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Abstract

With the end of Moore’s Law within sight, quantum computers offer a tantalising paradigm shift
in computational power. Currently, many quanta are competing to realise such a revolutionary
device, of which this thesis considers one in particular: linear optical quantum computation
(LOQC). Over the past decade LOQC architectures have developed from “efficient” but
unfeasible toy models to serious contenders. A significant step in previous works was the
blueprint of an LOQC architecture that could be conceivably implemented with idealised optical
components.

However, in reality nature is not kind and devices not ideal. As such, we consider open
questions addressing gaps between LOQC’s theoretical architecture and experimental constraints.
In doing so, a selection of numerical tools are also developed for the design, simulation and
analyses of novel architectures. Specifically, we consider three problems.

Firstly, can an infinite-sized quantum state be realised within a finite-sized device? Through
development of a simple, generalised model, we find some small, finite device size at which the
infinite state is faithfully reproduced. We also find that increasing device size above this confers
no advantage, thereby identifying some necessary and sufficient minimum LOQC device size.

Secondly, we consider the challenge of accommodating unheralded photon loss in an LOQC
architecture, a problem for which no previous solution was known. By developing a novel
protocol for optimal teleportation on stabilizer states, we show that unheralded loss may be
tolerated, perhaps entirely, by adaptive measurement strategies.

Finally, we consider the optimisation of LOQC architectures via local complementation.
This work both sets hard limits on the states accessible by postselected linear optics circuits as
well as develops novel tools for the analysis of higher-dimensional quantum states.

We conclude with an example of how such works can be combined to optimise the LOQC
architecture as well as provide improved device resource estimates.

WORD COUNT: 300
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CHAPTER

Introduction

Perhaps the two most intriguing classes of phenomena to a human mind are those which can
be experienced but not understood and those which can be understood but not experienced.
Like most revolutionary physical theories, quantum phenomena began in the former category,
manifest in the form of decaying atoms to ultraviolet catastrophes. This collection of unsolved
problems provided the impetus the search for a complete quantum theory during the first half
of the 20*" century. By the end of the 1920’s, recognisable quantum theories based on matrix
and wave mechanics had been developed by the likes of Heisenberg, Born, and Jordan and
Schrodinger respectively. Over the next decade, these theories were made rigorous by Dirac’s
quantum operator theory and the description of quantum mechanics as a theory of linear
operators by von Neumann.

By the end of the 1950’s the final cogs of quantum mechanics had been put in place and
researchers began to explore the implications of their newfound theories. It was not long
before concepts from classical information theory began to be imported to a quantum setting,
ultimately birthing the modern field of quantum information theory. Soon after, the use of
quantum information processing for computation began to develop, spurred by the idea of
a universal quantum computer as conceived in 1985 by the Church-Turing-Deutsch (CTD)
principle [4]. The CTD principle formalised the initial musings of physicists such as Feynman,
having proclaimed three years previously that “nature isn’t classical, dammit, and if you want
to make a simulation of nature, you’d better make it quantum mechanical” [5].

Initial notions that some computational advantage could be achieved by quantum compu-
tation over classical computation were soon confirmed in the mid 1990’s by the discovery of
the quantum algorithms of Simon, Shor and Grover [6-8]. Specifically, Shor’s algorithm proved
that the important problem of integer factorisation could be solved efficiently on a quantum

computer, whereas no known efficient classical algorithm is known. More recent developments
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in the field of quantum algorithms have extended the promise of a quantum computational
advantage to important fields such as physical simulation [9, 10], machine learning [11, 12] and
linear algebra methods [13]. For an overview of quantum algorithms, see Ref. [14].

At the turn of the 215% century, the phenomena of quantum computation therefore falls
squarely in the latter class: understood, but not experienced. Preventing the realisation of
quantum computers stands the small issue of reality. Unfortunately, perfect quantum particles
interacting in controlled and infinitely precise ways exist only abstractly in theorists’ minds.
Ironically, it is exactly this ability to forego realistic imperfections and concatenate mathematical
concepts that allowed such rapid theoretical developments, and precisely the inclusion of such
imperfections that currently prevents their realisation.

