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This thesis presents research and design of a Proportional, Integral, and Derivative (PID) 

controller that uses a microcontroller (Arduino) platform. The research part discusses the structure 

of a PID algorithm with some motivating work already performed with the Arduino-based PID 

controller from various fields. An inexpensive Arduino-based PID controller designed in the 

laboratory to control the temperature, consists of hardware parts: Arduino UNO, thermoelectric 

cooler, and electronic components while the software portion includes C/C++ programming. The 

PID parameters for a particular controller are found manually. The role of different PID parameters 

is discussed with the subsequent comparison between different modes of PID controllers. The 

designed system can effectively measure the temperature with an error of ± 0.6℃ while a stable 
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temperature control with only slight deviation from the desired value (setpoint) is achieved. The 

designed system and concepts learned from the control system serve in pursuing inexpensive and 

precise ways to control physical parameters within a desired range in our laboratory. 



 

1 
 

I. Introduction 
 

      
Modern  industry,  scientific  workstations,  robotics,  and regular  activities  have  been  greatly  

aided  by  the use of control  systems. The extensive use of the control systems is evident in the 

cruise control of vehicles, the temperature control of baby incubators, the temperature and 

humidity control of cell incubators, the mobile control of robots, and many more applications in 

countless scientific research and industries. The PID algorithm is a simple process, which is easy 

to understand conceptually and implement practically. The advantageous cost/benefit ratio 

provided by the PID controllers makes them the most frequently used control tools in industry.1 

The PID controllers have been extensively used since 1980s for the control engineering practice. 

The PID controller has been suggested as the second most important control decision and 

communication instrument of the 20th century only behind the “Microprocessors.”2 The cheaper 

price and the compatibility in interfacing with the advanced computing programs like MATLAB 

and LabVIEW make Arduino the preferred microcontroller for teaching.  

The research in our laboratory focuses on the study of human cells: cancer cells, especially of skin 

cancer cell, melanoma (cell lines M238, M229, and M249), and other cells which are part of human 

immune systems (T-cell and Mast cell). We observe the rate of change in mass of the cancer cells 

and the change in absolute mass of the immune cells under the influence of drugs. The cells are 

placed inside the cell incubator, Steri-Cult 𝐶𝑂2 Incubator. The optimum conditions for 

temperature, % of 𝐶𝑂2, and the humidity for the cells in this incubator are  37℃,  5%, and above 

60% respectively.  The interferometric phase imaging camera, Phasics SID4BIO, which gives the 

                                                           
1 Vilanova, R., & Visioli, Antonio. (2012). PID control in the third millennium lessons learned and new 

approaches (Advances in industrial control). London; New York: Springer. 

 
2 Rhinehart, R. (2000). The century's greatest contributions to control practice. ISA Transactions, 39(1), 3-

13. 
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interferometric phase images of the cells and color camera, Basler acA645-100gc, which helps to 

focus on the cells and normalize the color image, are placed inside the cell incubator. 

The setpoint temperature (desired temperature) for the cell incubator is 37℃. The upper limit is 

very sensitive, as passing beyond 37.25℃ is not desirable. However, the lower limit is a bit 

flexible, about 36℃ . Hence, the temperature range of 36.50℃ ± 0.50℃ is preferable for the cell 

incubator. We are using a separate temperature controller, product of Omega platinum series 

instead of using the in-built temperature controller system of the incubator. This separate 

temperature controller system gives temperature reading with an accuracy up to two decimal 

places. This extra care is essential because of the heat generated inside the incubator (system) due 

to the following reasons: the motion of small motors adjusting the focus position at each imaging 

location (basically three motors to vary the objectives in x, y and z directions) and the working of 

cameras.  

     The phase imaging camera and the color camera used in the cell incubator become heated. The 

heating of the cameras contributes to the heating of the incubator in the short term when the 

experiment is carried out. However, in the long run the performance of the cameras degrades 

leading to the breakdown of cameras. Hence, they need to be cooled separately. Furthermore, we 

are trying to learn using a new and faster technique to control the focus of microscope by a laser 

beam reflection off of the sample in our laboratory. The applications of the control systems in the 

live cell-interferometry and live cell-imaging has significantly motivated me to learn and design a 

control system. The project work is split into following three parts: 

The first part is the introductory part that discusses the background research of the project. This 

part starts with the description of PID parameters and the characteristics of a practical PID 

controller. The research analyzes the Arduino-based PID controller over the last few years. The 
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use of PID controller in different arenas is discussed with basic focus on the interfacing and 

optimization of a PID controller to get the better performances. The second part deals with the 

designing of our system, an Arduino-based temperature controller system using the PID algorithm. 

The codes written in C programming serve as the software portion, while the hardware portion 

includes Arduino UNO, electronic components, and solid state devices. The tuning of the PID 

controller is done manually, which is also called a hit and trial method. In the final part, the 

observations of different kinds of controllers are made through the experimental data and plots. 

The characteristics of various modes of controllers are observed. The logical interpretations 

justifying the experimental observations are presented. Finally conclusions are drawn based on the 

experimental observations with some discussions on the possible applications of the designed 

controller in our laboratory. 
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II. Background Literature Review 

II.i. Literature Review of PID controller 

There are various types of controllers used in industry, laboratory, and routine applications. Some 

of the commonly used controllers are on/off, PID, fuzzy, and neural. The latter two are a bit 

complex, and use more sophisticated concepts like artificial intelligence. The controllers can also 

be differentiated as “feedforward” and “feedback” controllers. The feedforward controller works 

by giving a result based on the anticipation of the next step, while the feedback controller works 

by giving an observed result that changes the processing value of the later step.  In this project, the 

entire focus is on the feedback control system that uses the PID algorithm. PID stands for 

proportional integral and derivative.  

 

 

Fig 1.1 Schematic of a PID controller with a feedback loop: The sensor block measures the 

process variable (PV) of a given process, which is compared to the setpoint (SP) to find the 

error. Observed error is used to find the controller output, which in turn is sent into the 

Actuators block.3 

                                                           
3 Peacock, F. (2008). How the PID Algorithm works and why it works. Retrieved from www.PID-

Tuning.com 
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The PID controller uses a feedback loop, which controls a parameter of the system called the 

process variable (PV), which is supposed to match the desired output, the setpoint (SP). A PV is 

any physical quantity of the system that can be measured using the sensor and can be controlled. 

The PID controller uses an “error,” the difference between SP and PV, in each loop to control the 

system. It is more like a machine that measures the error in each loop and gives the necessary 

signals to an actuator, a device that works according to the received signals from the controller, to 

minimize the error. Each term of a PID algorithm has its own characteristics and roles, which are 

described in detail as followed: 

P-Term:  This takes into account the present error only.  The P-Term makes an effort in proportion 

to how far the PV is from the SP at the present time. However, approaching closer to the SP, the 

error becomes so small that the controller cannot trigger the PV enough to catch the SP, which 

implies that there always exists a steady state error (SSE), which appears as an offset from the 

setpoint in the system. However, a larger value of the proportional term can trigger the PV to the 

setpoint, but it makes the system unstable with oscillations and overshoots. Thus the controller’s 

response in such case behaves more like the response coming from an on/off controller. Thus, the 

P-controller alone is not sufficient for the most control designs. Therefore, the P-Term is generally 

accompanied by an “I-term,” which makes the controller become a PI-controller. Mathematically, 

the output of the P-controller is given by the equation: 

 

               P-Term = 𝐾𝑝. e (t)……………………………..….. (1) 

 

Where 𝐾𝑝 = Proportional gain and e (t) = error at the present time “t” 
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I-Term: This is the most important term in the PID controller. It takes into account all the errors 

present in the system from the starting point to that particular point of time in the process. It looks 

at the history of the error until that specific point. Mathematically, the I-Term is represented by 

the equation: 

 

                                                          I-Term = ∫ 𝐾𝑖 . 𝑒(𝑡)𝑑𝑡
𝜏

0
…………………...……….. (2) 

 

Where 𝐾𝑖 = integral gain and 𝜏 = total time of operation of the controller 

The contribution from the I-Term tries to balance the difference in the time spent by the PV on the 

both sides of the setpoint, i.e. below and above the setpoint. For example, if PV spends 10 seconds 

running at 98% of the setpoint value, the I-Term will try to push the PV over to 102% for the other 

10 seconds to compensate. Hence, there is an overshoot. For any sensitive system, the overshoot 

can seriously damage the whole structure of the system. However, the PI controller is still better 

than PID controller for most control systems due to its simplicity in operation.  However, it is 

important to make sure that the integral windup has been completely detached from the controller. 

The integral windup refers to the saturated values of the integral term in either direction. 

