97,822 research outputs found

    Development of a test bench for the electronics of ionizing radiationdetectors

    Get PDF
    In the present final degree project a low cost test bench is presented. A test bench is an envi-ronment used to verify the correctness of devices. In this case, the test bench is used to test preamplifiers and digitizers of the nuclear instrumentation laboratory. These instruments are used for ionizing particle detection. The initial problematic of the project was to investigate if it was possible to do a testing working bench with a cheap digital circuit as microcontrollers. After a study of the actual market, the Arduino Due was chosen. Arduino is an open-source electronics platform based on easy-to-use hardware and software. In the initial stage of the project, the attention was focused on the documentation about the Arduino boards. It was quickly observed that the sampling time delivered by the Aduino IDE was not acceptable for a nuclear test bech. When inquiring into the technical datasheet of the Atmel SAM3X microchip, used by the Arduino Due, it was achieved making signals with sampling time acceptable for nuclear instrumentation. Once discovered the potential of Arduino Due, a GUI was made to fully customize the shape of the pulses generated by the Arduino board. Therefore, the development of a cheap testing workbench was achieved

    ADLib: An Arduino Communication Framework for Ambient Displays

    Get PDF
    As computers become more and more a part of our everyday lives, the need to change the way in which people interact with them is also evolving. Ambient displays provide an effective way to move computers away from our main focus and into the periphery. ADLib is a small communication framework that aims to simplify the construction of ambient displays built using the Arduino prototyping platform. The ADLib framework provides an easy-to-use library for communicating with an Arduino, allowing the user to focus on the construction and development of the display. The framework consists of three main components: A protocol for encoding information to be sent from a host computer to the Arduino An Arduino library for receiving and parsing incoming data A desktop application for sending data to the Arduin

    ARDUINO Tutor: An Intelligent Tutoring System for Training on ARDUINO

    Get PDF
    This paper aims at helping trainees to overcome the difficulties they face when dealing with Arduino platform by describing the design of a desktop based intelligent tutoring system. The main idea of this system is a systematic introduction into the concept of Arduino platform. The system shows the circuit boards of Arduino that can be purchased at low cost or assembled from freely-available plans; and an open-source development environment and library for writing code to control the board topic of Arduino platform. The system is adaptive with the trainee’s individual progress. The system functions as a special tutor who deals with trainees according to their levels and skills. Evaluation of the system has been applied on professional and unprofessional trainees in this field and the results were good

    Understanding and Design of an Arduino-based PID Controller

    Get PDF
    This thesis presents research and design of a Proportional, Integral, and Derivative (PID) controller that uses a microcontroller (Arduino) platform. The research part discusses the structure of a PID algorithm with some motivating work already performed with the Arduino-based PID controller from various fields. An inexpensive Arduino-based PID controller designed in the laboratory to control the temperature, consists of hardware parts: Arduino UNO, thermoelectric cooler, and electronic components while the software portion includes C/C++ programming. The PID parameters for a particular controller are found manually. The role of different PID parameters is discussed with the subsequent comparison between different modes of PID controllers. The designed system can effectively measure the temperature with an error of ± 0.6℃ while a stable temperature control with only slight deviation from the desired value (setpoint) is achieved. The designed system and concepts learned from the control system serve in pursuing inexpensive and precise ways to control physical parameters within a desired range in our laboratory

    Developing a Mini Smart House model

    Get PDF
    The work is devoted to designing a smart home educational model. The authors analyzed the literature in the field of the Internet of Things and identified the basic requirements for the training model. It contains the following levels: command, communication, management. The authors identify the main subsystems of the training model: communication, signaling, control of lighting, temperature, filling of the garbage container, monitoring of sensor data. The proposed smart home educational model takes into account the economic indicators of resource utilization, which gives the opportunity to save on payment for their consumption. The hardware components for the implementation of the Mini Smart House were selected in the article. It uses a variety of technologies to conveniently manage it and use renewable energy to power it. The model was produced in-dependently by students involved in the STEM project. Research includes sketching, making construction parts, sensor assembly and Arduino boards, programming in the Arduino IDE environment, testing the functioning of the system. Research includes sketching, making some parts, assembly sensor and Arduino boards, programming in the Arduino IDE environment, testing the functioning of the system. Approbation Mini Smart House researches were conducted within activity the STEM-center of Physics and Mathematics Faculty of Ternopil Volodymyr Hnatiuk National Pedagogical University, in particular during the educational process and during numerous trainings and seminars for pupils and teachers of computer science

    Universal Arduino-based experimenting system to support teaching of natural sciences

    Get PDF
    The rapid evolution of intelligent electronic devices makes information technology, computer science and electronics strongly related to the teaching of natural sciences. Today almost everybody has a smart phone that can convert light, temperature, movement, sound to numbers, therefore all these can be processed, analysed, displayed, stored, shared by software applications. The fundamental question is how education can follow this knowledge and how can education take its advantages. Components and methods of modern technology are available for education also, teachers and students can play with parts and tools which were previously used only by engineers. A good example is the very popular Arduino board which is practically an industrial microcontroller whose pins are wired to easy-to-use connectors on a printed circuit board. In this paper we show a universal system which we have developed for the Arduino platform to support experimenting and understanding of the most fundamental principles of the operation of modern devices. We show our related educational concept and discuss the most important features of the system. Open source hardware and software are available and we provide a number of video tutorials as well

    A smart voltage and current monitoring system for three phase inverters using an android smartphone application

    Get PDF
    In this paper, a new smart voltage and current monitoring system (SVCMS) technique is proposed. It monitors a three phase electrical system using an Arduino platform as a microcontroller to read the voltage and current from sensors and then wirelessly send the measured data to monitor the results using a new Android application. The integrated SVCMS design uses an Arduino Nano V3.0 as the microcontroller to measure the results from three voltage and three current sensors and then send this data, after calculation, to the Android smartphone device of an end user using Bluetooth HC-05. The Arduino Nano V3.0 controller and Bluetooth HC-05 are a cheap microcontroller and wireless device, respectively. The new Android smartphone application that monitors the voltage and current measurements uses the open source MIT App Inventor 2 software. It allows for monitoring some elementary fundamental voltage power quality properties. An effort has been made to investigate what is possible using available off-the-shelf components and open source software
    corecore