However, over the last decade we have begun to address this challenge, and the race to
produce the world’s first large-scale quantum computer has well and truly begun. While the
past five years has seen the number of different quantum computing hardware companies
soar, most proposals can be classed based on their quanta, or quantum platform of choice:
superconducting, matter-based, photonic, or some hybrid thereof. Historically, superconducting
and matter-based approaches have made rapid progress in device size and functionality, with the
likes of Google, IBM, and Intel currently leading in terms of device size and control. However,
despite the early promise (and more often than not hype), there remains a long road before
supra-classical quantum computation is achieved. Although new and revelatory results in the
theory of quantum computation are regularly found, much is still unknown about the true
scalability of each platform’s architecture. This latter issue of scalability is brought into stark
focus by conservative estimates suggesting that with sizes of at least three to four orders of
magnitude greater than today’s are needed. It is quite possible that we shall look back on
current devices with the same hindsight as we do now with vacuum tube computers—that
is, state-of-the-art devices that push the technology’s boundary, but which are ultimately
impractical for large-scale implementation.

This thesis considers one candidate platform for the future of scalable quantum computing
device, namely linear optical quantum computation (LOQC) using an integrated silicon photonic
architecture. Given it has yet to boast device sizes rivalling superconducting and matter-based
platforms, it is reasonable to ask: what makes LOQC an interesting prospect for a future device?
The answer is (at least in part) that LOQC’s fundamental challenges are predominantly bottom-
heavy, that is they apply to the microscopic-level engineering of devices, such as on-demand
single-photon sources, deterministic entanglement, lossy waveguides and fast feedforward control
electronics. However, if such challenges can be addressed, the platforms’ realisation as a photonic
integrated circuit (PIC) provides compatibility with current CMOS technologies and fabrication
techniques and therefore a high potential for miniaturisation and scalability.

Importantly, the above factors can be contrasted with superconducting and matter-based

architectures which have predominantly top-heavy architectural challenges. Engineers of such



1.1. QUANTUM COMPUTATION

platforms can create and control small quantum devices with relative ease, but on the other
hand face restrictions and challenges in the planarity, miniaturisation and large-scale manufac-
turability of such devices. For example, constructing a large-scale quantum computer based
on a superconducting platform may require a single large planar chip to be contained entirely
within a single dilution fridge maintained at tens of millikelvin, without thermal disruption
from significant control circuits. Just as it remains an open question whether the bottom-heavy
challenges of LOQC may be addressed in the future, the same is also true for top-heavy
challenges for other platforms. As speculation continues on the ultimate platform for future
quantum computers, we should be careful to not to let a lack of initial progress on the former
lead us to conclude on the latter.

Another reason for the preference towards superconducting and matter-based platforms
is due to LOQC’s architectural heterodoxy. Unlike other platforms, it has not been until
recently that LOQC’s architectural development has advanced from a theoretical curiosity to a
(relatively) feasible proposal [15, 16]. Recent reductions in resource requirements for LOQC have
clarified the platform’s theoretical model of a large-scale architecture to the extent that the
integration of experimental constraints is necessary for further progress [17]. It is the inclusion
of these realistic constraints that is the focus of this thesis, of which we address a selection of
which that are most problematic.

In the rest of this chapter we first introduce the necessary theoretical concepts underpinning
quantum computation in Section 1.1, followed by a brief history of LOQC in Section 1.2, and
finishing with an overview of the integrated silicon photonics platform in Section 1.3. These
sections aim to provide a conceptual basis for the holistic overview of the LOQC architecture
presented in the following chapter. The remaining chapters of this thesis are then dedicated to
addressing a selection of open problems within the large-scale LOQC architecture as well as

those of near-future photonic devices.

1.1 Quantum computation

We now introduce the basic concepts of quantum computation. The following draws from
Nielsen & Chuang [18], Preskill [19] and Kok [20].

1.1.1 Classical and quantum states

Consider a classical physical object that has n possible distinct or orthogonal states, such as an
arbitrarily-weighted n-sided die. At any given time the probability of the object being in one
of any of its states can be described by a probability distribution P. If the probability of the

object in state i is the scalar value p;, P can be described by the n-dimensional real vector

P=(pi1,p2,...,pn) where p,eR, 0<p; <1 (1.1)
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Assuming all possible states of the object have been considered, at any time we must always
find the object in one of them, or equivalently the sum over all probabilities is conserved and

equal to one, such that

1Pl => lpi| =1, (1.2)

i
where | P| is known as P’s I-norm.

