

the graph is sparse, the runtime of QBAF construction can be reduced to
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O(∣A∣ +E∗) where E∗ is the number of all possible relations of any QBAF

for this LR model. In other words, E∗ is E after the non-immediate speci-

ficity relations are removed, so E∗ ≤ E. As a result, for a sparse graph,

O(∣A∣+E∗) also becomes the time complexity of this phase overall since the

other steps use O(∣A∣ + ∣R∣) and ∣A∣ − 1 ≤ ∣R∣ < ∣A∣ − 1 +E∗.

Given the size of actual A and R in Tables 6.5-6.7, it can be seen that the

runtime for AXPLR generation would be fast for these three datasets. In-

creasing the number of features d affects mostly the pre-computation phase

(computed once), but not much the local explanation generation phase

(which relies more on ∣A∣ that is task-dependent). Concerning the size of the

QBAF, the maximum number of ∣A∣ is d+1, occurring when all the patterns

appear in the input text. Since the QBAF is a DAG, the maximum number

of ∣R∣ is 0.5 × ∣A∣ × (∣A∣ − 1), although it is usually a lot less in practice as

GrASP tries to learn distinct patterns. Thus, overall, we believe that the

complexity of deploying AXPLR is acceptable.

Concerning the user experience, AXPLR could be tailored to the cognitive

requirements of users. In particular, even if the QBAF is large, we can

indicate the numbers of arguments to be included in the final AXPLR in

order to ensure that the presented information is not too overwhelming to

the users.

6.7.2. AXPLR in Other Contexts

According to Experiment 2, AXPLR renders highly plausible explanations

compared to FLX, the traditional explanation method of LR. One possi-

ble reason for AXPLR not shining in Experiment 3 is that plausibility is

not necessary for the tutorial and real-time assistance task. The task only

requires humans to learn and apply useful patterns though they may not

know the reasons why such patterns are for the genuine class or the de-

ceptive class. On the other hand, AXPLR would be more suitable for the

task where plausibility is needed. For example, if we use the classifier as

a decision support tool, we want the explanation to provide insights about

the input text that align well with human reasoning. Even though the pre-

diction is correct, if the explanation does not make sense, it is possible that

the humans distrust the model and make a wrong final decision, leading to

undesirable consequences.
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Another context where AXPLR could be useful is explanation-based hu-

man debugging of the model. The individual model weight wi for the pattern

feature pi may not make sense to humans when pi is in fact related to other

pattern features (as we can see in Experiment 2, where τ(αi) does not quite

correlate with human reasoning). This may cause misunderstanding in the

humans and pave the way to their feedback in a way that is harmful to the

overall model performance. The QBAFs of AXPLR would provide a more

accurate view of how the pattern features have been used by the model. So,

we believe that it is more likely leading to a successful model debugging than

FLX. Moreover, with the argumentative structure of AXPLR, it would be

interesting to see whether and how AXPLR could let humans argue with the

model, contributing to a richer way of human-AI collaboration for reversing

an undesirable output or improving the model.

6.8. Summary

To generate local explanations for pattern-based logistic regression mod-

els, we proposed AXPLR, an explanation method enabled by quantitative

bipolar argumentation frameworks we defined (TQBAFs and BQBAFs),

capturing interactions among the patterns. We proved that the extracted

and post-processed frameworks underpinning AXPLR are faithful to the LR

model and satisfy many desirable properties. After that, we proposed two

presentations of AXPLR, shallow and deep, specifying whether we present

only the top-level arguments or all the arguments in the explanations. Con-

cerning the experiments, we conducted both empirical and human studies.

The former one discussed the statistics of the underlying argumentation

frameworks for all input texts in the test sets and analyzed sufficiency of

the explanations in terms of the number of supporting arguments needed.

The latter one assessed whether AXPLR is more plausible and helpful for

human learning than traditional explanation methods for pattern-based LR

models. The results show that taking into account relations between ar-

guments as AXPLR does indeed helps the explanations align better with

human judgement, particularly in the sentiment analysis task. Though AX-

PLR performed competitively with traditional explanation methods in tu-

toring and supporting humans to detect deceptive hotel reviews, there were

many participants learning from AXPLR that could recall well-generalized

195



patterns and important but implicit patterns deemed useful for the task.
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7. Conclusions

Human-AI collaboration is the key to many successful uses of AI, while

explanations can enable effective collaboration between AIs and humans.

In addition, NLP, particularly text classification, has tons of useful ap-

plications, many of which can benefit from explainability and human in-

volvement. These motivated us to study Explainable NLP for Human-AI

Collaboration in this thesis. We summarize our contributions to the field of

explainable NLP towards human-AI collaboration in Section 7.1. Next, in

Section 7.2, we discuss potential future work, where we highlight interesting

and related open problems in the field and explain how our work has set

the ground or provided foundations to address them.

7.1. Summary of Contributions

Our contributions align well with three research directions of explainable

NLP – generating explanations, evaluating explanations, and applying ex-

planations to downstream tasks (i.e., model debugging in our case) – while

keeping the ultimate goal of fostering human-AI collaboration in mind.

7.1.1. Generating Explanations

Although there are existing explanation methods for any classifiers (e.g.,

LIME (Ribeiro et al., 2016) and SHAP (Lundberg and Lee, 2017)) and for

neural networks in general (e.g., integrated gradients (Sundararajan et al.,

2017), LRP (Bach et al., 2015), and DeepLIFT (Shrikumar et al., 2017)),

there has not been any explanation method that is applicable specifically

to 1D CNN text classifiers used in many NLP applications. Therefore,

we proposed two novel local explanation methods to fill this gap. One

is Grad-CAM-Text which we adapted from Grad-CAM (Selvaraju et al.,

2017) (originally devised for 2D CNNs in the computer vision domain) to

work with 1D CNNs for text classification. The other method, DTs, uses a
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decision tree to mimic the classification part of the CNN and presents input

n-grams corresponding to decision nodes in the tree as explanations. We

also conducted experiments to evaluate these two new methods and found

that they are good at justifying model predictions to humans.

Apart from that, we turned to focus on explanation methods for inter-

pretable models. This topic has been rarely studied in the community be-

cause the models’ inherent explanations are usually obvious and faithful.