 

D-Term: This takes the derivative of a PV of the system at every point. Thus, it predicts the future 

of the operation of the PID loop (this loop is an operation of the PID controller for each iteration, 

as shown in Fig 1.1). The purpose of this term is to check how the process variable moves without 

overshooting the setpoint. The D-Term acts on the PI terms by counteracting them. As the PV 

approaches the setpoint, the PV settles with the set point with a small or no overshoot.   

Mathematically, the D-Term is given by the equation: 
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              D-Term =  𝐾𝑑 ∙  
𝑑 𝑒(𝑡)

𝑑𝑡
 ….…….…………..…..…… (3) 

 

where,  𝐾𝑑 represents the differential gain. However, the D-Term introduces noise and the wearing 

down of the equipment.4 

The D-term looks at the fast and the short-term changes in the process variable, like noise that 

appears as spikes with significant variations. The D-term assumes that there is too much change 

going around and should be compensated by bringing about drastic undesirable changes to the 

system. It is better to use the filter to reduce the noise, but over-filtration may also remove the 

necessary signals and the essential information from the system. Furthermore, the D-Term can 

destabilize the system if used without proper care. When the dampening action is too high, higher 

proportional and integral gains are needed for the compensation. Furthermore, getting rid of an 

offset quickly cannot be achieved due to the derivative’s dampening effect. Thus, the user has to 

set the higher values of the P and I terms for compensation. This way it is responsible for the 

wearing away of the equipment working as actuators. 

It is important to make sure that if the PI-action alone is sufficient for the control designs, we do 

not use the D-term. If the D-term is required for a system, adding it should be done with a 

significant amount of care and appropriate use of the filters. The D-term is more desirable generally 

under the following specific conditions: 

I. When the actuators are only one dimensional, i.e. the system can be heated, but cannot be 

 cooled. In such systems, once there is an overshoot, coming back to the setpoint at  

                                                           
4Welander, P. (2010, February 1). Understanding Derivative in PID Control. Retrieved from 

http://www.controleng.com/search/search-singledisplay/understanding-derivative-in-pid-control/4ea87c406e.html 
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          the user’s will is very difficult.      

II. It is necessary for a slow process, where the overshoot is strictly undesirable, like brewing  

 beverages done at a particular temperature. 

 

 

II.ii. A Practical PID Controller 

A practical PID controller5 should be able to accomplish its objectives with the following 

characteristics: 

    i) Sample time: The controller should have a PID loop that runs through the system in each specific 

time interval, called the sample time, rather than at any random time interval. Hence, the execution 

of the controller’s effort can be observed and calculated every sample time-interval. The user 

should be careful while writing the codes when changing the sample time of the PID loop. 

ii) Derivative-Kicks: A good PID controller should have a characteristic that enables the user to 

change the setpoint. Changing the setpoint allows the user to attain different conditions of the 

system while working. But the change in setpoint changes the error, and that error gets amplified 

due to its differentiation. A simple mathematical formula that can help to get rid of this problem 

is as follows: 

 

             Output (u) = 𝐾𝑝. e (t) + ∫ 𝐾𝑖. 𝑒(𝑡)𝑑𝑡
𝜏

0
 +  𝐾𝑑 ∙  

𝑑 𝑒(𝑡)

𝑑𝑡
………..... (4) 

                                                           
5Bret. (2011, April). Improving the Beginner’s PID – Introduction « Project Blog. Retrieved from   

http://brettbeauregard.com/blog/2011/04/improving-the-beginner-pid-introduction/ 
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                              D-Term = 𝐾𝑑 ∙  
𝑑𝑒(𝑡)

𝑑𝑡
 =  𝐾𝑑 ∙  

𝑑(𝑆𝑃−𝑃𝑉)

𝑑𝑡
….…………. (5) 

 As the setpoint (SP) is constant for a certain operating period, 

        

                                                                D-Term = −  𝐾𝑑 ∙  
𝑑(𝑃𝑉)

𝑑𝑡
…………………………... (6) 

 

Equation (6) eliminates the SP from the D-Term, so there will not be such a problem while 

changing the SP. Now the controller output can be written as: 

 

                                         u = 𝐾𝑝. e (t) + ∫ 𝐾𝑖. 𝑒(𝑡)𝑑𝑡
𝜏

0
  −  𝐾𝑑 ∙  

𝑑 (𝑃𝑉)

𝑑𝑡
………….. (7) 

 

iii) On the-fly Tuning Changes: If the system is not too sensitive to the changes, the tuning 

parameters can be changed while the PID loop is in operation. Using the PID controller in such a 

way makes it more flexible and its tuning becomes much easier. However, for a sensitive system, 

it is always better to tune the PID loop using a transfer function from MATLAB Simulink (The 

transfer function of a linearly time invariant system is defined as the ratio of the output to the input 

in the frequency domain.6) While changing the PID parameters, due to the integration (summation) 

of errors in the integral term, an unpredictable output is observed from the controller. 

The following change in the I-Term helps in getting a smooth controller output. 

                                                                            I-term+ =  𝐾𝑖 ∙ ℯ(𝑡)……….………….…….…. (8) 

 

                                                           
6Aziz, M. M.(2010). Transfer Function and Block Diagrams. Retrieved from 

ftp://ftp.dca.fee.unicamp.br/pub/docs/vonzuben/ea619_2s12/transfer_function_block_diagram.pdf 
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This change will make the controller look at the change in  𝐾𝑖 only at that specific point, neglecting 

its past. Finally, the controller output becomes 

 

                 u = 𝐾𝑝. ℯ(𝑡) +  𝐾𝑖 ∙ ℯ(𝑡) –  𝐾𝑑 ∙  
𝑑𝑃𝑉

𝑑𝑡
 …………………... (9) 

      iv) No Integral and Total Windup: The PID controller cannot exceed certain higher and lower 

limits. The higher and lower limits of the integral terms must be set in the program such that 

beyond those limits, the PID loop is programmed to saturate to its corresponding limiting values. 

Likewise, the total output of the PID controller cannot exceed the limits in either direction. Again, 

the PID loop is programmed to saturate at the corresponding limiting values of controller output 

in either direction. This phenomenon is called total anti-windup. It is one of the most important 

characteristics of a robust PID controller. 

  

For practical purposes, the controller’s performance7 can be analyzed through the following 

controller’s response parameters:  

i) Rising Time: The time taken by the controller to trigger the PV to 90% of the setpoint from 

the 10% value is called the rising time for an underdamped system. 8 A smaller rising time is one 

of the characteristics of a good controller. 

 

 

 

 

                                                           
7 National Instruments. (2011, March 29). PID Theory Explained. Retrieved from http://www.ni.com/white-

paper/3782/en/ 
8 Levine, W. (1996). The Control handbook (Electrical engineering handbook series). Boca Raton, Fl. : [New 

York, NY]: CRC Press ; IEEE Press. 
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 Fig 2.1 Measures of controller’s performance: The vertical axes could represent any physical 

quantity; the solid curve gives the measure of Process Variable. 

 

ii) Peak-time: The peak-time can be defined as the time required for the response to reach the 

maximum value of the process variable for the first time. 

iii) Steady State Error (SSE): After the controller’s effort, the PV settles to a value closer to 

the SP. The difference between SP and the settled PV at this particular point is called the steady 

state error. The smaller the value of the steady state error, the better the controller behaves. The I-

Term contributes to the reduction and even elimination of the SSE. 

iv)  Settling time: The time taken by the controller for the PV to settle to the steady state error 

is called the settling time. The smaller settling time also implies a better controller in terms of the 

response rate. Generally, the PID controller has a smaller settling time than the PI controller. 

v) Overshoot: While controlling the PV, the controller happens to push the PV beyond the 

setpoint, the phenomenon is called the overshoot. The percentage overshoot represents the amount 
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that the response overshoots its steady-state (or final) value at the peak time, which is expressed 

as a percentage of the steady-state value. It is given by equation (10) 

                                      

                                             % overshoot= 
𝑜𝑣𝑒𝑟𝑠ℎ𝑜𝑜𝑡 𝑣𝑎𝑙𝑢𝑒− 𝑠𝑒𝑡𝑡𝑙𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑃𝑉

𝑠𝑒𝑡𝑡𝑙𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑃𝑉
 × 100 %......( 10) 

 

The PI controller is generally regarded as giving a larger overshoot than the PID controller.  

While designing a controller system, the aim is to achieve the following properties:  

a. Reduction or omission of the steady state error. 

b.  Reduction of the overshoot (if any). 

c. No oscillation (dampening of oscillation is preferred). 

d. Small settling time. 

