10 research outputs found

    Experience With Remote Laboratories For On-Campus Engineering Degrees

    Get PDF

    Reconfigurable Web-Interface Remote Lab for Instrumentation and Electronic Learning

    Get PDF
    Lab sessions in Engineering education are designed to reinforce theoretical concepts. However, there is usually not enough time to reinforce all of them. Remote and virtual labs give students more time to reinforce those concepts. In particular, with remote labs, this can be done interacting with real lab instruments and specific configurations. This work proposes a flexible configuration for Remote Lab Sessions, based on some of 2019 most popular programming languages (Python and JavaScript). This configuration needs minimal network privileges, it is easy to scale and reconfigure. Its structure is based on a unique Reception-Server (which hosts User database, and Time Shift Manager, it is accessible from The Internet, and connects Users with Instruments-Servers) and some Instrument-Servers (which manage hardware connection and host experiences). Users always connect to the Reception-Server, and book a shift for an experience. During the time range associate to that shift, User is internally forwarded to Instrument-Server associated with the selected experience, so User is still connected to the Reception-Serer. In this way, Reception-Server acts as a firewall, protecting Instrument-Servers, which never are open to The Internet. A triple evaluation system is implemented, User session logging with auto-evaluation (objectives accomplished), a knowledge test and an interaction survey. An example experience is implemented, controlling a DC source using Standard Commands for Programmable Instruments

    Are Remote Labs Worth the Cost? Insights From a Study of Student Perceptions of Remote Labs

    No full text
    Remote online laboratories enable students to conduct scientific investigations using real experimental equipment. However, scaling up remote labs may require significant costs in purchasing and maintaining expensive equipment compared to scaling simulated labs. While these costs are a consequence of using physical equipment, we argue that there are unique educational advantages to remote labs. This paper presents the results of a preliminary study of student perceptions of a remote lab in comparison to an identical lab experience with simulated data. The findings reveal several intriguing themes that highlight the pedagogical value of remote laboratories. In addition, we provide recommendations for the design and pedagogy of online laboratory experiences based on our findings

    Sparking Innovation in STEM Education with Technology and Collaboration

    Get PDF
    This report highlights innovative technology-supported pedagogic models in science, technology, engineering and mathematics (STEM) education, explores what to expect from collaboration in a designed network, and, thereafter, sketches lessons for promoting educational innovation through collaboration. How can technology-supported learning help to move beyond content delivery and truly enhance STEM education so that students develop a broad mix of skills? How can collaboration be encouraged and used to help develop, spread, accelerate and sustain innovation in education? The HP Catalyst Initiative –an education grant programme by the Hewlett Packard (HP) Sustainability and Social Innovation team – is used as a case study to answer these questions

    Identification, Characterisation and Prioritisation of Student Interactions in Face-to-Face and Remotely-operated Engineering Laboratories

    Get PDF
    There are various modes of conducting laboratory activities in university-level engineering education. The present study focuses upon those which involve students' operation of real physical equipment in their conduct of laboratory activity, that is, face-to-face and remotely-operated laboratories. This study first identifies and characterises student interactions that underpin laboratory learning in both face-to-face and remotely-operated laboratories and then prioritises such interactions to make recommendations for transfer from face-to-face to create effective remotely-operated laboratories

    Improving Laboratory Learning Outcomes: An Investigation Into the Effect of Contextualising Laboratories Using Virtual Worlds and Remote Laboratories.

    Get PDF
    This thesis presents research into improving learning outcomes in laboratories. It was hypothesised that domain specific context can aid students in understanding the relationship between a laboratory (as a proxy for reality), the theoretical model being investigated within the laboratory activity and the real world. Specifically, the research addressed whether adding domain context to a laboratory activity could improve students' ability to identify the strengths and limitations of models as predictors of real-world behaviour. The domain context was included in a laboratory activity with the use of a remote radiation lab set within a context-rich virtual world. The empirical investigation used a pretest-posttest control group design to assess whether there was a statistically significant difference in the learning outcome between a treatment group who completed the lab in a contextualised virtual world, and the control group who conducted the activity in an empty virtual world. The results showed that there were no statistically significant differences between the groups and therefore there are cases where contextualising a laboratory activity will not have an effect on students' ability to identify the strengths and limitations of models as predictors of real-world behaviour. This research postulates that previous exposure to the model, the level of awareness students had of the context and the lack time available for reflection may have masked or attenuated the effect of the context. This research has contributed a framework for the analysis and design of domain context in laboratory activities, and an interface for integrating iLabs laboratories into the Open Wonderland virtual world. It has explicitly clarified the relationship between context, labs, models and the real world. Most significantly, this research has contributed knowledge to the field of laboratory learning outcomes and the understanding of how domain context affects laboratory activities

    Enhancing engineering education through remote laboratories

    Full text link
    This research determined the engagement levels and learning experience of students in a unique remote laboratory for engineering students. The findings determined the perceived learning objective of students in the laboratory, as well as perception of realism of equipment in a remote educational environment.<br /

    Helping academics manage students with “invisible disabilities”

    Get PDF
    corecore