Now consider a second object over the same states defined by probability distribution
Q = (q1,---,qn)- A reasonable question to ask is: what is the probability of finding the two
objects in the same state? If the probability of both states being in state i is given by p;q;, it
follows that the probability of the objects both being found in any of the same state is given by
the dot product of their probability distributions

P-Q=> pig (1.3)

Geometrically, this can be understood as the projection of P onto @) (or vice versa).

Now consider a quantum analogue of the same object. In quantum mechanics, each scalar
probability p; is replaced with a complex probability amplitude. The probability of finding the
object in state 7 is given by the two-norm |al~]2. The state of the quantum object is then given

by the n-dimensional complex state vector
|Y) = (a1,a9,...,a,) where a; € C, (1.4)

which is conserved under the 2-norm, or normalised such that

Il = vwle) = 3 lail* = 1. (1.5)

States where |[¢)|| = 1 are known as pure states. Note that in the above we have used the
Dirac bra-ket notation convention where kets |-) denote (column) vectors and bras (:| represent
conjugate or dual (row) vectors, such that (1|l = |¢). Dot and tensor products are also
abbreviated as (¥|¢) = (V| -|¢) and [p)Xé| = |¢) ® (@] respectively. By applying this convention

to the unit vector of each basis state i, we can rewrite the object’s quantum state as

w):a1y1>+a2\2>+...+anyn>:Zam), (1.6)

where [1) = (1,0,...,0),]2) = (0,1,...,0), ..., |n) = (0,0,...,1).

Quantum states exist as vectors in a Hilbert space H, or |¢)) € H. Hilbert spaces are complex
vector spaces which are complete in the norm (||¢|| = /(¥ |¥)) on which an inner product (|¢)
between vectors is defined. Larger Hilbert spaces are constructed from smaller ones via a tensor
product structure, such that H = C®" = C” for an n-dimensional Hilbert space. The combined

state of two quantum states |i) and |j) is given by [i) |7) = |i) ® |j), and commonly abbreviated

4
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to |i7). The inner product is a function that maps two vectors to a complex number with the

properties of:

Positivity:  (¢[¢) >0 for |¢) #0, (1.7)
Linearity: (| (a[¢1) + Bd2)) = (1) + B (bl¢2) , (1.8)
Skew symmetry:  (1]6) = (6l1)" (1.9)

where * denotes complex conjugation. Similarly to classical probability distributions, the inner
product gives the probability amplitude overlap between one quantum state and another. For

example, for orthogonal basis states, we have

(il7) = dij- (1.10)

More generally, for two arbitrary quantum states [1)) = ) .a;|i) and |¢p) = >, b;|i) the
probability of finding either state in the other is therefore given by

Za:‘bl

How does a change from real probabilities to complex amplitudes change the physics of

2

[(lo)* = (1.11)

such objects? Consider Equations 1.3 and 1.11 that give the probability of finding one object in
the same state as another in the classical and quantum cases respectively. In the classical case,
we see that p;g; > 0 for each term in P - @), whereas in the quantum case a;b; € C for |<1/1|d>)|2
(even though 0 < |(1)|¢)|> < 1). This seemingly subtle change allows distinctly non-classical
phenomena to be observed. For example, consider two fair classical coins, each having two
states heads (H) or tails (T), described by the probability distributions A = B = (1,1). The
%, as confirmed by

enumeration of the four equally likely two-coin states: HH, HT, TH, or TT. Now consider two

probability of finding both coins in the same state is A - B = i + i =

quantum coins

1 1 1
—,—)=—(|H)+|T and
T3 75) = 5+ 1)
1 1 1

575 = 5 1T, (112)

1) = (
) = (

1

. 1 2
Since ‘ﬁ‘ ==
matches that of the classical coins, and so are (in some sense) fair. However, if we ask for the
probability of finding |1) in state |[{), we find that

ok =|(25) - (25) + (55) - (+)