 

 

 

 

 

 

 

 

 

 

 

 



 

13 
 

II.iii. Discussion of some research papers on the Arduino-based PID controllers 

A discussion of some of the exciting works with the Arduino-based PID controllers is made in this 

section. The Arduino is an open source device which is cheap (price ranges from approximately 

$24 for an Arduino-UNO to almost $44 for the Arduino-Mega) and is user friendly, making it 

popular among hobbyists. Moreover, it can be programmed using the simple programming 

language “C/C++,” and can be interfaced easily with other advanced computing environments like 

MATLAB and LABVIEW (Arduino is discussed in detail in section III.i.5). The range of 

applications of the Arduino-based PID controller varies from a simple temperature controller to a 

robot controller. Five different research papers that present different applications of the Arduino-

based PID controller and use varying interfaces and tuning methods are discussed below: 

 

“Design and implementation of a PID controller-based baby incubator” 9 

In this research paper, the author uses a PID algorithm with Arduino to control the temperature 

and humidity of a baby incubator. The temperature of the baby incubator is measured, and 

displayed a using programmed Arduino, and controlled using Pulse Width Modulation 

(abbreviated as PWM, which is discussed in detail in section III.i.1) through the PID loop. The 

author emphasizes the use of the PID controller over the simple on/off controller for the following 

two reasons: fast response, which is important for controlling a sensitive system, and for lower 

power consumption. The on/off controller consumes higher power as it has to regularly feed the 

power supply to the heater and fan to switch the system on and off.  

                                                           
9Theopaga, A. K., Rizal, A., & Susanto, E. (2014). Design and implementation of PID control based baby 

incubator. Journal of Theoretical & Applied Information Technology, 70(1). 
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The experimental part and the tuning portion of this research can be summarized into the following 

steps: 

i.) The temperature of the baby and the incubator environment are measured and displayed 

separately using an analog Read command (a command used to read the analog values of sensors 

using the analog pins of the Arduino) on the Liquid Crystal Display (LCD) screen through the 

coding uploaded in the Arduino.    

ii.)  The input reading is sent to the controller and compared to the setpoint.    

iii.)  If the temperature reading is less than the setpoint, the controller orders the heater to turn 

on through PWM using a “digitalWrite” command. (This command assigns output values, i.e. 0-

255 PWM values, to the actuators through the digital pins of the Arduino.) But if the temperature 

reading is less than the setpoint, the controller instructs the heater to turn off and the fan to turn on 

again through the PWM signals. 

iv.) The most challenging part of this research is tuning the PID controller. The author uses the 

transfer function of the plant (process) in parallel form. The transfer function is defined as the ratio 

of the output of the plant to its input in the frequency domain. The frequency domain is obtained 

by taking the Laplace transform of the transfer function in the time domain. The parallel form 

implies that all the parameters, proportional, integral, and derivative, are parallel to each other. 

The author uses the Zeigler-Nichols (ZN) first tuning method. This method uses plant response for 

the unit step input in the open loop system, which produces an S-curve (S-shaped curve) for time 

(t) vs output (u). The tangent line drawn at the point of inflection gives the following two 

parameters: delay time (L) and the time constant (T). The delay time (L) is the distance between 

the intersection point of the tangent line to the time-axis and the origin. The time constant (T) is 
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the distance between the perpendicular lines drawn through the tangent line at which the output 

starts giving the constant value to the time axis, to the origin. 

v.)  The values of delay time (L) and the time constant (T) obtained from the response curve 

are used to determine the values of PID parameters 𝐾𝑃, 𝐾𝐼 , 𝑎𝑛𝑑 𝐾𝑑 using the Zeigler-Nichols first 

tuning table. The tuned values of 𝐾𝑃 , 𝐾𝐼 , 𝑎𝑛𝑑 𝐾𝑑 are used in the coding using the PID library of 

the Arduino. With these parameters, the controller controls the system to get the required setpoint 

temperature. The rise time, the settling time, and the steady state error are calculated. These 

observations show that the PID controller is very well tuned and the required SP for the 

temperature controller system has been attained. 

 

“Real Time DC Motor Speed Control using a PID Controller in LABVIEW” 10 

This research paper discusses the control of DC motors by using Arduino-based PID controller. 

The Arduino is interfaced with LabVIEW. The DC motors are very important tools for industrial, 

scientific research, and experimental applications. The control of DC motors to a precise accuracy 

is important for position control of sensors and in many other scientific applications. The authors 

are using a very low cost technique to control the speed of the DC motors. An Arduino is used as 

a very low cost data acquisition device. It is interfaced with a Graphic User Interface (GUI) of 

LabVIEW called LabVIEW Interface for Arduino (LIFA) so that the users can set their target 

speed for the motor on the screen of LabVIEW. The comparison between the open loop control 

and closed loop feedback control (PID control) performance is also made. The tachometer is used 

as a sensor to measure the speed of DC motors. The control process is summarized below: 

                                                           
10Vikhe, P., Punjabi, N., & Kadu, C. (2014). Real Time DC Motor Speed Control using PID Controller in 

LabVIEW. IJAREEIE, 03(09), 12162-12167. doi:10.15662/ijareeie.2014.0309046 
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a) The tachometer is attached to the shaft of the DC motors and is connected to the analog 

input pins of the Arduino. The tachometer measures the speed of the DC motor. The PWM values 

from the digital output pins (PWM pins) of the Arduino are given to the motor to control its speed. 

These are all done through the coding in the Arduino. 

b)  The Arduino UNO is interfaced with LABVIEW through a serial communication and the 

authors are using LIFA as the GUI. The accessory files should be installed to connect LabVIEW 

and Arduino. Then the programmed Arduino is controlled through the front panel of the LabVIEW 

screen. The users can change the setpoint speed of the DC motors. 

c) The open loop control performance is observed just by setting up a setpoint and controlling 

the speed of the motor without any feedback loops. The performance is found to be very poor. 

d) The closed feedback control with the PID loop is implemented to see the performance of 

the control system. The speed of the motor is compared with the setpoint speed. The difference is 

called the error “I” and the PID loop will try to minimize this error in every lap until the speed of 

the motor is close enough to the desired setpoint (SP). The PID controller in the LABVIEW control 

system palette can be helpful in tuning the PID parameters. The PID gains for the motor speed 

controls can be also tuned by a hit and trial method. 

In this way, this research paper presents a very simple and low cost method that is still effective 

enough to control the speed of the DC motors. 

 

 “Implementation of PID control to reduce wobbling in a line following robot” 11 

The authors are using a PID controller with Arduino UNO to control the motion of the robot in 

this research paper. The PID is tuned manually using a trial and error method. Two motors on two 

                                                           
11A. N. (2013). Implementation of PID control to reduce wobbling in a line following robot. International 

Journal of Research in Engineering and Technology, 02(10), 531-535. doi:10.15623/ijret.2013.0210083 
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wheels are used as actuators while Infrared (IR) sensors are used to find the position of the robot 

at any instant. The functioning of the line sensors and designing of the PID algorithm are 

interesting parts of this paper. 

The IR sensors are attached to the lower portion of the robot. The line that the robot should be 

following is 3 cm wide and is black in color, while the background is chosen to be white. The 

white and black surfaces reflect different amounts of light. The transmitters of the sensors transmit 

light. On the basis of light being reflected back, the sensors find out whether the robot is on the 

target line, the black line, or on the surrounding region given by the white background. The sensors 

are employed in three different regions of the body of the robot: left, center and right. Hence, this 

arrangement of the sensors gives detailed information about the position of the robot. 

The information gathered from the sensors about the position of the robot is the measured position, 

the process variable (PV) which is then compared with the desired position (setpoint) of the robot. 

Their difference is defined as the error value (e). The output drive (TURN) from the controller is 

given by the standard PID equation: 

       

                                                               TURN = 𝐾𝑃 ∗ e +  𝐾𝐼 ∗ ∫ 𝑒 𝑑𝑡  +   𝐾𝑑 ∗  
𝑑𝑒

𝑑𝑡
…………... (11) 

 

Where,  𝐾𝑃, 𝐾𝐼 and 𝐾𝑑 are proportional, integral and the differential gains respectively. 

 

The TURN value is given to the actuator as a PWM from the Arduino UNO, which in turn controls 

the direction of the robot. Likewise, the desired speed can be obtained using the digital output of 

Arduino to the motors, the actuators. The tuning is done manually, starting with only the value 

of 𝐾𝑃. It is increased until an oscillation is achieved. Then the values of 𝐾𝐼 are introduced and 
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increased until there is the least possible steady state error. Furthermore, the optimized value of 

𝐾𝑑 would ward off any overshoots.  Finally, the path of the robot with PID control is compared to 

the motion of the robot without PID control. The wobbling of the robot is found to be significantly 

reduced with the introduction of the PID controller while following the given path. 