However, there is no guarantee that they will satisfy other desirable prop-

erties for explanations. So, we wanted to contribute to this area, focusing

mainly on plausibility of the explanations (Wiegreffe and Pinter, 2019). In

particular, we proposed a new local explanation method, namely AXPLR,

for binary logistic regression using GrASP patterns (Shnarch et al., 2017)

as features. We showed that inherent explanations for logistic regression

sometimes do not align well with human judgement as they consider ev-

ery pattern independently from each other although the patterns in fact

are dialectical related. This motivated us to apply computational argumen-

tation to model the relations between patterns and generate better expla-

nations (i.e., AXPLR). We did so by (i) extracting a quantitative bipolar

argumentation framework (QBAF) from the model and the input text; (ii)

computing strengths of the arguments to take dialectical relations between

arguments into account; (iii) post-processing the results to make the QBAF

satisfy more desirable properties; and (iv) generating deep and shallow AX-

PLR explanations from the post-processed QBAF, making it suitable for

human consumption. In the empirical evaluation, we analyzed statistics of

the QBAFs for test examples of three binary text classification datasets.

We also analyzed their sufficiency to help decide how many arguments we

would need to show in AXPLR in general. Lastly, we conducted two hu-

man experiments. The first one showed that using the computed strengths

of arguments to generate explanations helps increase the plausibility of the

explanations. The second human experiment showed that AXPLR per-

formed competitively with traditional explanation methods in tutoring and

supporting humans to perform a task they are not much capable of (i.e.,

detect deceptive hotel reviews).

198



We invented two local explanation methods, adapted from

Grad-CAM and Decision Trees, specifically for CNN text classifiers.

Also, we proposed another local explanation method for

pattern-based binary logistic regression, generating more plausible

explanations using computational argumentation.

7.1.2. Evaluating Explanations

With many explanation methods proposed in the literature, evaluation and

comparison of these methods are essential so that we can choose the right

method for a task at hand. There have been existing works comparing

post-hoc explanation methods in NLP focusing on intrinsic properties of

the explanations (Poerner et al., 2018b; Nguyen, 2018; DeYoung et al.,

2020). However, the community still lacks comparisons of various post-hoc

explanation methods with respect to specific explanation usage (such as hu-

man decision support and model inspection) (Ribeiro et al., 2016; Lai and

Tan, 2019). Therefore, we addressed this issue by proposing three human-

grounded tasks to evaluate input-based explanations for text classification.

Each of the tasks targets different purposes of explanation usage for human-

AI collaboration. Task 1 aims to use explanations to reveal model behavior.

So, we trained two classifiers, one is significantly better than the other and

provided to humans local explanations for both classifiers on the same test

examples with the same predictions. The explanation method is desirable

if humans identify the better model correctly after seeing its explanation.

Task 2 aims to use explanations to justify model predictions. So, we asked

humans to select the most likely class for an unseen input text based only on

top-m evidence texts chosen by explanation methods of interest. Answers

from humans that match model predictions implied that the explanations

were good to justify the predictions. Task 3 aims to use explanations to help

humans make decisions when the model predictions are uncertain. With-

out revealing the full inputs, the explanation method is desirable if humans

can answer the actual class correctly by looking at evidence and counter-

evidence chosen by the explanations. Using 1D CNNs as target models, we

evaluated nine forms of explanation methods (including Grad-CAM-Text

and DTs we newly proposed) using the three proposed tasks. The results

showed that none of the methods performed well on Task 1, LIME was the
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most prominent method for Task 2, and LRP at n-gram level worked fairly

well on Task 3.

We proposed three novel human-grounded tasks to evaluate

input-based explanations for text classification with respect to

different purposes of explanation usage to support human-AI

collaboration.

7.1.3. Explanation-Based Human Debugging

Because explanations provide insights about the underlying model, exist-

ing works have used them to enable model debugging via human feedback.

These existing works, nonetheless, mostly rely on local explanations and

iterative improvement, preventing the humans from perceiving the big pic-

ture of the model while providing feedback (Ribeiro et al., 2016; Teso and

Kersting, 2019; Wu et al., 2019b). Also, none of them has explored the use

of global explanations to debug deep NLP models. To narrow this gap, we

proposed FIND, a human-in-the-loop debugging framework for simple deep

text classifiers. FIND divides the classifiers into two parts – the feature

extraction part (transforming an input text to a feature vector) and the

classification part (applying a linear layer to predict the output from the

feature vector). Given a trained model, first, FIND analyzes each neuron

in the feature vector using LRP to understand the patterns it mainly cap-

tures. Then it uses a word cloud to present these patterns to the users and

asks them whether the texts shown are relevant to the task or not. For a

feature of which the word cloud is irrelevant to the task according to human

feedback, it will be disabled using a masking matrix. Finally, the model is

re-trained with the feature extraction part kept frozen so that the re-trained

model uses only features deemed relevant to the task.

We conducted three human experiments on CNN text classifiers with

three different bug scenarios (including small training data, training data

with biases, and dataset shift) to demonstrate the usefulness of FIND. The

results showed that some of the learned features in CNNs are more useful

to the task than the others, and the word clouds generated by using LRP

enabled humans to distinguish between the useful and the irrelevant (or even
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harmful) ones. These resulted in the improvement in the model predictive

performance and the decrease in unintended biases in the model after we

disabled irrelevant features and retrained the classification part of the model.

We made global explanations more actionable by using them to

enable humans to switch off irrelevant features in simple deep text

classifiers (i.e., CNNs) for fixing model bugs.

7.1.4. Broader Implications

Overall, this thesis encourages people who use or work on explainable AI to

consider the next step after obtaining explanations. In particular, explana-

tions for text classification can be utilized in many downstream applications,

supporting human-AI collaboration. We demonstrated some of them in this

thesis, e.g, revealing model behaviors to humans, assisting humans to inves-

tigate uncertain predictions, debugging the classification model via human

feedback, and training humans to perform a challenging task. Nevertheless,

our results show that some explanation methods may be more effective for

some downstream tasks while performing poorly on other tasks. Hence, it is

important to choose the method to use appropriately. Furthermore, despite

many available explanation methods, there is room for new explanation

methods that focus on specific desirable properties or applications. Even

inherent explanations from interpretable models may not be the best option

for every situation, as we can see from our experiments with pattern-based

logistic regression models for example. All in all, research on the inter-

section of explainable AI and human-AI collaboration still has remaining

challenges and open problems with regards to generating, evaluating, and

utilizing explanations awaiting to be studied.

7.2. Future Work

We have already mentioned some items of future work in the previous chap-

ters. In this section, we summarize major themes of the future work that

are shared across our three main contributions.
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7.2.1. Generalization to Other Models

Previously, we experimented on CNN text classifiers when we evaluated

explanation methods (with our proposed human tasks) and demonstrated

our debugging framework, FIND. Also, we touched upon debugging bidi-

rectional LSTMs in Appendix C. In contrast, when it comes to AXPLR,

we focused on explaining pattern-based logistic regression. One interesting

question is “How can we make the proposed methods and the presented

results in each chapter generalize to other models?”