2
‘ = %, the probability of finding each quantum coin in either heads or tails

=0, (1.13)

or equivalently, that |1) and ||) are orthogonal.
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At this point any reasonable classical physicist should ask: “How can it possibly be the case
that individually both |1) and ||) are found in heads or tails with equal probability, yet the two
state’s themselves are completely distinct?” The answer comes from the fact that the probability
distributions A and B represent classical miztures of the object’s basis states, whereas |1) and
|4) are quantum superpositions of basis states. In the classical case, a statistical mixture is used
to describes the observer’s uncertainty of the physical system, however the object itself has no
uncertainty in its own state, naturally existing in one of its distinct basis states, whereas in the
quantum case, a superposition describes the physical state of an object. In this picture, it is no
longer correct to view quantum state vectors as representing some observer’s uncertainty in
finding the object in a given basis state, but instead as representing physically distinct states
i and of themselves, describing a fundamental physical uncertainty of the object. For example,
just as {|H),|T)} provides a set of distinct basis states for a quantum coin, so too do {|1),|})},

as we have seen.

1.1.2 Quantum measurement

Unfortunately for quantum physicists, nature does not allow direct access to state’s probability
amplitudes. Instead, information must be gained by measurement of physical observables. In
quantum mechanics, observables are mathematically represented as self-adjoint or Hermitian

operators. An operator A is a linear map in Hilbert space, taking vectors to vectors, such that
A ) = AlY)  where A(a|y) 4 B|p)) = aA|y) + BA|¢) and AT = A. (1.14)

It follows that (A |y))T = (|A and (| A|p) = (¢|Al)* for all vectors |1p) and |$). Observables

are defined over some set of orthonormal basis states {|i)}, and have spectral representation

A=>"\P; where P;=[i)il, (1.15)

and P; is known as the projector onto the basis state |i). It is easy to see that projectors have
the properties

]

where I is the identity operator. Since A |i) = A; |i) then \; is the eigenvalue of eigenstate |i).
An important property of Hermitian operators is that their eigenvalues must be real.
Physically, A\; represent the measurement outcomes associated with eigenstate |i). If a

measurement of A is performed on a state |¢), the probability of finding outcome J; is given by

po(X) = B 012 = (W|Pi|p) = |(ily)]? (1.17)

The projection onto any given eigenstate represents the nonlinear collapse of one state onto

another due to measurement. In reality, collapse occurs probabilistically upon measurement,
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with [1)) found in the state |i) with probability p,(\;). After a measurement, the projected state
P; 1) has length || P; |¢)|| < 1, and so must be renormalised. Measurement of |¢)) by observable

A =", \iP; returning outcome \; therefore performs the transformation

_Bily)
1P; )1

Consider we had multiple copies of |¢)) on which the same measurement A is performed.

) — (1.18)

Since each measurement returns an outcome probabilistically, an average over eigenvalues
returned provides an average measurement result (A), also known as an expectation value, given
by

A), = ZAZW = (YlAlY) . (1.19)

Similarly, the spread of outcomes or the measurement’s uncertainty is given by the variance

Vary(A) = (Ay(A))? = (A%) = (A)7, (1.20)

where Ay (A) is the standard deviation of A’s measurement outcomes.
For example, consider the measurement of the quantum coin state |H) in the {|1),]})}
basis described by the operator X = P; — P|. We find that

2 1 1
pu (M) = (11 H)|? ‘f (H|+(T]) |H) =§|<HIH>+<H\T>!2=§|1+0l2=*
S | 1 1
pu(A) = [(LH)? ’\f —(T) |H) =5!<HIH>—<HIT>I2=5!1—0l2=§7 (1.21)

and that (X), = + — 3 = 0. It follows that |[H) is in an equal superposition of 1) and [/,
which is seen by noting that |H) = %(\ﬁ +1)). For the variance we find that

Vary (X) = (X?), — (X)f = Dy — ()} =1 (1.22)
where we have used X2 = I, (I) » = (¥|) = 1. This indicates that there is maximum uncertainty
in measurement outcomes, as expected.