 

“Fast Steering Mirror Control Embedded Self-Learning Fuzzy Controller for Free Space 

Optical Communication” 12 

The research paper discusses the control applied to wireless communication. The paper proposes 

the acquisition, tracking, and pointing system for free space laser communication to improve the 

misalignment issues in Free Space Optical Communication. The system detects the image of the 

laser beam using a Charge Coupled Device (CCD) sensor array while the central detection is 

employed to find the location of the image. A Self-Learning Fuzzy Logic Controller (SLFC) is 

used to derive the fast-steering mirror mechanism to point the laser beam on the receiver for the 

coarse and the fine tracking. The SLFC controls the two DC motors for controlling the fast-steering 

mirror mechanism. The adaptive fuzzy logic has been employed through the Arduino Mega 2560 

board. The controller gains obtained using MATLAB & Simulink for the given systems have been 

used for the experimental setup. The results show the proposed methodology for stabilizing the 

fuzzy logic controller. The PID controller, tuned using Ziegler Nichols (ZN) method, controls the 

plant while the fuzzy controller is learning the plant behavior. The fuzzy controller then gradually 

starts controlling the system through its output, until it has taken total control of the system. In this 

situation, the PID controller becomes idle. 

                                                           
12Alvi, B. A., Asif, M., Siddiqui, F. A., Safwan, M., & Bhatti, J. A. (2014). Fast Steering Mirror Control 

Using Embedded Self-Learning Fuzzy Controller for Free Space Optical Communication. Wireless Personal 

Communications, 76(3), 643-656 
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Since the role of the PID controller is the topic of interest, this study focuses on the working of the 

PID controllers. The PID controller plays a significant role even when advanced controllers like 

fuzzy or neural controls are employed to control the system. The PID controller is responsible for 

controlling the system initially until SLFC learns the plant (process) behavior. 

 

II.iv. Conclusion from the Literature Review 

 The use of PID controller in diverse applications is studied with the realization of the interplay of 

the Arduino interfaced with technical computing language and the basic understanding about the 

signals, the latter of which gives an idea about the measurement and control of the signals. The 

interface of the Arduino with a high level computing language like MATLAB, LABVIEW, and 

some other specifically developed program, like NARMA, is observed. Such interfacing enables 

users to apply the PID algorithm to yield the optimum control of the signal and make the controller 

more versatile and compatible. The overwhelming role played by the PID controllers while using 

the sophisticated controllers, like fuzzy and neural controllers, is recognized. The fuzzy controller 

uses the PID controller in the beginning to control the system until the fuzzy controller finds the 

pattern of the system. The significance of the widespread applications of the PID controller from 

different regimes is understood from the literature. 
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III. Temperature Controller System with a PID Control 

The temperature controller system is designed to understand the mechanism of an Arduino-based 

PID controller. The designed system is used for studying the roles of the PID parameters and their 

effects on the controller’s response parameters in different PID-modes. The different modes of a 

PID controller are P-controller, PI-controller, and PID-controller mode. The implementation of 

derivative control is difficult and should be encompassed only when it is a necessary, as discussed 

in section II.i. Hence, we are not using the derivative term in our algorithm because we are simply 

trying to control the temperature of the designed system to keep it closer to the setpoint. The P-

controller mode can be achieved from the PI-controller mode by simply assigning a zero value to 

the integral gain (I-value). 

 

III.i. Description of the components in the system 

The control designs generally consist of microcontrollers, actuators, and sensors. The Arduino 

UNO and thermo-electric coolers (TECs) are chosen as microcontroller and actuators respectively. 

TECs are easy to operate, inexpensive, and are two directional, and so they can control the 

temperature of the sample (heating and cooling) based on the required temperature conditions. 

TMP36 analog temperature sensor is the preferred temperature sensor because of its low cost, self-

contained nature, its wide range of operation, and compatibility for interfacing with the sample. 

The other electronic components used in the system design are h-bridges, non-inverting 

operational amplifiers, and separate power supplies for the operational amplifier, Arduino UNO, 

and TECs. We have extensively used a technique known as pulse width modulation (PWM). All 

the components including PWM used in the system design are discussed in detail below. 
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1. Pulse Width Modulation (PWM): 

PWM is a technique to get an average analog output signal from a digital input. The concept of 

PWM can be understood by the following example of an LED. If an LED is turning on and off at 

a moderate rate, then the turning on and off phenomenon of the LED can be observed. However, 

if the rate of switching is fast enough, one can observe a dimmer LED instead of the turning on 

and off phenomenon. A PWM signal is represented by a square wave of a given duty cycle and 

frequency.  A duty cycle expressed in percentage specifies the time of an input signal being “on” 

over a given period of time.  For example, 50 % duty cycle means that the signal is on for half of 

the time period as shown in Fig 3.1. 

 

 

Fig 3.1 Duty Cycles: 90%, 50%, and 10% duty cycle represent that the signal is turned on 

for nine tenths, half, and one tenth of the whole time period respectively.13 
 

                                                           
13 Dominguez, B., Barba, F., & Castrejon, C. (2014, December 8). DC Motor Driver by EMG and EOG | 

imditesmprojects. Retrieved from https://imditesmprojects.wordpress.com/dc-motor-driver-by-emg-and-eog/ 

     90% Duty Cycle 

    50% Duty Cycle 

     10% Duty Cycle 
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The frequency of a signal represents how many times the signal runs in a given time period. In 

other words, it represents how fast the PWM switches between the higher and lower states. The 

frequency of the signal should not be too high or too low for the load to respond. This technique 

avoids the wearing out of components that normally occurs when the rheostat (a mechanical 

switching) is used to control the voltage. 

 

2. Analog Temperature Sensor (TMP36): 

The TMP36 temperature sensor is a silicon based temperature sensor with three pins, the ground 

pin, the analog voltage pin, and the positive voltage pin with a range of 2.7 to 5V as shown in Fig 

3.2. The TMP36 temperature sensor is robust, precise in measurement, and compatible with the 

sample. It has a very wide range of measuring capability from - 40℃ to 150℃. The change in 

temperature around the sensor provides the proportional voltage across the diode of the sensor. 

The precise amplification of the generated voltage provides an analog signal. 

 

 

 

Fig 3.2 TMP36 analog temperature sensor: The central pin labelled as analog voltage output 

gives the measure of analog output while the black block is the body that senses the change 

in temperature of the sample attached.14 

                                                           
14Fried, L. (2012, July 29). Overview | TMP36 Temperature Sensor | Adafruit Learning System. Retrieved 

from   https://learn.adafruit.com/tmp36-temperature-sensor/overview 
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3. Thermo-electric cooler (TEC): 

An array of p-type and n-type semiconductors soldered between two ceramic plates electrically in 

series and thermally in parallel forms a TEC. It is a solid state device which works according to 

the Peltier effect. The Peltier effect is a phenomenon in which the heat flux is generated between 

the junctions of two dissimilar materials when connected to an external DC power supply. The 

working mechanism of TEC is explained in Appendix A2. 

4. H-bridge:   

An h-bridge is an electronic circuit causing the current to flow in either direction across the load. 

Fig 3.4 shows the h-bridge with four solid-state switches. When the A1 and A4 switches are closed 

while keeping A2 and A3 open, the current passes through the motor (load) in the clockwise 

direction.  On the other hand, the current flows counter-clockwise when A1 and A4 are open while 

A2 and A3 are closed. Both switch pairs (A1 and A2) and (A3 and A4) should not be closed at the 

same time because that leads to short circuit.   

                                  

Fig 3.3 Working mechanism of H-bridges: When switches A1 and A4 are closed, the current 

flows in clockwise direction across the load. The current flows counter-clockwise through the load 

when the switches A2 and A3 are closed.15 

                                                           
15Hunt, O. (n.d.). HVLabs.com. Retrieved from http://www.hvlabs.com/hbridge.html 
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5. Arduino UNO: An Arduino UNO is a microcontroller which operates by reading the sensor 

values, making logical decisions, and sending the necessary signals to the actuators.16  A brief 

description of Arduino UNO shown in Fig 3.5 is as follows:       

i.) It has a USB power plug and a separate power plug. The separate power plug takes the 

power supply through the external voltage source. 

ii.)  It has five analog input pins that measure the signals from the sensors. 

iii.) It has a USB power plug and a separate power plug. The separate power plug takes the 

power supply through the external voltage source. 

 

iv.) It has twelve digital pins for digital input/output (2-13), among them five pins (3, 6, 9, 

10 and 11) are PWM pins. 

 

Fig 3.4 Arduino UNO Board: Arduino UNO board showing 16 digital pins, 6 analog 

   pins, and other various parts.17 

                                                           
16Premeaux, E., & Evans, B. (2011). Saving the world. In Arduino Projects to Save the World, Spider temp. 

Berkeley, CA: Apress. 
 

