3 research outputs found

    Are We There Yet? Simple Language Implementation Techniques for the 21st Century

    Get PDF
    Research on language implementation techniques has regained importance with the rise of domain-specific languages (DSLs). Although DSLs can help manage a domain’s complexity, building highly optimizing compilers or virtual machines is rarely affordable. So, performance remains an issue. Ideally, you would implement a simple interpreter and still be able to achieve acceptable performance. RPython and Truffle are implementation techniques based on simple interpreters; they promise to perform at the same order of magnitude as highly optimizing virtual machines. This case study compares the two techniques to identify their similarities, weaknesses, and areas for further research

    Opportunities for a Truffle-based Golo Interpreter

    Get PDF
    Golo is a simple dynamically-typed language for the Java Virtual Machine. Initially implemented as a ahead-of-time compiler to JVM bytecode, it leverages invokedy-namic and JSR 292 method handles to implement a reasonably efficient runtime. Truffle is emerging as a framework for building interpreters for JVM languages with self-specializing AST nodes. Combined with the Graal compiler, Truffle offers a simple path towards writing efficient interpreters while keeping the engineering efforts balanced. The Golo project is interested in experimenting with a Truffle interpreter in the future, as it would provides interesting comparison elements between invokedynamic versus Truffle for building a language runtime

    Micro Virtual Machines: A Solid Foundation for Managed Language Implementation

    Get PDF
    Today new programming languages proliferate, but many of them suffer from poor performance and inscrutable semantics. We assert that the root of many of the performance and semantic problems of today's languages is that language implementation is extremely difficult. This thesis addresses the fundamental challenges of efficiently developing high-level managed languages. Modern high-level languages provide abstractions over execution, memory management and concurrency. It requires enormous intellectual capability and engineering effort to properly manage these concerns. Lacking such resources, developers usually choose naive implementation approaches in the early stages of language design, a strategy which too often has long-term consequences, hindering the future development of the language. Existing language development platforms have failed to provide the right level of abstraction, and forced implementers to reinvent low-level mechanisms in order to obtain performance. My thesis is that the introduction of micro virtual machines will allow the development of higher-quality, high-performance managed languages. The first contribution of this thesis is the design of Mu, with the specification of Mu as the main outcome. Mu is the first micro virtual machine, a robust, performant, and light-weight abstraction over just three concerns: execution, concurrency and garbage collection. Such a foundation attacks three of the most fundamental and challenging issues that face existing language designs and implementations, leaving the language implementers free to focus on the higher levels of their language design. The second contribution is an in-depth analysis of on-stack replacement and its efficient implementation. This low-level mechanism underpins run-time feedback-directed optimisation, which is key to the efficient implementation of dynamic languages. The third contribution is demonstrating the viability of Mu through RPython, a real-world non-trivial language implementation. We also did some preliminary research of GHC as a Mu client. We have created the Mu specification and its reference implementation, both of which are open-source. We show that that Mu's on-stack replacement API can gracefully support dynamic languages such as JavaScript, and it is implementable on concrete hardware. Our RPython client has been able to translate and execute non-trivial RPython programs, and can run the RPySOM interpreter and the core of the PyPy interpreter. With micro virtual machines providing a low-level substrate, language developers now have the option to build their next language on a micro virtual machine. We believe that the quality of programming languages will be improved as a result
    corecore