4 research outputs found

    Modeling of Breakdown-Limited Endurance in Spin-Transfer Torque Magnetic Memory under Pulsed Cycling Regime

    Get PDF
    Perpendicular spin-transfer torque (p-STT) magnetic memory is gaining increasing interest as a candidate for storage-class memory, embedded memory, and possible replacement of static/dynamic memory. All these applications require extended cycling endurance, which should be based on a solid understanding and accurate modeling of the endurance failure mechanisms in the p-STT device. This paper addresses cycling endurance of p-STT memory under pulsed electrical switching. We show that endurance is limited by the dielectric breakdown of the magnetic tunnel junction stack, and we model endurance lifetime by the physical mechanisms leading to dielectric breakdown. The model predicts STT endurance as a function of applied voltage, pulsewidth, pulse polarity, and delay time between applied pulses. The dependence of the endurance on sample area is finally discussed

    Characterization and Modeling of Spin-Transfer Torque (STT) Magnetic Memory for Computing Applications

    Get PDF
    AbstractWith the ubiquitous diffusion of mobile computing and Internet of Things (IoT), the amount of data exchanged and processed over the internet is increasing every day, demanding secure data communication/storage and new computing primitives. Although computing systems based on microelectronics steadily improved over the past 50 years thanks to the aggressive technological scaling, their improvement is now hindered by excessive power consumption and inherent performance limitation associated to the conventional computer architecture (von Neumann bottleneck). In this scenario, emerging memory technologies are gaining interest thanks to their non-volatility and low power/fast operation. In this chapter, experimental characterization and modeling of spin-transfer torque magnetic memory (STT-MRAM) are presented, with particular focus on cycling endurance and switching variability, which both present a challenge towards STT-based memory applications. Then, the switching variability in STT-MRAM is exploited for hardware security and computing primitives, such as true-random number generator (TRNG) and stochastic spiking neuron for neuromorphic and stochastic computing

    Special Topics in Information Technology

    Get PDF
    This open access book presents thirteen outstanding doctoral dissertations in Information Technology from the Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy. Information Technology has always been highly interdisciplinary, as many aspects have to be considered in IT systems. The doctoral studies program in IT at Politecnico di Milano emphasizes this interdisciplinary nature, which is becoming more and more important in recent technological advances, in collaborative projects, and in the education of young researchers. Accordingly, the focus of advanced research is on pursuing a rigorous approach to specific research topics starting from a broad background in various areas of Information Technology, especially Computer Science and Engineering, Electronics, Systems and Control, and Telecommunications. Each year, more than 50 PhDs graduate from the program. This book gathers the outcomes of the thirteen best theses defended in 2019-20 and selected for the IT PhD Award. Each of the authors provides a chapter summarizing his/her findings, including an introduction, description of methods, main achievements and future work on the topic. Hence, the book provides a cutting-edge overview of the latest research trends in Information Technology at Politecnico di Milano, presented in an easy-to-read format that will also appeal to non-specialists

    Miniaturized Transistors, Volume II

    Get PDF
    In this book, we aim to address the ever-advancing progress in microelectronic device scaling. Complementary Metal-Oxide-Semiconductor (CMOS) devices continue to endure miniaturization, irrespective of the seeming physical limitations, helped by advancing fabrication techniques. We observe that miniaturization does not always refer to the latest technology node for digital transistors. Rather, by applying novel materials and device geometries, a significant reduction in the size of microelectronic devices for a broad set of applications can be achieved. The achievements made in the scaling of devices for applications beyond digital logic (e.g., high power, optoelectronics, and sensors) are taking the forefront in microelectronic miniaturization. Furthermore, all these achievements are assisted by improvements in the simulation and modeling of the involved materials and device structures. In particular, process and device technology computer-aided design (TCAD) has become indispensable in the design cycle of novel devices and technologies. It is our sincere hope that the results provided in this Special Issue prove useful to scientists and engineers who find themselves at the forefront of this rapidly evolving and broadening field. Now, more than ever, it is essential to look for solutions to find the next disrupting technologies which will allow for transistor miniaturization well beyond silicon’s physical limits and the current state-of-the-art. This requires a broad attack, including studies of novel and innovative designs as well as emerging materials which are becoming more application-specific than ever before
    corecore