17Roberge, J. K., & Lundberg, K. H. (2007). Background and Objectives. In Operational Amplifiers: Theory 

and Practice [1.81] (2nd ed., pp. 1-11). Retrieved from http://web.mit.edu/klund/www/books/opamps181.pdf 
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v.) Digital pins 0 and 1 are labeled RX and TX respectively, which are serial in and serial 

out pins. 

vi.) There are three ground pins, one input voltage pin, one 5 V pin, one 3.3 V pin, one reset 

push-button, and one Analog Reference (AREF) pin. 

vii.) Atmega328 is a microprocessor used with an In Circuit Serial Programmer (ICSP). 

In our experimental setup, the code written in a C programming language (Arduino software) is 

uploaded to the Arduino UNO instead of using the PID library.  

In our project, Arduino UNO is basically performing the following three tasks: 

a) Reading the analog signals (values) from the temperature sensor. 

b) After comparing the received signal with the desired signal, sending digital output as PWM 

 signals to the actuators. 

c) Printing the data as text-files, the process related to data acquisition. 

 

6. Operational Amplifier:  

The operational amplifier amplifies the input signal. The magnitude of the output voltage from the 

amplifier is determined by the resistors connected across the negative feedback loop. 

In order to open the gates of the MOSFETs completely, approximately 10V is required although 

the PWM signal from the Arduino UNO can supply a maximum output of only 5V. The complete 

opening of the MOSFET gates can be achieved by using the operational amplifier with gain of 2 

(using two resistors each of 5K-Ohm). If the gates are not opened completely, the following two 

problems may occur:  

(i) MOSFETs becomes very hot and can easily get damaged. 

(ii)  A sufficient amount of current cannot flow through the actuators. 
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III.ii. Description of the System Design 

The schematic of the designed temperature controller system is shown above in Fig 3.5. 

 

                   

                       Fig 3.5: Schematic of the designed temperature controller system 

 

     



 

27 
 

In the schematic, the temperature sensor TMP36 is sandwiched between two TECs (TEC1 and 

TEC2). However, the TMP36 sensor is inserted into the sample and then sandwiched between the 

TECs in the real experiment. The N-channel MOSFETs used in making the h-bridges are labelled 

as Qi, where i=1 to 8 (integers only). Two h-bridges shown are formed by these eight MOSFETs 

as shown in the schematic on the either side of the Arduino-UNO. The gates of the MOSFETs are 

grounded through the 10 𝑘Ω resistors (plated through-hole resistors). A pair of TECs work as loads 

for these two h-bridges. The dual power source used for the non-inverting operational amplifier is 

not shown in the schematic. The working mechanism of the temperature controller system can be 

summarized with the help of the shown schematic as follows: 

i) With the connection as shown in schematic, the code (as given in Appendix-2) for the 

particular controller mode is uploaded to the Arduino through personal computer (PC). 

ii) The Arduino reads the temperature of the sample using the TMP36-temperature sensor, 

which is connected to the Arduino through analog-pin A2 as shown in the schematic.  

iii) The received temperature value of the sample is compared with the setpoint 

temperature and the necessary digital outputs are given through four digital output 

PWM signals (PWM pins- 3, 9, 10, and 11). These PWM signals are sent to the non-

inverting amplifiers of gain 2. The amplified outputs from the amplifiers are supplied 

to the common point of two gates (a switch) of the diagonal MOSFETs as shown in the 

schematic. 

iv) The TECs working as loads for the h-bridges receive the necessary PWM signals and 

can heat and cool the attached sample to maintain the setpoint temperature. The 

received PWM signals control the amount and the direction of the current across the 

TECs. The amount of the current varies due to the different values of duty cycles (PWM 
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signals) provided as the controller’s output as given by the equation (9). The direction 

of the current flow can be changed by sending the PWM signals through the different 

switches. 

Fig 3.6a shows the whole temperature control system where individual parts are shown by the 

succeeding pictures. A rectangular aluminum bar in Fig 3.6b shows the sample of our designed 

system with a hole drilled in the center. The TMP36 is placed inside of the mentioned hole while 

the pins of the temperature sensor are connected to the Arduino. It is assumed that the temperature 

at the center represents the average temperature of the whole sample. We have chosen aluminum 

as the sample because of its higher thermal conductivity and easier availability in our lab. Fig 3.6c 

shows the hot sides of a pair of TECs being attached to the surfaces of the rectangular sample. The 

heat sinks with screws help the TECs to remain attached to the sample.  The left pin of the TMP36 

in Fig 3.2 is connected to both the AREF pin and the 3.3 V pin of the Arduino, while the central 

and right pins are connected to the analog input pin and the ground pin of the Arduino UNO 

respectively. Fig3.6d shows a common point connecting the gates of two MOSFETs to form one 

switch. The PID parameters are found manually for each type of controller.  
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Fig 3.6a: Temperature controller system 

 

                 

              Fig 3.6b: Sample attached to the heatsink and the temperature sensor  
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        Fig 3.6c: View of hot-side of TEC being attached to the sample  

 

 

 

 

 

         

Fig 3.6d H-bridges: Four N-channel MOSFETS are connected in specific way by 

jumpers to build one h-bridge; two h-bridges are made on the breadboard 
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Fig 3.6e Operational amplifiers used in the system: Four digital outputs from Arduino 

serve as input for four separate 741 CN operational amplifiers   

 

 

 

 

 

 

 

 

 

 

 

 

     741 CN Operational  

         Amplifier 

        Resistor 



 

32 
 

IV. Observations and Conclusions 

The designed system is run in on/off, P, and PI-controller modes to observe the controller’s 

response parameters. The designed temperature controller can both heat and cool the sample to get 

the desired constant temperature. However, we are only using the temperature controller system 

in one direction (heating) to study the PID parameters and the controller’s response parameters. 

At first, some discussion on the noise and errors in our temperature controller system is made. 

Then different modes of controller is designed and their response parameters are observed. 

     IV.i. Noise and Error:  

The noise consists of any random fluctuations in the signal or any undesired random disturbance 

of the signals. The noise in the temperature controller system is coming due to the digitization of 

ADC and the random fluctuations of signals from the sensor (TMP36), which are discussed below: 

a) Digitizing error and noise: The analog to digital converter (ADC) converts an analog input 

signal to a digital output. The analog signal is continuous in amplitude and time while the 

digital signal is discrete in both the amplitude and the time. The process of discretizing the 

signal amplitude and the time are called the digitization (quantization) and the sampling 

respectively.  

The digitization brings about an inherent error associated with the ADC called the digitizing 

error. This phenomenon is the limitation of ADC being not able to convert an analog signal 

to a precise digital value. A range of analog signals produces the same digital output value. 

This range, also known as step-size, is the minimum change in input analog voltage that can 

be resolved by the ADC. The step size (Q) depends on the input voltage range and the 

resolution of the ADC which is given by the equation (12),                                                                   
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                                                      Q = 
𝐼𝑛𝑝𝑢𝑡 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑟𝑎𝑛𝑔𝑒

𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
  …….……..…..….. (12) 

 

The resolution of ADC (Arduino UNO) = 210 (with 10 bit of precision) 

We are using analogReference (EXTERNAL) command to use a 3.3V pin of Arduino as a 

powering voltage for the TMP36 temperature sensor. But the actual voltage reading coming out 

from the 3.3V pin is found to be only 3.2V. Hence, the input voltage range for ADC = 3.2V. 

                                                             Q =  
3.20±0.03 V

210
  = 3.14 mV...………………… (13) 

Using the 3.3 V pin instead of the 5V lowers the step size (Q), which helps us to measure the 

temperature more precisely. We are interested in the temperature change corresponding to the 

voltage change of the sensor. A 10 mV change corresponds to the temperature change by 1℃ for 

TMP36-temperature sensor. Hence, in terms of temperature, the step-size of the ADC is given by 

equation (14)  

                                                                        Q ≈ 0.31℃ ………………..………………..…. (14) 

 

Hence, the step-size corresponding to the temperature is approximately 0.31℃. The input analog 

signal coming from TMP36 being measured using Arduino and its digital output values are shown 

in Fig 14.1. The difference between the input and output gives the digitizing error. The digitizing 

error lies within ± Q/2 as shown in Fig 14.1. Any value of error is equally likely to occur in a 

uniform distribution between ± Q/2. Hence, the RMS (root mean squared) values of digitizing 
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errors in ± 

Q

2
  interval gives the digitizing noise and can be represented by the formula of equation 

(15).18 

 

                                  

Fig 4.1:  Plot of analog input voltage vs digital output of signal from TMP36 sensor error. 

The green saw wave like curve gives the digitizing error that ranges between ± 
𝐐

𝟐
. 