Human Evaluations of Explanation Methods. As the three evalua-

tion tasks we proposed do not have any requirements concerning the un-

derlying model(s), we believe that the three tasks are already generalizable

beyond CNNs. In other words, the assumptions backing up the three tasks

are model-agnostic (i.e., good explanations can reveal model behavior, jus-

tify the predictions, and help humans investigate uncertain predictions).

However, whether the findings of our experiments are also generalizable be-

yond CNNs straightforwardly is not yet clear. So, in the future, it would be

interesting to conduct the three evaluation tasks using other deep learning

models as testbeds and compare the findings to what we have already known

from CNNs. Future experiments may also include more recent explanation

methods, e.g., contextual decomposition (Murdoch et al., 2018) and input

marginalization (Kim et al., 2020), to monitor progress in the field.

Human-in-the-Loop Debugging. We have shown that FIND works ef-

fectively with CNNs. There are many factors for this success. First, CNN

filters are not too complex to interpret, and a single word cloud is sufficient

to capture the behavior of each filter. Second, it is clear where we should

divide the model into Mf and Mc. Third, the CNN models we experimented

on were not too large, so the human effort required to investigate and dis-

able features was manageable. In the future, it would be very interesting to

generalize FIND to models that are more complicated than CNNs, and the

key challenge is how to carry these success factors of CNNs onwards.

There are a few questions that are worth discussing in this regards. First,

what is an effective way to understand each feature in other models? A

single word cloud may not always be effective, especially when the feature

value could be either positive or negative. In that situation, we need to
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consider not only patterns that the feature favors but also patterns that the

feature reacts in the opposite way (i.e., leading to strong negative values).

We exemplified this case with two word clouds representing each BiLSTM

feature in Appendix C.1, and we plan to experiment with advanced visu-

alizations such as LSTMVis (Strobelt et al., 2018) in the future. Second,

can we make the model features more interpretable? For example, using

ReLU as activation functions in LSTM cells (instead of tanh) renders the

features non-negative. So, they can be summarized using one word cloud

which is more practical for debugging. Third, which layer should we set as

the target features f to be investigated and disabled? It may not be feasible

to apply FIND to BERT-base (Devlin et al., 2019) at the standard feature

representation level with 768 features since it would require too much hu-

man effort to investigate the features and provide feedback. A more proper

level of debugging could be at the attention heads rather than individual

features (Voita et al., 2019).

In general, the principle of FIND is understanding the features and then

disabling the irrelevant ones. The process makes visualizations and inter-

pretability more actionable. Over the past few years, we have seen rapid

growth of scientific research in both topics (visualizations and interpretabil-

ity) aiming to understand many emerging advanced models including the

popular transformer-based models (Jo and Myaeng, 2020; Hoover et al.,

2020). We believe that they are good materials for further enhancing FIND

to support debugging of more complex models.

Argumentative Explanations for Text Classification. AXPLR is

useful when features used by the model are not independent. Obviously, this

is the case when we use GrASP patterns as features for logistic regression.

However, we argue that the dependency between features could happen with

deep learning models too. For example, Figure 7.1 shows word clouds of 4

out of 30 features of a CNN trained on the Waseem dataset (from one of our

debugging experiments). We can see apparently that these features are not

independent though they are not written in explicit forms, unlike the inter-

pretable GrASP patterns. Still, we may approximate patterns from the word

clouds as follows: feature 7 = [[TEXT:sexist]], feature 18 = [[TEXT:sexist],

[TEXT:but]], feature 23 = [[TEXT:not], [TEXT:sexist], [TEXT:but]], feature

24 = [[TEXT:i], [HYPERNYM:be], [TEXT:not], [TEXT:sexist]]. Because the
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(a) Feature 7 (-0.210; 0.140) (b) Feature 18 (0.080; 0.346)

(c) Feature 23 (-0.345; 0.065) (d) Feature 24 (-0.463; -0.203)

Figure 7.1.: Word clouds of 4 out of 30 features of a CNN trained on the
Waseem dataset in Experiment 2 of Chapter 5 (see Section 5.4).
Each (x; y) pair is the weights of the feature in the last linear
layer of the CNN model where x and y are the weights for the
Not abusive and the Abusive classes, respectively.

last linear layer of the CNN is inherently interpretable, we believe that it is

not impossible to extract QBAF from CNNs to generate AXPLR. However,

open questions are “How to model the specificity relation between two CNN

features given that the patterns are not explicit?” and “How to extract base

scores from the model when it is not binary logistic regression?”1. Answer-

ing these questions are potential future work needed to generalize AXPLR

beyond pattern-based logistic regression.

7.2.2. Knowledge Injection

Our FIND framework allows humans to disable learned features which are

irrelevant from the model. Nevertheless, what we have not achieved using

FIND is injecting new knowledge into the model via human feedback. For

instance, in the dataset shift context, if a user had known the target dataset

1The last linear layer of the CNN in Figure 7.1 acts like a multiclass logistic regression
since it uses the softmax function (rather than the sigmoid function) at the end.
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we wanted to apply the model to, s/he would have wanted to suggest a new

textual pattern to the model. Under the current FIND framework, the chal-

lenge of knowledge injection is twofold. First, how can we represent a piece

of knowledge given by a human in the improved model? This is not obvi-

ous because the human represents the pattern in a discrete representation

whereas the model represents patterns using CNN convolutional filters (with

a continuous representation). Second, how can we set or train the weight for

the newly added feature? The reason that the suggested pattern does not

appear in the original model could be that the training data does not have a

strong signal of this pattern. Even though we re-train the model containing

the injected pattern on the training data again, there is no guarantee that

the learned weight of the injected pattern will be accurate. In the context

of interpretable models such as pattern-based logistic regression, which we

used with AXPLR, the first challenge is resolved because humans can rep-

resent the knowledge to be injected using GrASP patterns. Still, the second

challenge remains difficult since the weights of injected features cannot be

properly learned using existing training data. Overall, we believe that in-

jecting new knowledge is more difficult than removing learned knowledge

as we did in FIND. Future work might need to incorporate techniques from

other relevant research fields to enable knowledge injection using human

feedback such as neuro-symbolic learning (Hilario, 1997) and knowledge in-

tegration into learning systems (von Rueden et al., 2021).

7.2.3. Reliable Comparison of Human Experiments

Human experiments are naturally difficult to replicate as they are inevitably

affected by choices of user interfaces, phrasing, population, incentives, etc.

(Lakkaraju et al., 2020). Further, research in machine learning rarely adopts

practices from the human-computer interaction community (Abdul et al.,

2018), limiting the possibility to compare across studies. For explanation-

based human debugging, for example, most existing work including ours

only considers model performance before and after debugging or compare

the results among several configurations of a single proposed framework.

This leads to little knowledge in the community about which explanation

types or feedback mechanisms are more effective across several settings.