1.1.3 Quantum operations

In quantum mechanics, Hamiltonians are operators that corresponds to the kinetic and potential

energy of a given system, such that
H |k) = Ey |k) (1.23)

where the eigenvalues Fj, of eigenvectors |k) represent the quantised energy levels of the system.
States’ evolution in time under the influence of some Hamiltonian H is given by the Schrodinger

equation

H(t)) = ihe (1), (1.24)
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where H is Hermitian. Given a state [1(0)) at some initial time ¢ = 0, we can solve the

Schrodinger equation to show that

() = U) [9(0)), U(t)=e 7, (1.25)

where U(t) is unitary.

More generally, a unitary U is an invertible map that takes pure states to pure states in
Hilbert space. From unitarity we have U'U = UU' = I such that UT = U~ enacts the inverse
of U. It follows that U preserves the inner product of Hilbert spaces, such that ('|¢) = (¥|¢)
for [¢') = U |[¢) and |¢') = U |¢). Unlike Hermitian observables, unitary operators may also
have complex eigenvalues. In real Hilbert spaces, unitary operations are represented as rotations;
to aid visualisation, it is common to extend this metaphor to complex Hilbert spaces to describe
quantum unitaries as rotations on quantum states. Like rotations on real vectors, the order in
which unitaries are applied to a state is important. The difference in action of unitaries A and

B applied as AB or BA is given by the commutator
[A,B] = AB— BA such that AB|¢) = (BA+ [A, B])|¢). (1.26)

Hence AB and BA apply the same operation on all states if and only if [A, B] = 0 and are said
to commudte.

There are two equivalent ways to calculate the effect of unitaries on quantum observables,
known as the Schrodinger and Heisenberg picture. In the Schrodinger picture, unitaries act on
states, rotating vectors in Hilbert space. In the Heisenberg picture, unitaries act on operators,
changing their basis. To see this, consider the expectation value of an observable A on some
state [1)), such that (A4),, = (1)|AJ¢)). Now consider applying some unitary U as represented by
') = U |¢) in the Schrédinger picture, such that (4),, = (¢'|A[¢'). However, we observe that

(A)y = (WA = @UTAUp) = (UTAU)y, = (4'),, (1.27)

and so the unitary evolution on states ') = U |¢)) can be equivalently represented by the
unitary evolution of observables A’ = UTAU. More generally, the time evolution of an observable

A(t) under some Hamiltonian is described by the Heisenberg equation

b= a0 40

H, A(t
- [H,A(0)] +
providing an equivalent to the Schrédinger equation in the Heisenberg picture.

(1.28)

Finally, a global phase operator U = ¢ has no effect on observables, since UTAU =
e~ Ae'? = A for any observable A. Two states which are equivalent up to a global phase are

therefore physically indistinguishable and so considered to be the same, such that

W) ~ ) =¥ ) & (W) =1, (1.29)

where ~ is used to denote equivalency.
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1.1.4 Qubits

Up until now, we have largely considered phenomena on quantum and classical coins, however
these are simply everyday analogues of the more general concepts of classical and quantum bits.
A physical system with only two states can be abstracted to a single classical binary digit or bit
b € {0,1} and represents the fundamental unit of classical information. Equivalently, a 2-level

quantum system can be abstractly represented as a single quantum bit or qubit, defined as

) = a|0) + 1), (1.30)

where o, 8 € C, or written in vector form

« 1 0
|Y) = <5> where [0) = <0> , 1) = <1> . (1.31)

Like the classical bit, the qubit is the fundamental unit of quantum information and the primary
quantum system considered in quantum algorithms and computation. Unlike the classical bit,
qubits can be defined in any orthonormal basis {|), [¢))}, where |[¢| = [|¢*| = 1 and
(¢*[1)) = 0. Three important orthonormal bases are the mutually unbiased bases' {|0),[1)},

{|+).,]—)}, and {|L),|R)}, where
1 1 1
QW—mzﬂ(J,

+) 1<m+mw:1<ﬁ,|4
|@zﬁmwm=1C>\mEHmwmzl<ﬂ. (1.32)

V2 V2 \1
2 V2 \i V2 V2 \ =i

As with classical computing, elementary qubit operations are represented by digitised

5

quantum logic gates. Three important qubit logic gates are the Pauli matrices

X = [ — ) = (? ;) (1.33)

Y = |LXL| - |RYR| = (3 ;Z> (1.34)

szw—mm=(éfJ (139

where ZX =Y and all three are Hermitian. The Pauli matrices obey the commutation relations

(X,Y]=2iZ, [Y,Z]=2iX, [Z,X]=2Y (1.36)
(X, 2y ={X,Y}={Y,Z} =0, (1.37)

! Two bases A and B are mutually unbiased if |(i|j)|* = 1 V |i) € A, [j) € B.
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where {A, B} = AB+ BA and if {A, B} =0 then A and B are said to anticommute. The Pauli
matrices can be exponentiated to provide a set of orthogonal continuous qubit rotations in

Hilbert space

9 _igint
R.(0) = e 0X/2 = cos Q]I —isin QX = 2 e (1.38)
2 2 —ising  cos?
— 0 .. 0 cos? —sin?
R,(0)=e /2 — cos 5]1 —isin §Y = (sing cos 92> (1.39)
2 2
: 0 0 e72 0
— —i0Z/2 _ T —iain =7 —
R.(0)=e cos 2]1 isin 2Z ( 0 ei9/2> (1.40)

Together with the identity matrix, the Pauli matrices form a basis for any rotations in a
2-dimensional Hilbert space. An arbitrary single-qubit unitary can therefore be described by a

rotation about some real unit vector 1o = (ny,ny, n.), such that
— _—ibn-o/2 4 R
Ry(0) =e = cos 5]1—151115 (nyX +nyY +n.7), (1.41)

where o = (X,Y, 7).
Up to a global phase, all single-qubit pure states can be defined by angles 6§ and ¢, such
that
0 io . 0
|¢) = cos B |0) 4 €'* sin B 1) (1.42)

By associating 6, ¢ with the angles of 3D polar coordinates (r, 8, @) for r = 1, qubit states can
be visualised as vectors on the surface of a unit sphere known as the Bloch sphere, as depicted
in Figure 1.1. Antipodal points along each perpendicular axis, are associated with eigenstates of
the Pauli matrices X, Y, and Z, with qubit rotations R,, R,, and R, represented by rotations
about each axis respectively.

In addition to gates implementing continuous rotations, a set of digitised quantum gates
are also commonly considered, namely the Hadamard (H), phase (S) and g-gate (T), where

= Y01+ =] = 030+ + 1] = = G _11> (1.43)

§ = 10)0] + 4 1K1] = [E)H + 1)~ = (; 0) (149

0 ei7r/4

, 1 0
T = |0X0] 4 e™/*|1)(1] = < ) . (1.45)
The Hadamard and phase gates belong to a class of quantum gates known as Clifford gates.

Clifford gates, or more generally the Clifford group C, are defined as the set of operators that
map Pauli operators to Pauli operators under conjugation, such that UPUT = @ for U € C and

10
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1)

Figure 1.1: The Bloch sphere. All single-qubit pure states can be depicted (up to a global phase)
as vectors on the surface of a unit sphere with 3D polar coordinates (1,6, ¢). Antipodal points
along each axis are associated eigenvectors of a Pauli matrices such that their associated qubit
rotations are represented by rotations about that axis. Figure adapted from Ref. [18].

P, € P, where P is the Pauli group. For example, for the Hadamard and phase gates we find
that

HXH=Z HYH=-Y, HZH=X (1.46)
SXST=v, SysS'=-X Sz8 =2z (1.47)
On the other hand, T' is a non-Clifford gate. It can be subsequently shown that any arbitrary
single-qubit rotation can be efficiently approximated by some sequence of H and T gates. This
result, known as the Solovay-Kitaev theorem, is a fundamental result of quantum computation

theory, allowing quantum computation to be performed efficiently using on a small set of

quantum gates, preventing the need for directly implementing arbitrary quantum rotations.

1.1.5 Quantum entanglement and classical mixtures

A surprising phenomena emerging from quantum superposition is that of quantum entangle-
ment. Consider the (entirely classical) operation of the controlled-NOT (CNOT) gate, which
conditionally flips the bit value of some target bit based the value of another control bit. Written

in Dirac notation, the gate’s action on the qubits is given by
CNOT = |00)00] + [01)X01| 4 [10)X11| + [11)X10], (1.48)

11
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where the first qubit is the control. Applying the CNOT to the two-qubit state |+) |0), we find
that

1
—75(100) +[11)) (1.49)

Both qubits are now in a correlated superposition state, known as an entangled state; specifically,

CNOT |+) |0) =

the above state is known as a Bell state. Upon measurement in the {|0),|1)} basis, both qubits
are always found in same state, either |0) or |1) with equal probability. The above Bell state is
a member of the so-called Bell basis for two qubit states {|®),|®),[¥1), |[¥~)}, where

o) = — |00>+|11>) &)

7(!00> — 1)),

E E

Importantly, correlation due to qubit entanglement exists across multiple measurement

g

|UF) = —=(|01) + [10)), [¥~)

(|01) — |10)). (1.50)

bases. For example, we observe that for the above Bell state,

1 1 1
E(IU()) + 1)) = E(Hﬂ +l--) = ﬁ(!LH’) +|RL)), (1.51)

and so qubits have correlated outcomes in both the {|0),|1)} and {|+) ,|—)} measurement bases
and anticorrelated outcomes in the {|L),|R)} basis. This is a highly non-classical phenomena,
with no direct classical analogue. An imperfect but illustrative analogy is the following: consider
being dealt two cards face down from a standard deck by a magician who guarantees that both
cards will always agree on suit and number, regardless of which property you decide to check.
Such a trick is impossible to do classically, as two cards of the same suit cannot share the same
number, and vice versa. However, in the quantum case, if two entangled cards are dealt in a
correlated superposition of suit and number, such a paradox can be achieved.

More generally, a quantum state is entangled if and only if it cannot be written as the tensor
product of more than one state. For example, for the aforementioned Bell state, we observe
that if [®1) = |¢) |¢), then

j§<|oo> F 1) = (@]0) + B11)) @ (v]0) +8]1))

= av|00) + «d |01) + B~ [10) 4+ B35 |11) (1.52)
1

= ad=py=0 and ayzﬁéz\ﬁ (1.53)

It is easy to see that both statements in Equation 1.53 cannot be simultaneously satisfied, and
hence |®) # |¢) |¢) by contradiction.

From the above argument, it follows that entangled states cannot be precisely defined by
the states of their constituent components, but rather must be defined as a collective state over
all components. To see this, consider separating the qubits of [®T) to two different observers,

Alice and Bob, who are both unaware that they each hold one half of a Bell pair. Alice and

12
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Bob are now individually tasked with establishing the state of their qubit given infinite copies
Individually, the outcomes Alice and Bob each find from measurements in any Pauli basis occur
randomly and with equal probability. Unaware of the other’s existence, both Alice and Bob
can only logically conclude that their measurement outcomes are indistinguishable from those
produced by a random bit generator, or equivalently, their state is an equally-weighted classical
mizture of |0) and |1).

Classical mixtures of states such as these cannot be represented in state vector picture,
and instead must be represented by mized states. Mixed states are represented by density
operators, where the classical mixture of a set of arbitrary pure states {|1;)}, each occurring

with probability p; is defined by the density operator
p=> pili)ail, (1.54)
i

where ). p; = 1. All the operations we have so far seen applied to pure states have equivalent
representations in the mixed state picture. For example, unitary evolution of density operators
is given by

p L UpUt. (1.55)

After measurement of some observable A =Y. A\;P; yielding outcome i the post-measurement
density operator is given by
/iy (1.56)
Tr (Pip)
where Tr (A) = )", (i|Ai) for an orthonormal basis {|7)} and is known as the trace function

The expectation value of A on state p is given by

(A) =Tr(Ap). (1.57)

p

More generally, a density operator is any positive operator that has unit trace, such that

(@lplY) >0V |¢) and Tr(p) =1. (1.58)