 

                                The digitizing noise (𝜎𝑑) = 
Q

√12
 ………….…. (15)  

Hence,   𝜎𝑑= 
0.31℃

√12
   ≈ 0.09℃ (0.89 mV) 

b. Sensor noise: The RMS value (ac) of the sensor signal gives the average sensor noise in 

the system. The measurement is carried out when the TMP36 sensor is giving a stable 

temperature reading. The body of the sensor is placed inside a plastic wrapper and inserted 

into the normal water in a beaker for few minutes until the constant temperature reading is 

observed in the serial monitor. This isolating phenomenon of the temperature sensor just 

ensures that the RMS values being measured are not associated with the temperature change 

of the sensor and other interactions of the sensor with the surroundings. Sensor noise (𝜎𝑠) is 

                                                           
18 Gupta, S., & Pathak, A. (2012, January). ADC Guide, Part 1- The Ideal ADC. Retrieved from 

http://www.cypress.com/file/113946/download 
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found by measuring the RMS volts reading from the sensor signal (in ac coupling mode of the 

oscilloscope) which is shown in Fig 4.2. The bandwidth of the oscilloscope used is 70MHz. 

The vertical scale is fixed to 10 mV as the temperature change of 1 degree Celsius corresponds 

to 10 mV in our experiment.  

 

Fig 4.2 RMS measure of the signal from temperature sensor: The snapshot of Tektronix 

oscilloscope screen is taken while measuring the RMS value of the isolated temperature 

sensor. 
 

The RMS value of the sensor signal is measured to be approximately 5.97 mV, i.e. 𝜎𝑠 = 5.97 mV, 

that corresponds to the temperature change =  
5.97  mV ℃ 

10 mV
 ≈ 0.6℃  

Hence, the total noise in the system due to the digitization and the sensor in terms of volts and  ℃ 

are estimated as follows: 

𝜎 = √(𝜎𝑑)𝟐 + (𝜎𝑠)𝟐 = √(0. 09)𝟐 + (0.6)𝟐 = 0.603℃ ≈ 0.6 ℃ 

The sensor noise contributes almost to the total noise.    

    Calibration of TMP36: The accuracy of the temperature reading from the TMP36 temperature 

sensor is found to be ± 0.35℃. It is calibrated with the help of Digi-Sense calibrated high accuracy 

digital thermometer from our laboratory, which gives temperature reading up to two decimal 

places.  
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IV.ii. Setup, Procedure and Observations: 

The same following procedures are followed from uploading a code in Arduino to interpreting the 

results for each controller mode: 

i) Uploading code: The code written in C language, according to our purpose and on the basis 

of the employed controller-mode, is uploaded in Arduino UNO through laptop/PC. The codes 

for different controllers’ modes are given in Appendix-2.  

ii) Ambient temperature and choosing the setpoint: The (ambient) initial temperature of the 

system is the room temperature which ranges approximately from 19℃  to 22℃. The setpoint 

is chosen to be 36.00℃, regarding the setpoint temperature for the mammalian (human) cell 

incubator is 37.00℃. (Generally, human cell incubator is also kept at 36.50℃ to get the 

optimum temperature with tolerance of  36.50℃  ± 0.5℃)  

iii) Data acquisition and plots: The temperature (PV) and the controller’s output (PWM) are 

printed and saved into the PC using “CoolTerm”, an open source serial communication for 

Arduino, every 100ms for approximately 18 minutes. The PID controller is also updated every 

100ms. It is always advisable to use interrupts to make sure that the task is done exactly after 

the certain time after using “delay” command. The data acquired as text-files through 

“CoolTerm” are imported in MATLAB. The average over distinct blocks of 10 values are 

taken. The plots of the temperature (PV) and the controller’s output (PWM) against the time 

are plotted in the same window in MATLAB. This helps us to show how the controller is 

responding to the changes in the PV (indirectly to the error).   

 

The following section discusses the observation and their conclusion based on the observation 

of on/off controller, P-Controller, and PI-Controller respectively. The setpoint temperature is 
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taken as 36.00℃ while the ambient temperature of the sample is found between from 19.00℃  

to 22.00℃.  

 

1. On/Off-Controller: 

 

The On/Off controller feeds 100% duty-cycle of the PWM signal, i.e., 255 to the TECs if 

the temperature is below the setpoint, otherwise it supplies 0 % duty cycle of PWM. The 

controller keeps the TECs either completely turned on or completely turned off. The 

observed temperature and corresponding PWM values against the time are plotted in Fig 

4.3.  

 

       Fig 4.3: Plots of Temperature and Controller’s Output vs Time of On/Off Controller  
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The on/off controller’s response parameters are discussed below: 

i) Rising Time:  

90% value of the temperature change from initial value to the setpoint value = (36.00℃ - 

19.09℃) x 0.9 = 15.22℃ ±0.6 ℃ 

The value of PV with this 90% change value = 19.09℃ + 15.22℃= 34.31℃ ± 0.6℃, which 

is found in approximately 514 seconds.  

10% value of the temperature change from initial value to the setpoint value = (36. 00℃ - 

20.00℃) x 0.1 = 1.69℃ ± 0.6 ℃ 

The value of PV with the 10% value change = 19.09℃ +1.69℃ = 20.78℃ ± 0.6 ℃ 

, which is found in approximately 59 seconds.   

Hence, Rising Time = (514 – 59) seconds = 455 seconds 

ii) Peak Time:  The peak time of this system is found to be 637s, when the temperature of 

 the system reaches 36.25℃ + 0.6℃. 

iii) Settling value & settling time:  The system undergoes oscillation and does not settle. 

iv) Overshoot: Ample overshoots are observed. 

 

2. P-Controller: 

Rewriting the equation of P-Controller’s ouput from equation (1), section II.i. 

Controller Output (P-Term) = 𝐾𝑝. e (t) 

The controller’s output is directly proportional to the proportional gain and the error. We would 

try to observe the controller’s behavior for different values of proportional gains. We have used 

following three values of the proportional gains in our study of the P-Controllers. 
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I) P-Controller with 𝐾𝑝 = 150 

The ambient temperature of the system is found to be 20.00℃. The plot of temperature (Process 

Variable) and the controller’s output (PWM) against the time of the P-Controller with Kp= 150, 

is shown in Fig 4.4 below: 

     

Fig 4.4: Plots of Temperature and Controller’s Output vs Time of P-Controller with Kp =150  

 

The controller’s response parameters are discussed below: 

i) Rising Time: The rising time of the system is calculated to be 387 seconds. 

ii) Peak Time:  The peak time is 501s, when the temperature reaches 35.14℃ ± 0.6℃. 

iii) Settling value & settling time: The system settles in approximately 501s, when the  

 temperature of the sample reaches 35.14℃ ± 0.6℃. 

iv) Steady State Error (SSE) = 36.00 ℃ - 35.14℃= 0.86℃ ± 0.6℃. 
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v) Overshoot: There are no overshoots in the system. 

II) P-Controller with Kp=1500 

The ambient temperature of the system is found to be 21.93℃ ± 0.6℃. The plots of temperature 

and the controller’s output vs time of the P-Controller with Kp = 1500, is shown in Fig 4.5 

below: 

 

Fig 4.5: Plots of Temperature and Controller’s Output vs Time of P-Controller with Kp=1500  

The response parameters of the P-Controller with Kp =1500, are discussed below:  

i) Rising Time: The rising time of the system in this mode is calculated to be 335 seconds. 

ii)  Peak Time:  The peak time of the system is found to be at approximately 441s, when the 

temperature of the sample reaches 35.83℃ ± 0.6℃. 

iii) Settling value & settling time: The system settles in approximately 441seconds, when the 

settling value of the system is found to be 35.83℃ ± 0.6℃. 



 

41 
 

iv) SSE = 36.00℃ - 35.83℃ = 0.17℃ ± 0.6℃. 

v) Overshoot: No overshoots are observed in the system. 

 

III) P-Controller with Kp=4300 

The ambient temperature obtained in this configuration is found to be 21.50℃ ± 0.6℃. The 

plots of temperature and the controller’s output (PWM) vs time of the P-Controller with Kp = 

4300, is shown in Fig 4.6 below: 

         

Fig 4.6: Plots of Temperature and Controller’s Output vs Time of P-Controller with Kp= 

4300 

 

The controller’s response parameters of P-Controller with Kp= 4300, are discussed below:  

i) Rising Time: The rising time is calculated to be 346 seconds. 
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ii) Peak Time: The peak time is 451seconds, when the temperature of the system reaches 

 36.25℃ ± 0.6℃. 

iii) Settling value, SSE, & settling time:  The process variable of the system oscillates along 

 the setpoint and the system does not settle. 

iv) Overshoot: Ample overshoots are observed.  

Table 4.a lists the response parameters of all the designed P-Controllers. 

    Table 4.a: List of comparisons of response parameters of all designed P-Controllers 

Parameters Kp = 150 Kp = 1500 Kp = 4300 

     Settling value     The system settles to 

the value 35.14℃ ± 

0.6℃. This 

temperature is below 

the setpoint. 

The system settles to the 

temperature of       

35.83℃ ±0.6℃ temperature 

(little below the setpoint). 

T    The system does not settle. 

The PV (temperature) 

oscillates about the 

setpoint. 

       Settling Time 501s 441s Cannot be determined 

            SSE 0.86℃ ± 0.6℃. 0.17℃ ± 0.6℃. Cannot be determined 

         Overshoots No overshoots. No overshoots. O  Ample overshoots are    

observed. 

         Rising time 

 

387 seconds 335 seconds 346 seconds 

 

Conclusion based on the observations of the P-Controllers: 

a) The SSE exists for this mode of controller. 

b) The system becomes unstable with oscillations for larger values of proportional gains. 
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c)  When the proportional gain is increased, the rising time,settling, and the SSE of the system 

is generally found to decrease. Since the initial temperatures are different for theses P-

controllers, thus the values of settling times and rising times are not relatively comparative. 

However, when we analyzed the data, we observed that there is only slight decrease in settling 

time and rising time going from Kp=150 to Kp=1500. However, the rising time for the P-

Controllers with Kp = 1500 and Kp = 4300 are found to be almost same. 

 

3. PI-Controller: 

The output of the PI-controller is given below using equation (2) from section II.i as: 

Controller Output = P-Term + I-Term  

Controller Output =  𝐾𝑝 × e (t) + ∫ 𝐾𝑖. 𝑒(𝑡)𝑑𝑡
𝜏

0
 

We have already studied the bahaviors of the P-Controllers with the values of “ 𝐾𝑝” as 150, 

1500, and 4300. Now we are designing the PI-controllers by setting varying values of integral 

gains ( 𝐾𝑖), while taking the 𝐾𝑝 values 150 and 1500 respectively. 

 

I) PI-Controller with Kp=150 and Ki=1  

The initial temperature of the system in this configuration is obtained to be 20.00℃ ± 

0.6℃. The plots of temperature and the controller’s output (PWM) vs time of the P-

Controller with Kp=150 and Ki=1, is shown in Fig 4.7 below: 
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Fig 4.7: Plots of Temperature and Controller’s Output vs Time of PI-Controller with 

Kp=150 and Ki=1 

 

The PI-controller’s (Kp=150 and Ki=1) response parameters are discussed below: 

i) Rising Time: The rising time is calculated to be 409 seconds. 

ii) Peak Time:  The peak time for this system is found to be 567 seconds, when the temperature   

 reaches 36.48℃. 

iii) Settling value & settling time:  The steady value with which the system settles is found to 

 be 35.99℃ at 696 seconds.  

iv) SSE = 36.00℃ - 35.99℃ = 0.001℃ ±0.6℃, which is so small such that it can be 

neglected. The SSE is eliminated by this controller. (0.001℃ is smaller by more than 200 

times the step-size of ADC that is measuring the temperature.) 

v) Overshoot and % overshoot = The overshoots are observed closer to 500 seconds  

 as shown in Fig 4.7. The calculation of the overshoot % is given below: 
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  % overshoot = (36.48℃ - 35.99℃)/ 35.99℃  x 100%=1.36 % 

 

I) PI-Controller with Kp=150 and Ki=3 

The ambient temperature for this configuration is obtained to be 20.69℃ ±0.6℃. The plots of 

temperature and the controller’s output (PWM) vs time of the P-Controller with Kp = 150 and Ki 

= 3, is shown in Fig 4.8 below. The controller’s response parameters are discussed below: 

i) Rising Time: The rising time is calculated to be 306 seconds. 

ii) Peak Time:  It is found to be 419 seconds, when the temperature of the sample reaches 

 36.34℃ ±0.6℃.  

iii) Settling value & settling time: The system oscillates and does not settle with a steady value. 

iv) Overshoot: Ample overshoots are observed.  

 

 

Fig 4.8: Plots of Temperature and Controller’s Output vs Time of PI-Controller with Kp=150 

and Ki=3 
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II) PI-Controller with Kp=1500 and Ki= 0.1 

The ambient temperature for this configuration is obtained to be 21.87℃ ±0.6℃. The plots of 

temperature and the controller’s output (PWM) vs time of the P-Controller with Kp= 1500 and 

Ki= 0.1, is shown in Fig 4.9 below. The controller’s response parameters are discussed below: 

i) Rising Time: The rising time is obtained to be 333 seconds. 

ii) Peak Time:  The peak time is found to be 447 seconds, when the temperature of the sample 

 becomes 36.25℃ ±0.6℃. 

iii) Settling value & settling time:  There is plenty of oscillations in the system such that the 

 system does not settle with a steady state value. 

iv) Overshoot: Ample overshoots and oscillation are observed such that the system becomes 

 unstable. 

 
Fig 4.9: Plots of Temperature and Controller’s Output vs Time of PI-Controller with Kp=1500 

and Ki=0.1 
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                Table 1.b: List of comparisons of response parameters of P- and PI-Controllers 
 

 

 

 

 

                   

 

 

 

 

 

 

 

 

    Table 1.c: List of comparisons of response parameters of PI-Controllers 
 

 

 

 

 

 

 

 

 

 

 

Conclusions based on the observations of the PI-Controllers: 

a)  SSE is reduced and eliminated. 

b) Overshoots observed. 

Parameters 𝐾𝑝 = 150 𝐾𝑝 = 150 and 𝐾𝑖 = 1 

Rising time 387s 407s 

Peak-time 

 

816s 567s 

Settling time 501s 696s 

SSE 0.86℃ ± 0.6℃ 0.001℃ ± 0.6℃ (negligible) 

Overshoots 

 

No overshoots Overshoots Observed (1.3%) 

Parameters                   𝐾𝑝 = 150; 𝐾𝑖 = 1 𝐾𝑝 = 150; 𝐾𝑖 = 3 

Rising time 407 306s 

Peak-time 

 

567s 669s 

Settling time 696s Cannot be determined 

SSE 0.001℃ ± 0.6℃ (negligible) Cannot be determined 

Overshoots 

 

Few Overshoots just before 

settling (1.3% of overshoot) 

    Ample Overshoots with continuous 

oscillations. 
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c) Increasing integral gain leads to the decrease in the rising time. 

d)  Increasing integral gain leads to the increase in overshoots. 

e) Adding even a small fraction of an integral gain, i.e. Ki = 0.1, in the P-Controller with 

Kp=1500, the process variable of the system oscillates. Thus, it leads the system to become 

unstable. 

 

 

IV.iii. Conclusion 

We found that the marking of an exact temperature at any time becomes extremely difficult due to 

the digitizing error. This error depends on the step size of the ADC, which can be minimized by 

increasing the resolution of the ADC and decreasing the powering voltage range. However for our 

temperature control system, the digitizing error of approximately ±0.16℃ is quite acceptable 

regarding the purpose.  

The observed controller’s response parameters demonstrated that the on/off controller responds 

faster but incurs oscillations with the overshoots. For the P-controllers with lower values of the 

proportional gains, the system settles at the temperature lower than the setpoint with SSE while 

the system is found to settle near the setpoint for the moderate value of the proportional gain. 

However, the larger values of the proportional gain leads the process variable to overshoot and 

oscillate, thereby leading the system to become unstable.  

In PI-controller, increasing the integral gain while keeping the proportional gain constant, we 

observed that the controller responds faster but with the increments in the occurrence of overshoots 

too. The appropriate choice of the proportional and integral gains leads the system to settle with a 

very small steady state error values and smaller overshoots. The system becomes stable closer to 
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the setpoint. Among all the controllers that we designed for this project, we found that the PI-

controller with  𝐾𝑝 = 150;  𝐾𝑖 = 1, gives a very stable temperature controller system with small 

overshoots. Hence, the PI-controller with appropriate gain values lead to a more stable and 

desirable control of our temperature controller system.  

Hence, the contribution of my dissertation and the system that I designed are as follows: 

1) Regarding the sensitivity of the temperature and the other parameters in the cell incubator 

in the laboratory, the system that I designed helped me to the basic understanding of the 

control systems. I learned the methods to build devices and systems in control designs that 

may help in the further development of better controllers for lower prices and to use them 

for other applications. The system that I designed can be used as the temperature controller 

system for the incubator which would cost around $45 to $85 (discussed in appendix 1C). 

It would be cheaper than the temperature controller, product of Omega platinum series, 

which we are using for the cell incubator (costs around $230). Although a different sets of 

actuators should be used to affect the temperature of the incubator. Furthermore, noise 

should be calculated precisely regarding the temperature sensitivity of the cells in the 

incubator. 

2) The system that I designed may find applications in cooling of the cameras inside cell 

incubator.  

3) The PI-controller is found to help in controlling the focus of microscope by a laser beam 

reflection off of the sample in our laboratory. This is the new technique for fast sampling 

of the images from the sample. The knowledge of the functioning of PI-controllers helps 

significantly to tune the PID parameters for the optimum focus of the sample.   
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Appendix 1A 

 

 

 

   

Fig A1 Arduino UNO: Jumpers from temperature sensors and input channels of 

operational amplifiers are connected to the analog and digital pins of Arduino UNO. 

 

 

 

 

 

               

                   Fig A2: Closer view of TEC being attached to the sample 

Heatsink 

Peltier 

Sample 

Common point to grounds of 

TMP36 Sensor and Arduino UNO 

Analog Output pin of TMP36 connected 

to A2 analog pin of Arduino UNO 

Common (point) 

connecting AREF pin 

and 3.3V pin of 

Arduino to the analog 

input pin of TMP36 

sensor 
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                                     Appendix 1B 

 

Fig B1: Working mechanism of Peltier pellets 

The electrons are at greater energy levels in an order from n-type semiconductor, metal, and, p-

type semiconductor respectively. The heat is carried along the elements by electron transport and 

released on the opposite side as the electrons move from a high- to low-energy state and the thermal 

energy from the surrounding is absorbed for electrons moving from low –to high energy state. 

When the electrons travel from metal to p-type semiconductor, the energy is released which heats 

the lower ceramic plate labelled as heat sink. Then, the electrons transferring from p-type 

semiconductor to metal absorbs heat from surrounding and cools the upper ceramic plate. 

Likewise, the electrons from metal plate transferring to the n-type semiconductor absorbs heat 

from the surrounding thereby cooling the upper plate. Finally, the transfer of electrons from the n-

type semiconductor transfer to the metal heats the lower ceramic.  

 

 

 

N  n-type semiconductor 
N      p-type semiconductor 

         Metal plate 
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Appendix 1C 

 Table A1C: Devices and appliances used in the building of our temperature 

controller system: 
Devices Name Number of quantity used  

Thermoelectric Cooler MARLOW RC3-2.5 2 

Temperature Sensor TMP36 1 

N-MOSFET FQP30N06L 8 

Operational Amplifier LM741 Op. Amp 4 

Arduino-UNO ATmega328 1 

Resistors 5 kilo-ohm 8 

 

 

1) Power Source: Protek P6000 Programmable DC Power Supply is used for supplying power 

to the actuators through the h-bridge, and a dual power source is used for operational 

amplifier. 

 

2) Jumping wires, Fret boards, USB cable, and Aluminum bar (Sample) are used for the 

system design. 0.1µF ceramic capacitor (connected across Voltage Input pin and ground 

pin of TMP36 temperature sensor to minimize the radio frequency interference.)The 

Schematic is drawn using Fritzing (open source software). 
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                                       Appendix 2 

1) Codes for ON/OFF Controller 

int sensorPin = A2; //initiate analog sensorPin 2 

int Setpoint = 36.00 ; // setting setpoint value  

int Output;//PWM values 

float error; 

void setup (){ 

  Serial.begin(9600); 

  pinMode(3, OUTPUT); //Initiates digital pin 3 

  pinMode(9, OUTPUT); //Initiates digital pin 9 

  pinMode(10, OUTPUT); //Initiates digital pin 10 

  pinMode(11, OUTPUT); //Initiates digital pin 11 

  analogReference (EXTERNAL);//calling external analogReference to use 3.3V pin 

  delay(10);}// delaying 10ms to call the 3.3V pin 

void loop (){ 

   float reading = analogRead(sensorPin); // reading ADC values through sensor 

   float voltage = reading *3.2 ;//converting ADC value to the voltage 

   voltage /= 1024.00; //dividing the voltage into precision of 10 bits 

   float Input = (voltage- 0.5) * 100 ;  //converting to the degrees with 10 mV/℃  with 500 mV offset 

if (Input<Setpoint){ 

   analogWrite(3,0);  //turning off output through digital pin 3 

   analogWrite(9,255); //Establishes output through digital pin 9 

   analogWrite(10,255); //Establishes output through digital pin 10 

   analogWrite(11,0); //turning off output through digital pin 11 

   Output = 255; } // declaring the output 

else{ 

   analogWrite(3,0); //turning off output through digital pin 3 

   analogWrite(9,0); //turning off output through digital pin 9 

   analogWrite(10,0); //turning off output through digital pin 10 

   analogWrite(11,0);//turning off output through digital pin 11 

   Output=0;}  //declaring the output 

 Serial.print (“Temperature” ); 

 Serial.print (Input); //printing the output temperature (PV) in each loop 

 Serial.print(“Output”); 

 Serial.println(Output); //printing the controller's output(PWM) in each loop 

 delay(100); } //delaying for 100ms 
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2) Codes for P-Controller with  𝑲𝒑 = 150 

int sensorPin = A2; //initiate analog sensorPin 2 

float Kp = 150 ; // Proportional gain values 

float Output, Input, error, Setpoint = 36.00; //  variables  

void setup (){ 

 Serial.begin(9600); 

  pinMode(3, OUTPUT); //Initiates digital pin 3 

  pinMode(9, OUTPUT); //Initiates digital pin 9 

  pinMode(10, OUTPUT); //Initiates digital pin 10 

  pinMode(11, OUTPUT); //Initiates digital pin 11 

 analogReference (EXTERNAL);//calling external analogReference to use 3.3V pin 

 delay(10); //delaying for 10ms to call the 3.3V pin 

  } 

void loop (){ 

 float reading = analogRead(sensorPin); // reading ADC values through sensor 

 float voltage = reading * 3.2;//converting ADC value to the voltage 

 voltage /= 1024.00; //dividing the voltage into precision of 10 bits 

 Input = (voltage - 0.5) * 100 ;  //converting from 10 mV/℃ with 500 mV offset 

 error = Setpoint - Input; // calculate error 

Output = Kp * error; // preparing the output variable 

 if (Output > 255)   

Output = 255; // keeping the output within the available output range 

 if (Output < 0) 

 Output = 0; 

  analogWrite(3,0); // turning off output through digital pin 3 

  analogWrite(9,Output); //Establishes output through digital pin 9 

  analogWrite(10,Output);// Establishes output through digital pin 10 

  analogWrite(11,0);   //turning off output through digital pin 11 

   Serial.print(" TEMPERATURE "); 

   Serial.print (Input); // printing the output temperature in each loop 

   Serial.print("  PWM  "); 

  Serial.println(Output); //printing the controller output (PWM) in each loop 

  delay(100);//delaying for 100ms 

 

 

 

3) Codes for PI-Controller with  𝑲𝒑 = 150 and  𝑲𝒊 = 1 

 

int sensorPin = A2; //initiate analog sensorPin 2 

float Kp = 150, Ki = 1; // PID gain values 

float error, Output, Input, ITerm, Setpoint = 36.00; // Setting variables 

void setup () { 

 Serial.begin (9600); 

 pinMode (3, OUTPUT); //Initiates digital pin 3 

 pinMode (9, OUTPUT); //Initiates digital pin 9 

  pinMode (10, OUTPUT); //Initiates digital pin 10 
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  pinMode (11, OUTPUT); //Initiates digital pin 11 

 analogReference (EXTERNAL); //calling external analogReference to use 3.3v pin 

 delay (10); 

  } 

 void loop () { 

 float reading = analogRead (sensorPin); // reading ADC values through sensor 

 float voltage = reading * 3.2;//converting ADC value to the voltage 

 voltage /= 1024.00; //dividing the voltage into precision of 10 bits 

 Input = (voltage - 0.5) * 100; //converting from 10 mV/℃ with 500 mV offset 

 error = Setpoint - Input; // calculate error 

 ITerm += (Ki *error); // add current error to running total of error 

if (ITerm > 255) // check for integral windup and correct for upper limit 

ITerm = 255; 

if (ITerm < 0)//check for integral windup and correct for lower limit 

 ITerm = 0; 

 Output = Kp * error + ITerm; // preparing the output variable 

 if (Output > 255); // keeping the output within the available output range 

 Output = 255; //  

 if (Output < 0) 

 Output = 0; 

  analogWrite(3, 0); //turning off output through digital pin 3 

  analogWrite (9, Output); //Establishes output through digital pin 9 

  analogWrite(10, Output); //Establishes output through digital pin 10 

  analogWrite(11, 0);   //turning off output through digital pin 11 

  Serial.print(“TEMPERATURE”); 

  Serial.print(Input); printing the Temperature (PV) in each loop 

  Serial.print(" PWM "); 

  Serial.println(Output); //printing the controller’s  output (PWM) in each loop 

  delay(100);//delaying for 100ms 
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