Similar difficulties apply to evaluation of explanations as well. Thus, one
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promising research direction would be proposing a standard setup or a

benchmark for evaluating and comparing explainable NLP techniques for

human-AI tasks reliably across different settings.
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Verónica Pérez-Rosas, Bennett Kleinberg, Alexandra Lefevre, and Rada Mihalcea.
2018. Automatic detection of fake news. In Proceedings of the 27th International
Conference on Computational Linguistics, pages 3391–3401, Santa Fe, New Mex-
ico, USA. Association for Computational Linguistics.

Nina Poerner, Benjamin Roth, and Hinrich Schütze. 2018a. Interpretable textual
neuron representations for NLP. In Proceedings of the 2018 EMNLP Workshop
BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 325–
327, Brussels, Belgium. Association for Computational Linguistics.

221

https://www.aclweb.org/anthology/N13-1053
https://www.aclweb.org/anthology/N13-1053
https://www.aclweb.org/anthology/P11-1032
https://www.aclweb.org/anthology/P11-1032
https://doi.org/10.18653/v1/D18-1302
https://doi.org/10.18653/v1/D18-1302
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://www.aclweb.org/anthology/C18-1287
https://doi.org/10.18653/v1/W18-5437
https://doi.org/10.18653/v1/W18-5437


Nina Poerner, Hinrich Schütze, and Benjamin Roth. 2018b. Evaluating neural net-
work explanation methods using hybrid documents and morphosyntactic agree-
ment. In Proceedings of the 56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pages 340–350, Melbourne,
Australia. Association for Computational Linguistics.

Nico Potyka. 2021. Interpreting neural networks as quantitative argumentation
frameworks. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pages 6463–6470.

Pearl Pu and Li Chen. 2006. Trust building with explanation interfaces. In Pro-
ceedings of the 11th international conference on Intelligent user interfaces, pages
93–100.

B. Pustejovsky, J. Pustejovsky, B. Boguraev, and A.P.C.S.J. Pustejovsky. 1996.
Lexical Semantics: The Problem of Polysemy. Clarendon paperbacks. Clarendon
Press.

J. Ross Quinlan. 1986. Induction of decision trees. Machine learning, 1(1):81–106.

Joaquin Quionero-Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D.
Lawrence. 2009. Dataset Shift in Machine Learning. The MIT Press.

Antonio Rago, Francesca Toni, Marco Aurisicchio, and Pietro Baroni. 2016.
Discontinuity-free decision support with quantitative argumentation debates. In
Fifteenth International Conference on the Principles of Knowledge Representa-
tion and Reasoning.

Nazneen Fatema Rajani, Bryan McCann, Caiming Xiong, and Richard Socher.
2019. Explain yourself! leveraging language models for commonsense reasoning.
In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pages 4932–4942, Florence, Italy. Association for Computational
Linguistics.

S Ransbotham, S Khodabandeh, D Kiron, F Candelon, M Chu, and B LaFoun-
tain. 2020. Expanding ai’s impact with organizational learning. MIT Sloan
Management Review and Boston Consulting Group.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. “why should i
trust you?” explaining the predictions of any classifier. In Proceedings of the
22nd ACM SIGKDD international conference on knowledge discovery and data
mining, pages 1135–1144.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2018a. Anchors: High-
precision model-agnostic explanations. In Proceedings of the AAAI conference
on artificial intelligence, volume 32.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2018b. Semantically
equivalent adversarial rules for debugging NLP models. In Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pages 856–865, Melbourne, Australia. Association for Compu-
tational Linguistics.

222

https://doi.org/10.18653/v1/P18-1032
https://doi.org/10.18653/v1/P18-1032
https://doi.org/10.18653/v1/P18-1032
https://doi.org/10.18653/v1/P19-1487
https://doi.org/10.18653/v1/P18-1079
https://doi.org/10.18653/v1/P18-1079


Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. 2020.
Beyond accuracy: Behavioral testing of NLP models with CheckList. In Pro-
ceedings of the 58th Annual Meeting of the Association for Computational Lin-
guistics, pages 4902–4912, Online. Association for Computational Linguistics.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky. 2020. A primer in BERTology:
What we know about how BERT works. Transactions of the Association for
Computational Linguistics, 8:842–866.
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A. Additional Background

A.1. Standard Metrics for Text Classification

Apart from accuracy or classification rate, which is the percentage of correct

predictions, we can evaluate the model performance for each specific class

c ∈ C using the class precision, recall, and F-measure (mostly F1), defined

as follows (Jurafsky and Martin, 2020, chapter 4).

Precisionc ≙ Pc ≙
TPc

TPc + FPc

≙
∣{(xi, yi) ∈ D′∣ŷi ≙ yi ≙ c}∣∣{(xi, yi) ∈ D′∣ŷi ≙ c}∣ (A.1)

Recallc ≙ Rc ≙
TPc

TPc + FNc

≙
∣{(xi, yi) ∈ D′∣ŷi ≙ yi ≙ c}∣∣{(xi, yi) ∈ D′∣yi ≙ c}∣ (A.2)

Fβ,c ≙
(β2 + 1)PcRc

β2Pc +Rc

(A.3)

F1c ≙
2PcRc

Pc +Rc

(i.e., Eq. A.3 with β ≙ 1) (A.4)

where TPc (true positives) and FPc (false positives) are the number of

examples predicted as class c by the classifier that are correct and incorrect

predictions, respectively. Besides, FNc (false negatives) is the number of

examples with class c as their true label but which the model does not

predict correctly.

There are two ways to aggregate the class-specific metrics to be the met-

rics for the overall performance. First, micro-averaging combines the TP ,
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FP , and FN of all classes before computing precision and recall.

Micro Precision ≙

∑
c∈C

TPc

∑
c∈C

TPc + ∑
c∈C

FPc

(A.5)

Micro Recall ≙

∑
c∈C

TPc

∑
c∈C

TPc + ∑
c∈C

FNc

(A.6)

Micro F1 ≙
2 ×Micro Precision ×Micro Recall

Micro Precision +Micro Recall
(A.7)

Second, macro-averaging averages out precision and recall scores of all

the classes so all the classes are weighted equally regardless of their size.

Macro Precision ≙
1

∣C∣∑c∈CPc (A.8)

Macro Recall ≙
1

∣C∣∑c∈CRc (A.9)

Macro F1 ≙
2 ×Macro Precision ×Macro Recall

Macro Precision +Macro Recall
(A.10)

Normally, when we work with datasets that are class imbalanced, we want

the model to work well for all the classes, not just for the majority class.

Therefore, we often use macro F1 as the main evaluation metric in addition

to the classification accuracy.

