339 research outputs found

    Implications of Implementing HDTV Over Digital Subscriber Line Networks

    Get PDF
    This thesis addresses the different challenges a telecommunications company would face when trying to implement an HDTV video service over a Digital Subscriber Line (DSL) connection. Each challenge is discussed in detail and a technology, protocol, or method is suggested to overcome that particular challenge. One of the biggest challenges is creating a network architecture that can provide enough bandwidth to support video over a network that was originally designed for voice traffic. The majority of the network connections to a customer premises in a telephony network consists of a copper pair. This type of connection is not optimal for high bandwidth services. This limitation can be overcome using Gigabit Ethernet (GE) over fiber in the core part of the network and VDSL2 in the access part of the network. For the purposes of this document, the core portion of the network is considered to be an area equal to several counties or approximately 50 miles in radius. The core network starts at the primary central office (CO) and spreads out to central offices in suburbs and small towns. The primary central office is a central point in the telecom operator\u27s network. Large trunks are propagated from the primary central office to smaller central offices making up the core network. The access portion of the network is considered to be an area within a suburb or small town from the central office to a subscriber\u27s home. Appendix A, located on page 60, contains a network diagram illustrating the scope of each of the different portions of the network. Considerations must also be given for the internal network to the residence such as category 5 (Cat5) cable or higher grade and network equipment that can provide up to 30 Megabits per second (Mbps) connections or throughput. The equipment in the telecommunications network also plays a part in meeting the challenge of 30 Mbps bandwidth. GE switches should be used with single mode fiber optic cable in the core part of the network. Digital Subscriber Line Access Multiplexers (DSLAM) with the capability to filter Internet Group Management Protocol (IGMP) messages should be used in the access part of the network to facilitate bandwidth utilization. Placement of this equipment and how the data is aggregated is another issue to consider when implementing HDTV service. Another major challenge facing the implementation of HDTV over DSL networks is controlling quality of service (QoS) throughout the network. Class of Service (CoS) and Differentiated Services (DiffServ) is a method of QoS that would enable video packets to have a higher priority and less delay than other data packets. The consumer could have data, video, and voice traffic all over the same DSL connection. Data, video and voice packets would need to have a different priority in order to maintain appropriate QoS levels for each service. The use of advanced technology in video encoding will be essential to the success of the video service. MPEG-2, MPEG-4, and Windows Media 9 are just a few of the video encoding technologies that could be used to reduce the necessary bandwidth for HDTV. The advancement of this technology is essential to allow telecommunications providers to offer HDTV. Another challenge for the telecom operator concerns the security of the network and service after implementation. Theft of service will be another area that the telecomm operator will be forced to resolve. The cable operators currently face this issue and lose millions of dollars in revenue. Authentication, IP filtering and MAC address blocking are a few possible solutions to this problem

    ACUTA eNews January 1999, Vol.28, No. 1

    Get PDF
    In This Issue High Priorities for \u2799 Board Report Making Choices: ATM vs. Gigabit Ethernet Overheard on the Listserve: Is VoIP for Me? DC at a Glance Positions Available Welcome New Members Universal Translations Service Use Telephone Wires To Create a Household Network Information, Please High Speed Networking ACUTA Member Needs Assessment: Members are Highly Satisfied with ACUTA Service

    Computer science and technology : historiography IX (7)

    Get PDF
    Wired's early issues (covering 1993 to 1997

    ACUTA eNews January 1999, Vol.28, No. 1

    Get PDF
    In This Issue High Priorities for \u2799 Board Report Making Choices: ATM vs. Gigabit Ethernet Overheard on the Listserve: Is VoIP for Me? DC at a Glance Positions Available Welcome New Members Universal Translations Service Use Telephone Wires To Create a Household Network Information, Please High Speed Networking ACUTA Member Needs Assessment: Members are Highly Satisfied with ACUTA Service

    Technology Directions for the 21st Century

    Get PDF
    New technologies will unleash the huge capacity of fiber-optic cable to meet growing demands for bandwidth. Companies will continue to replace private networks with public network bandwidth-on-demand. Although asynchronous transfer mode (ATM) is the transmission technology favored by many, its penetration will be slower than anticipated. Hybrid networks - e.g., a mix of ATM, frame relay, and fast Ethernet - may predominate, both as interim and long-term solutions, based on factors such as availability, interoperability, and cost. Telecommunications equipment and services prices will decrease further due to increased supply and more competition. Explosive Internet growth will continue, requiring additional backbone transmission capacity and enhanced protocols, but it is not clear who will fund the upgrade. Within ten years, space-based constellations of satellites in Low Earth orbit (LEO) will serve mobile users employing small, low-power terminals. 'Little LEO's' will provide packet transmission services and geo-position determination. 'Big LEO's' will function as global cellular telephone networks, with some planning to offer video and interactive multimedia services. Geosynchronous satellites also are proposed for mobile voice grade links and high-bandwidth services. NASA may benefit from resulting cost reductions in components, space hardware, launch services, and telecommunications services

    Networking vendor strategy and competition and their impact on enterprise network design and implementation

    Get PDF
    Thesis (M.B.A.)--Massachusetts Institute of Technology, Sloan School of Management; and, (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science; in conjunction with the Leaders for Manufacturing Program at MIT, 2006.Includes bibliographical references (leaves 93-99).While a significant amount of literature exists that discuss platform strategies used by general IT vendors, less of it has to do with corporate networking technology vendors specifically. However, many of the same strategic principles that are used to analyze general IT vendors can also be used to analyze networking vendors. This paper extends the platform model that was developed by Michael Cusumano and Annabel Gawer to networking vendors, outlining the unique strategic aspects that the networking market possesses. The paper then reviews the strategy of the first dominant corporate datacom vendor, IBM, how it achieved its dominance, and how it lost it. The paper then discusses the strategies of various vendors who attempted to replace IBM as the dominant networking platform vendor and how they failed to do so. Finally, the paper discusses Cisco Systems, a vendor who did manage to achieve a level of dominance that parallels IBM's, and how that company has utilized its strategy to achieve and maintain its current dominance. Finally, Cisco's current strategic challenges are discussed. The impact of the strategies of the various vendors on the evolution of corporate networking is also discussed.by Ray Fung.S.M.M.B.A

    Journal of Telecommunications in Higher Education

    Get PDF
    In this Issue 6 The Synergy of Network Convergence and the IP Infrastructure 12 Leveraging the IP Network at the University of Oregon 18 How the Internet Will Change Network Management 26 Voice Over IP: The Stakes Get Higher 30 Abilene: An Advanced Research Network 34 Web-Based Systems on the 21st-Century Campus 46 Bill D. Morris Award: Whitney Johnso

    Hyperscsi : Design and development of a new protocol for storage networking

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore