97 research outputs found

    Topological code Autotune

    Full text link
    Many quantum systems are being investigated in the hope of building a large-scale quantum computer. All of these systems suffer from decoherence, resulting in errors during the execution of quantum gates. Quantum error correction enables reliable quantum computation given unreliable hardware. Unoptimized topological quantum error correction (TQEC), while still effective, performs very suboptimally, especially at low error rates. Hand optimizing the classical processing associated with a TQEC scheme for a specific system to achieve better error tolerance can be extremely laborious. We describe a tool Autotune capable of performing this optimization automatically, and give two highly distinct examples of its use and extreme outperformance of unoptimized TQEC. Autotune is designed to facilitate the precise study of real hardware running TQEC with every quantum gate having a realistic, physics-based error model.Comment: 13 pages, 17 figures, version accepted for publicatio

    Simplified decoding techniques for linear block codes

    Get PDF
    Error correcting codes are combinatorial objects, designed to enable reliable transmission of digital data over noisy channels. They are ubiquitously used in communication, data storage etc. Error correction allows reconstruction of the original data from received word. The classical decoding algorithms are constrained to output just one codeword. However, in the late 50’s researchers proposed a relaxed error correction model for potentially large error rates known as list decoding. The research presented in this thesis focuses on reducing the computational effort and enhancing the efficiency of decoding algorithms for several codes from algorithmic as well as architectural standpoint. The codes in consideration are linear block codes closely related to Reed Solomon (RS) codes. A high speed low complexity algorithm and architecture are presented for encoding and decoding RS codes based on evaluation. The implementation results show that the hardware resources and the total execution time are significantly reduced as compared to the classical decoder. The evaluation based encoding and decoding schemes are modified and extended for shortened RS codes and software implementation shows substantial reduction in memory footprint at the expense of latency. Hermitian codes can be seen as concatenated RS codes and are much longer than RS codes over the same aphabet. A fast, novel and efficient VLSI architecture for Hermitian codes is proposed based on interpolation decoding. The proposed architecture is proven to have better than Kötter’s decoder for high rate codes. The thesis work also explores a method of constructing optimal codes by computing the subfield subcodes of Generalized Toric (GT) codes that is a natural extension of RS codes over several dimensions. The polynomial generators or evaluation polynomials for subfield-subcodes of GT codes are identified based on which dimension and bound for the minimum distance are computed. The algebraic structure for the polynomials evaluating to subfield is used to simplify the list decoding algorithm for BCH codes. Finally, an efficient and novel approach is proposed for exploiting powerful codes having complex decoding but simple encoding scheme (comparable to RS codes) for multihop wireless sensor network (WSN) applications

    Tailoring surface codes: Improvements in quantum error correction with biased noise

    Get PDF
    For quantum computers to reach their full potential will require error correction. We study the surface code, one of the most promising quantum error correcting codes, in the context of predominantly dephasing (Z-biased) noise, as found in many quantum architectures. We find that the surface code is highly resilient to Y-biased noise, and tailor it to Z-biased noise, whilst retaining its practical features. We demonstrate ultrahigh thresholds for the tailored surface code: ~39% with a realistic bias of = 100, and ~50% with pure Z noise, far exceeding known thresholds for the standard surface code: ~11% with pure Z noise, and ~19% with depolarizing noise. Furthermore, we provide strong evidence that the threshold of the tailored surface code tracks the hashing bound for all biases. We reveal the hidden structure of the tailored surface code with pure Z noise that is responsible for these ultrahigh thresholds. As a consequence, we prove that its threshold with pure Z noise is 50%, and we show that its distance to Z errors, and the number of failure modes, can be tuned by modifying its boundary. For codes with appropriately modified boundaries, the distance to Z errors is O(n) compared to O(n1/2) for square codes, where n is the number of physical qubits. We demonstrate that these characteristics yield a significant improvement in logical error rate with pure Z and Z-biased noise. Finally, we introduce an efficient approach to decoding that exploits code symmetries with respect to a given noise model, and extends readily to the fault-tolerant context, where measurements are unreliable. We use this approach to define a decoder for the tailored surface code with Z-biased noise. Although the decoder is suboptimal, we observe exceptionally high fault-tolerant thresholds of ~5% with bias = 100 and exceeding 6% with pure Z noise. Our results open up many avenues of research and, recent developments in bias-preserving gates, highlight their direct relevance to experiment

    Quantum Computation with Topological Codes: from qubit to topological fault-tolerance

    Full text link
    This is a comprehensive review on fault-tolerant topological quantum computation with the surface codes. The basic concepts and useful tools underlying fault-tolerant quantum computation, such as universal quantum computation, stabilizer formalism, and measurement-based quantum computation, are also provided in a pedagogical way. Topological quantum computation by brading the defects on the surface code is explained in both circuit-based and measurement-based models in such a way that their relation is clear. The interdisciplinary connections between quantum error correction codes and subjects in other fields such as topological order in condensed matter physics and spin glass models in statistical physics are also discussed. This manuscript will be appeared in SpringerBriefs.Comment: 155 pages, 133 figures, this manuscript will be appeared in SpringerBriefs, comments are welcom

    Quantum error mitigation and error correction for practical quantum computation

    Get PDF
    We are rapidly entering the era of potentially useful quantum computation. To keep on designing larger and more capable quantum computers, some form of algorithmic noise management will be necessary. In this thesis, I propose multiple practical advances in quantum error mitigation and error correction. First, I present a novel and intuitive way to mitigate errors using a strategy that assumes no or very minimal knowledge about the nature of errors. This strategy can deal with most complex noise profiles, including those that describe severe correlated errors. Second, I present proof that quantum computation is scalable on a defective planar array of qubits. This result is based on a two-dimensional surface code architecture for which I showed that a finite rate of fabrication defects is not a fundamental obstacle to maintaining a non-zero error-rate threshold. The same conclusions are supported by extensive numerical studies. Finally, I give a new perspective on how to view and construct quantum error-correcting codes tailored for modular architectures. Following a given recipe, one can design codes that are compatible with the qubit connectivity demanded by the architecture. In addition, I present several product code constructions, some of which correspond to the latest developments in quantum LDPC code design. These and other practical advancements in quantum error mitigation and error correction will be crucial in guiding the design of emerging quantum computers
    • …
    corecore