A.2. Deep Learning for NLP

Deep learning is a subfield of machine learning that uses a composition of

multiple non-linear modules (layers) so as to learn effective representations

of inputs for achieving a given target task (LeCun et al., 2015). Unlike tra-

ditional machine learning methods, deep learning does not require humans

to perform feature extraction or feature engineering because it can directly

learn from raw input data (i.e., input texts in our case). The composition

of multiple non-linear layers will transform an input text into multiple level

of representations before the final output is produced at the last layer. In

the last decade, deep learning has become a mainstream approach of many

research areas including NLP (Deng and Liu, 2018) since there are sufficient

amount of data and computing resources (such as GPUs) to train such com-
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plicated models, many of which can achieve state-of-the-art performance in

plenty of NLP tasks (Zhang et al., 2015; Wang et al., 2019). One of the im-

portant concepts of deep learning for text classification is word embeddings.

Word Embeddings

Traditional NLP methods (before the era of deep learning) usually represent

words using discrete representation where each word corresponds to one

dimension in a vector of which the size equals the number of words in

vocabulary. This results in very sparse word vectors which are unable to

capture the degree of similarity and difference among words. Furthermore,

the discrete representation cannot deal with new words or changes of word

meanings effectively.

The deep learning approach does not adopt the discrete representation

but distributed representation to overcome these issues. The distributed

representation represents each word with a dense vector of ∼50–1,000 di-

mensions. These vectors are known as word embeddings and learned from

large text corpora so that similar words appear closely in the vector space

(Ferrone and Zanzotto, 2020). The learning process relies on the distribu-

tional semantics hypothesis, proposing that words used in similar contexts

tend to possess similar meanings (Harris, 1954).

Different word embedding methods realize the distributional semantics

hypothesis in different ways. Mikolov et al. (2013) proposed word2vec with

two neural architectures to learn word embeddings. One is the continuous

bag-of-words model (CBOW) aiming to predict a target word from given

context words of a fixed window size. The other is the skip-gram model

aiming to predict context words given a target word. Training examples

of both architectures can be prepared from any corpus of running texts.

Word embeddings are then obtained from the learned weight matrices of

these architectures. Bojanowski et al. (2017) proposed fastText, further

improving word2vec to handle out-of-vocabulary words. fastText represents

a word with its character n-grams and learns embeddings of all the character

n-grams in the corpus using word2vec (skip-gram). The embedding of a

given word then equals the sum of the embeddings of its character n-grams.

Another well-known word embedding method is GloVe (Global Vectors

for Word Representation) (Pennington et al., 2014). GloVe creates, from
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a large corpus, a word-word co-occurrence matrix X ∈ RV ×V where V is

the number of words in vocabulary and Xij is the number of times word j

occurs in the context of word i (within a fixed window size). Next, it creates

and optimizes two matrices U,V ∈ RV ×d so that uT
i vj (plus some learned

biases) can be used to estimate logXij . Then the embedding of word i is

ui + vi ∈ R
d.

Word embeddings trained on general corpora (e.g., Wikipedia1 and Com-

mon Crawl2) are applicable to any downstream applications. Although the

training process may take a long time, it is a one-off effort and the results

can be shared and reused widely. Word2vec3, fastText4, and GloVe5 all

provide pre-trained embeddings for the public to download and use.

A.3. Recurrent Neural Networks

Apart from CNNs discussed in Section 2.1.2, Recurrent Neural Net-

works (RNNs) are deep learning models that have shown good perfor-

mance in many NLP tasks due to their capability to process sequential data

(Mikolov et al., 2010). As shown in Figure A.1, an RNN starts from an

initial hidden state h0 ∈ R
m. For each time step t, it reads an input vector

xt ∈ R
d (i.e., the embedding of the input word at time t) and processes it

together with the hidden state at the previous time step ht−1 ∈ R
m to obtain

the updated hidden state at time t, i.e., ht ∈ R
m. Mathematically,

ht ≙ g(Wxt +Uht−1 + b) (A.11)

where W ∈ Rm×d and U ∈ Rm×m are weight matrices, b is a bias vector, and

g is a non-linear activation function (e.g., sigmoid function).

For the tasks where we want an output out of every time step, we can

apply a linear layer on top of ht to get it (outt).

outt ≙ softmax(Woht + bo) (A.12)

where Wo and bo are the weight matrix and the bias vector for the output

1https://en.wikipedia.org/
2https://commoncrawl.org/
3https://code.google.com/archive/p/word2vec/
4https://github.com/facebookresearch/fastText
5https://nlp.stanford.edu/projects/glove/
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Figure A.1.: An RNN for text classification.

layer, respectively. In contrast, for the task where we want only one output

per sequence (such as text classification), we need to derive one feature

vector f for the input from all the hidden states h1, ...,ht. Possible ways to

do so include (i) using only the last hidden state (ht) as f; (ii) averaging

all the hidden states to be f; and (iii) pooling the maximum value for each

dimension of the hidden states to be f. Then we can perform classification

with f in the same way as we do using Equations 2.1 or 2.5.

To train an RNN, we perform backpropagation through time (BPTT),

i.e., unfolding the recurrent network into a chain of (non-)linear transfor-

mations with shared parameters and backpropagating the gradient through

the chain. However, when the input text is too long, RNNs usually suf-

fer from the vanishing gradient problem, i.e., the gradient from faraway

becomes smaller and smaller when propagated back through time and the

parameter updates for long-term dependencies become insignificant due to

the too small gradient (Bengio et al., 1994). A popular solution to tackle

this problem is using gated RNNs which learn when to forget or preserve

the old state. With their additive gradient structure and gating mechanism,

gated RNNs can mitigate the gradient vanishing problem. Next, we review

a class of gated RNNs which is the long short-term memory (LSTM) model

used in the thesis.

Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber,

234



1997) is a type of RNN where there are, at the end of each time step t, the

hidden state ht ∈ R
m and the cell state ct ∈ R

m. To obtain those states, after

reading the input vector xt, the new cell content c̃t ∈ R
m is computed, and

it will then be used, together with the previous cell state ct−1, to compute

ct. In particular, ct is a combination of c̃t and ct−1 , controlled by the input

gate it ∈ R
m and the forget gate ft ∈ R

m, respectively. Formally,

c̃t ≙ tanh (Wcxt +Ucht−1 + bc) (A.13)

ct ≙ ft ⊙ ct−1 + it ⊙ c̃t (A.14)

The cell state ct carries long-term information, some of which is passed to

the hidden state ht, and this is controlled by the output gate ot ∈ R
m:

ht ≙ ot ⊙ tanh (ct) (A.15)

The values of all the three gates depend on the input vector xt and the

previous hidden state ht−1. Specifically,

it ≙ σ(Wixt +Uiht−1 + bi)
ft ≙ σ(Wfxt +Ufht−1 + bf)
ot ≙ σ(Woxt +Uoht−1 + bo)

(A.16)

To sum up, W∗, U∗, and b∗ (for ∗ ∈ {i, f, o, c}) are the parameters of the

LSTM model that need to be learned using the training data. Each element

in the gate vectors stays within the range (0, 1) as a result of the sigmoid

function σ. While the vanilla RNNs always update the hidden states with

the new input vectors, the gates in LSTMs help the model decide when

to keep or forget the old information and when to update it with the new

information, also mitigating the gradient vanishing problem.

One weakness of RNNs in general and LSTMs in particular is that the

hidden state at time t relies only on the left context (i.e., the input words

at the time steps t, t − 1, ...) although, in practice, the meaning of the word

at time t can also be influenced by the right context. To effectively utilize

the right context, we could use the bidirectional architecture (Schuster

and Paliwal, 1997) consisting of two RNNs, as displayed in Figure A.2. One

of them (i.e., the forward RNN) reads the input text from left to right,
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Figure A.2.: A bidirectional RNN for text classification.

whereas the other (i.e., the backward RNN) reads from right to left. The

final hidden state ht is the concatenation of the hidden states from the two

RNNs:

Ð→
ht ≙ RNNFW (ht−1,xt)
←Ð
ht ≙ RNNBW (ht+1,xt)
ht ≙ ∥Ð→ht,

←Ð
ht∥

(A.17)

where RNNFW and RNNBW are the forward and backward RNNs respec-

tively, and they do not share weights. Note that these RNNs could be vanilla

RNNs, LSTMs, or other gated RNNs such as GRUs (Cho et al., 2014).

A.4. LIME

To explain a given example, Local Interpretable Model-agnostic Explana-

tions (LIME) (Ribeiro et al., 2016) generates neighbor instances of the ex-

ample (by perturbing the input text) and learns an interpretable model over
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interpretable features (such as words) to mimic the behavior of the original

classifier with respect to this set of neighbor examples (including the tar-

get example to be explained). Therefore, the learned interpretable model

is locally faithful to the original classifier and can be used to explain the

prediction. To be precise, LIME for text classification works in three steps.

Given an input text x and the classifier M , first, LIME perturbs x for k

times to obtain z1, . . . zk where zi is x with some words randomly selected

to be removed or replaced with a special unknown token. Hence, some

zi could be more similar to the original x than others. We can define a

distance function πx ∶ Text→ ∥0,1∥ to measure the distance between zi to x.

The higher πx(zi) is, the more similar x and zi are. One possible distance

function is πx(zi) ≙ 1 − nr

nx
where nr is the number of tokens in x being

replaced/removed to generate zi and nx is the number of all tokens in x.

Regardless of the distance πx(zi), we call Z ≙ {zi∣i ∈ {1, . . . , k}} a set of

neighbor examples of x.

The second step is to apply the model M to Z to know how the model

works on the neighbor examples of x. After this step, LIME obtains m(zi),
i.e., the prediction of M on zi before softmax. In the third step, LIME

trains a linear regression classifier g by optimizing

L ≙ ∑
zi∈Z

(πx(zi)(m(zi) − g(zi))2) +Ω(g) (A.18)

where Ω(g) is the regularization term of g, enforcing that g should not use

too many features. Here, LIME uses K-LASSO (Efron et al., 2004) as Ω.

Using this objective function and least squares optimization, g will behave

similarly to m especially for neighbor examples staying closer to x (i.e.,

locally faithful to M). Since g is inherently interpretable, we can use the

weights of g as the local explanation, representing how M sees the impor-

tance of words in the input x. Because LIME perturbs the input x to under-

stand how M responses to changes in the input, LIME can be categorized

as a perturbation-based method for computing input-based explanations.

A.5. DeepLIFT

Deep Learning Important FeaTures (DeepLIFT) is also an input-based ex-

planation method relying on relevance propagation (Shrikumar et al., 2017).
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However, what makes DeepLIFT different from LRP is that DeepLIFT sets

up a reference input x̄ where the output computed by the model M is ȳ.

Then, to compute the relevance scores for input features xi in the target

example x where the output is y, DeepLIFT back propagates ∆y ≙ y − ȳ to

find the contribution of each ∆xi ≙ xi − x̄i. In other words, the relevance

score of the input xi is the contribution of ∆xi towards ∆y, i.e., R∆xi←∆y.

At the end of the day, ∑iR∆xi←∆y ≙∆y.

Again, consider a neuron k whose value is computed using n neurons in

the previous layer as in Equation 2.12. While applying the model to the

reference input, we obtain

āk ≙ g( n

∑
j=1

ājwjk + bk). (A.19)

Because the activation function g does not change the relevance score during

back propagation, we can disregard it for now and obtain

∆ak ≙ ak − āk ≙ ( n

∑
j=1

ajwjk + bk) − ( n

∑
j=1

ājwjk + bk)
≙

n

∑
j=1

∆ajwjk.

(A.20)

Therefore, in terms of the relevance scores, we get

R∆aj←∆ak ≙
∆ajwjk

∑n
j′=1 ∆aj′wj′k

∆ak

≙
ajwjk − ājwjk

∑n
j′=1 (aj′wj′k − āj′wj′k)∆ak

≙
ajwjk − ājwjk

∑n
j′=1 aj′wj′k −∑n

j′=1 āj′wj′k

∆ak.

(A.21)

Again, we can obtain the relevance score of ∆aj in total by summing up

R∆aj←∆ak for all k in the next layer. If we back propagate until j is at

the input layer, we will obtain the relevance score of the input feature j as

desired.
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B. Human-Grounded Evaluations

of Explanation Methods

B.1. Examples of the Explanations

Example 1: Amazon Dataset, (Actual: Positive, Predicted: Negative)

“Source hip hop hits Volume 3: THe songs listed aren’t even on the CD! I bought
it for Bling Bling and it wasn’t on the CD. the other songs are good, but not
what I was looking for. Amazon needs to get the info right on this listing.”

Top-5 evidence texts

• Random (W): . / get / hip / was / I

• Random (N): the CD ! I / the CD / needs to get the / info right on this /
for .

• LIME: not / bought / 3 / info / Bling

• LRP (W): it / bought / . / listed / :

• LRP (N): ! I bought it / : THe songs listed / was looking for . / right on
this listing / not what I

• DeepLIFT (W): it / bought / . / listed / :

• DeepLIFT (N): ! I bought it / : THe songs listed / was looking for . / right
on this listing / not what I

• Grad-CAM-Text: n’t even on the / not what I was / hits Volume 3 : / CD
! I / . Amazon needs to

• DTs: n’t even on the / CD ! I
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Example 2: ArXiv Dataset, (Actual: Physics (PH), Predicted: Computer Science
(CS))

“Multiple-valued Logic (MVL) circuits are one of the most attractive applications
of the Monostable-to-Multistable transition Logic (MML), and they are on the
basis of advanced circuits for communications. The operation of such quantizer
has two steps : sampling and holding. Once the quantizer samples the signal, it
must maintain the sampled value even if the input changes. However, holding
property is not inherent to MML circuit topologies. This paper analyses the case
of an MML ternary inverter used as a quantizer, and determines the relations
that circuit representative parameters must verify to avoid this malfunction.”

Top-5 evidence texts

• Random (W): not / This / one / basis / MML

• Random (N): ) , and / , holding property is / are one of / sampled value
even / circuit topologies

• LIME: paper / Logic / circuits / communications / applications

• LRP (W): paper / - / communications / topologies / the

• LRP (N): topologies . This paper / to - Multistable transition / valued Logic
( MVL / circuits for communications . / the quantizer samples the

• DeepLIFT (W): paper / - / communications / Logic / the

• DeepLIFT (N): topologies . This paper / valued Logic ( MVL / to - Mul-
tistable transition / circuits for communications . / the quantizer samples
the

• Grad-CAM-Text: circuits for communications . / ( MVL ) circuits / MML
ternary inverter used / topologies . This paper / - valued Logic

• DTs: MML ternary inverter / MVL ) circuits are / advanced circuits /
circuits for communications / to avoid this malfunction
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Example 3: Amazon Dataset, (Actual: Positive, Predicted: Positive), Predicted
scores: Positive (0.514), Negative (0.486)

“OK but not what I wanted: These would be ok but I didn’t realize just how
big they are. I wanted something I could actually cook with. They are a full
12” long. The handles didn’t fit comfortably in my hand and the silicon tips are
hard, not rubbery texture like I’d imagined. The tips open to about 6” between
them.Hope this helps someone else know better if it’s what they want.”

Top-5 evidence texts

• Random (W): not / wanted / ’d / with / The

• Random (N): did n’t / be ok / could actually cook / are hard / 12 ” long .

• LIME: comfortably / wanted / helps / tips / fit

• LRP (W): are / not / 6 / hard / helps

• LRP (N): are hard , not / about 6 ” between / not what I wanted / helps
someone else know / wanted something I

• DeepLIFT (W): are / not / 6 / hard / helps

• DeepLIFT (N): are hard , not / about 6 ” between / not what I wanted /
helps someone else know / wanted something I

• Grad-CAM-Text: comfortably in my hand / I wanted : These / . The tips
open / , not rubbery texture / Hope this helps someone

• DTs: imagined . The tips

Top-5 counter-evidence texts

• Random (W): texture / . / what / to / would

• Random (N): this helps someone else / , not / wanted something I / and the
/ I did n’t

• LIME not / else / someone / ok / would

• LRP (W): : / tips / open / in / The

• LRP (N): . The tips open / : These would / in my hand and / could actually
cook / I did n’t realize

• DeepLIFT (W): : / tips / open / in / The

• DeepLIFT (N): . The tips open / : These would / in my hand and / could
actually cook / I did n’t realize

• Grad-CAM-Text: not what I wanted / not rubbery texture like / Hope this
helps someone / would be ok / The handles did n’t

• DTs: ’d imagined . / are . I wanted / would be ok
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Example 4: ArXiv Dataset, (Actual: Computer Science (CS), Predicted: Mathe-
matics (MA)), Predicted scores: Computer Science (0.108), Mathematics (0.552),
Physics (0.340)

“The mnesor theory is the adaptation of vectors to artificial intelligence. The
scalar field is replaced by a lattice. Addition becomes idempotent and multipli-
cation is interpreted as a selection operation. We also show that mnesors can be
the foundation for a linear calculus.”

Top-5 evidence texts

• Random (W): intelligence / to / theory / is / by

• Random (N): replaced by a lattice / interpreted as a / linear calculus . /
show that / The mnesor

• LIME: linear / a / idempotent / vectors / of

• LRP (W): lattice / theory / scalar / linear / of

• LRP (N): replaced by a lattice / . The scalar field / the adaptation of vectors
/ mnesor theory / a linear

• DeepLIFT (W): lattice / theory / scalar / linear / of

• DeepLIFT (N): replaced by a lattice / . The scalar field / the adaptation of
vectors / mnesor theory / a linear

• Grad-CAM-Text: for a linear calculus / Addition becomes idempotent and
/ adaptation of vectors to / replaced by a lattice / mnesor theory is the

• DTs: Addition becomes idempotent and / becomes idempotent and multi-
plication

Top-5 counter-evidence texts

• Random (W): the / We / scalar / lattice / operation

• Random (N): lattice . Addition / The scalar / interpreted as a selection /
for a linear calculus / .

• LIME: intelligence / scalar / field / The / lattice

• LRP (W): mnesors / interpreted / multiplication / can / foundation

• LRP (N): mnesors can be the / multiplication is interpreted as / to artificial
intelligence / foundation for / field is

• DeepLIFT (W): interpreted / mnesors / multiplication / foundation / can

• DeepLIFT (N): mnesors can be the / multiplication is interpreted as / to
artificial intelligence / foundation for / field is

• Grad-CAM-Text: . The scalar field / vectors to artificial intelligence / show
that mnesors can / and multiplication is interpreted / The mnesor theory is

• DTs: vectors to artificial
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B.2. Score Distributions

This section presents the distributions of individual scores rated by human

participants for each task and dataset. We do not include the random

baselines in the plots to reduce the plot complexity.

B.2.1. Amazon Dataset

Figure B.1.: Distributions of individual scores from task 1 of the Amazon
dataset (A, ✔, ✘, respectively).
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Figure B.2.: Distributions of individual scores from task 2 of the Amazon
dataset (A, ✔, ✘, respectively).
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Figure B.3.: Distributions of individual scores from task 3 of the Amazon
dataset (A, ✔, ✘, respectively).
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B.2.2. ArXiv Dataset

Figure B.4.: Distributions of individual scores from task 1 of the ArXiv
dataset (A, ✔, ✘, respectively).
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Figure B.5.: Distributions of individual scores from task 2 of the ArXiv
dataset (A, ✔, ✘, respectively).
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Figure B.6.: Distributions of individual scores from task 3 of the ArXiv
dataset (A, ✔, ✘, respectively).
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C. Human-in-the-Loop Debugging

Deep Text Classifiers

C.1. Bidirectional LSTM networks

To understand BiLSTM features, we created two word clouds for each fea-

ture. The first word cloud contains top three words which gain the highest

positive relevance scores from each training example, while the second word

cloud does the same but for the top three words which gain the lowest

negative relevance scores (see Figure C.1).

Furthermore, we also conducted Experiment 1 for BiLSTMs. Each di-

rection of the recurrent layer had 15 hidden units and the feature vector

was obtained by taking element-wise max of all the hidden states (i.e.,

d ≙ 15 × 2 ≙ 30). Hence, the total number of parameters for the binary

classification task (Yelp) equalled 120,000,600 (for the fixed word embed-

dings) + 37,920 (for the bidirectional LSTM layers) + 62 (for the final dense

layer) + 60 (for the masked matrix Q). When it comes to the 4-class classi-

fication task (Amazon Products), the last two numbers became + 124 (for

the final dense layer) + 120 (for the masked matrix Q) (similar to 1D CNNs

discussed in Section 5.2), We adapted the code of (Arras et al., 2017) to run

LRP on BiLSTMs.

Regarding human feedback collection, we collected feedback from Amazon

Mechanical Turk workers by splitting the pair of word clouds into two and

asking the question about the relevant class independently of each other.

The answer of the positive relevance word cloud should be consistent with

the weight matrix W, while the answer of the negative relevance word cloud

should be the opposite of the weight matrix W. The score of a BiLSTM

feature is the sum of its scores from the positive word cloud and the negative

word cloud.

The results of the extra BiLSTM experiments are shown in Tables C.2
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Figure C.1.: A pair of word clouds which represent one BiLSTM feature.

and C.4. Table C.2 shows unexpected results after disabling features. For

instance, disabling rank B features caused a larger performance drop than

removing rank A features. This suggests that how we created word clouds

for each BiLSTM feature (i.e., displaying top three words with the highest

positive and lowest negative relevance) might not be an accurate way to

explain the feature. Nevertheless, another observation from Table C.2 is

that even when we disabled two-third of the BiLSTM features, the maxi-

mum macro F1 drop was less than 5%. This suggests that there is a lot of

redundant information in the features of the BiLSTMs.
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C.2. Full Experimental Results

Tables C.1-C.8 in this section report the full results of all the experiments

and datasets. All the results shown are averaged from three runs. Boldface

numbers are the best scores in the columns. They are further underlined

if they are significantly better than the scores of all the other models. We

conducted the statistical significance analysis using approximate random-

ization test with 1,000 iterations and a significance level α of 0.05 (Noreen,

1989; Graham et al., 2014).

Model: CNNs
Test dataset: Yelp

Negative F1 Positive F1 Accuracy Macro F1
Original 0.758 ± 0.04 0.666 ± 0.05 0.720 ± 0.04 0.732 ± 0.04
Disabling A 0.711 ± 0.04 0.584 ± 0.02 0.660 ± 0.03 0.676 ± 0.04
Disabling B 0.742 ± 0.03 0.618 ± 0.13 0.695 ± 0.06 0.710 ± 0.06
Disabling C 0.754 ± 0.04 0.730 ± 0.06 0.742 ± 0.05 0.743 ± 0.04
Disabling AB 0.681 ± 0.02 0.334 ± 0.10 0.570 ± 0.03 0.599 ± 0.04
Disabling AC 0.710 ± 0.02 0.606 ± 0.07 0.668 ± 0.04 0.678 ± 0.03
Disabling BC 0.732 ± 0.04 0.630 ± 0.14 0.694 ± 0.07 0.705 ± 0.06

Table C.1.: Results (Average ± SD) of Experiment 1: Yelp, CNNs

Model:
BiLSTMs

Test dataset: Yelp
Negative F1 Positive F1 Accuracy Macro F1

Original 0.810 ± 0.01 0.774 ± 0.03 0.794 ± 0.01 0.799 ± 0.01
Disabling A 0.810 ± 0.00 0.767 ± 0.01 0.791 ± 0.01 0.798 ± 0.00
Disabling B 0.800 ± 0.00 0.745 ± 0.01 0.776 ± 0.01 0.785 ± 0.01
Disabling C 0.803 ± 0.00 0.774 ± 0.01 0.790 ± 0.01 0.793 ± 0.00
Disabling AB 0.781 ± 0.01 0.720 ± 0.02 0.754 ± 0.02 0.763 ± 0.02
Disabling AC 0.800 ± 0.00 0.758 ± 0.01 0.781 ± 0.00 0.787 ± 0.00
Disabling BC 0.787 ± 0.01 0.730 ± 0.02 0.762 ± 0.01 0.769 ± 0.01

Table C.2.: Extra results (Average ± SD) of Experiment 1: Yelp, BiLSTMs
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Model: CNNs
Test dataset: 20Newsgroups

Atheism F1 Christian F1 Accuracy Macro F1
Original 0.828 ± 0.01 0.875 ± 0.01 0.855 ± 0.01 0.853 ± 0.01
Disabling (MTurk) 0.798 ± 0.01 0.853 ± 0.01 0.830 ± 0.01 0.828 ± 0.01

Model: CNNs
Test dataset: Religion

Atheism F1 Christian F1 Accuracy Macro F1
Original 0.567 ± 0.03 0.787 ± 0.01 0.715 ± 0.02 0.731 ± 0.01
Disabling (MTurk) 0.700 ± 0.15 0.834 ± 0.04 0.789 ± 0.07 0.799 ± 0.06

Table C.7.: Results (Average ± SD) of Experiment 3: 20Newsgroups & Re-
ligion, CNNs

Model: CNNs
Test dataset: Amazon Clothes

Negative F1 Positive F1 Accuracy Macro F1
Original 0.862 ± 0.01 0.862 ± 0.01 0.862 ± 0.01 0.862 ± 0.01
Disabling (MTurk) 0.857 ± 0.01 0.855 ± 0.01 0.856 ± 0.01 0.856 ± 0.01

Model: CNNs
Test dataset: Amazon Music

Negative F1 Positive F1 Accuracy Macro F1
Original 0.640 ± 0.02 0.722 ± 0.01 0.687 ± 0.01 0.695 ± 0.01
Disabling (MTurk) 0.668 ± 0.01 0.722 ± 0.01 0.697 ± 0.01 0.701 ± 0.01

Model: CNNs
Test dataset: Amazon Mixed

Negative F1 Positive F1 Accuracy Macro F1
Original 0.784 ± 0.01 0.799 ± 0.00 0.792 ± 0.01 0.793 ± 0.00
Disabling (MTurk) 0.793 ± 0.00 0.801 ± 0.00 0.797 ± 0.00 0.797 ± 0.00

Model: CNNs
Test dataset: Yelp

Negative F1 Positive F1 Accuracy Macro F1
Original 0.767 ± 0.02 0.800 ± 0.00 0.785 ± 0.01 0.789 ± 0.01
Disabling (MTurk) 0.786 ± 0.00 0.804 ± 0.00 0.795 ± 0.00 0.796 ± 0.00

Table C.8.: Results (Average ± SD) of Experiment 3: Sentiment Analysis
(Amazon Clothes), CNNs
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