A useful consequence of these conditions is that density operators representing mixtures of
non-orthogonal states can always be spectrally decomposed into mixtures of orthogonal states,
that is, any mixture of non-orthogonal states is indistinguishable from some other mixture of

orthogonal states. Single-qubit density operators can be written in the form
1
pzi(]l—kr'a) (1.59)

where 7 is a real 3D vector where ||7|| < 1, known as the Bloch vector. As such, density matrices
can be represented as vectors on the Bloch sphere, where pure states lie on surface and mixed
states within the state’s interior. It follows that r» = (0,0, 0) represents the state p = % which is

mazimally mized for all qubit bases, thereby yielding random, equally weighted measurement

13
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Qubit wire Single-qubit gate Single-qubit measurements Two-qubit gate
¥) U] — A= m mo T
Computational basis Arbitrary basis A I -
Controlled-U gate CNOT or CX gate CZ gate
control ﬂi l T I T
target U b X 7

Figure 1.2: Quantum circuit model components.

results in all bases. As in the state vector case, composite density operators are composed by
tensor product, e.g. p1o = p1 @ pa. If p = 1)1 represents a pure state, then p? = p; similarly
Tr (p2) < 1 with equality if and only if p is pure.

An important application of density matrices is in the calculation of reduced states, used
to describe the subsystems of composite quantum states. Consider an arbitrary state pap
shared between Alice (A) and Bob (B). The local states held individually by Alice and Bob are
referred to as reduced states and are represented by the reduced density operators pa and pp

respectively, and are given by the equation

pa=Trg (paB), (1.60)

where Trp (+) is the partial trace operator over system B, such that

Top (o) = Y sl oli) s (161)
i
where {|i) 5} is an orthonormal basis for subsystem B. For example, in the previous Bell state

example, we can see that for pap = |®TYPT|, 5, then

Trp (pag) = (0| paB 0) g + (1l pas 1)
1 Ia
= S(0XOL, + [1X1],0) = 2 (162)
where [i)i] 4 = [i) 4 ® (i| 4, and similarly Tra (pap) = Ip/2, and hence as previously noted,
Alice and Bob individually hold a state which is locally indistinguishable from the completely
classical maximally mixed state.
An important use of entanglement is for quantum teleportation [21]. Consider the state

[¥) |®7) where |¢)) = a|0) + B|1)

[y |@F) = é(a |000) + |011) + 5 ]100) + 5 |111)) (1.63)

14
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By noting that

1 )
100) = 7 (o) + |@7)), |01>:5(‘\P+>+‘\P ):
10) = (ot — [w)), [11) = (&) — |87, (1.64)

E V2

then [¢), |®T)y5 can be rewritten in the Bell basis on qubits 1 and 2, such that

q/)>1}<1>+>23:%[|<1>+ (a|0)g+ B1)3) + [ ), (]0)5 — B1)5) +

|TF), (B10)5 +a|l)g) + [U7) , (B0)s — a[1)5)]. (1.65)

Performing a Bell basis measurement on qubits 1 and 2 is equivalent to applying H1CNOT12

followed by two computational basis state measurements. After H1CNOT5 we observe that

HLONOT 13 [, [, = £ [100)15 (010} + B[1)5) + [10)15 (0|0} — 511)3) +

01)15 (B10)5 + v [1)5) + [11)15 (B[0)5 — o ‘1>3)}

=1 ST i XiZialo), + B 11),) (1.66)
2

i,j€{0,1}

Hence, we can see measurement of qubits 1 and 2 in the computational basis yielding outcomes
7 and j produces a state which is locally equivalent to the original state up to the known
operator X*Z¢. Applying the necessary correction thereby completes the protocol, achieving

deterministic teleportation of |¢)) from qubit 1 to 3.

1.1.6 Quantum circuits

A convenient way to depict quantum computing protocols and algorithms is through the
quantum circuit model. As in the classical circuit model of computation, the quantum circuit
model represents qubits as quantum information-carrying wires, who’s local evolution and
interaction is mediated by discrete gates, as depicted in Figure 1.2. Quantum circuits often
include classical control wires, thereby allowing complex algorithms and architectural processes
to be depicted in a formulaic and intuitive way. For example, the circuit for the quantum

teleportation protocol described in the previous section is depicted in Figure 1.3.

1.1.7 Universal quantum computation

As we have already noted, arbitrary single-qubit quantum operations can be approximated using
only a small, finite set of gates, such as {H, T}, known as a universal gate set for single-qubit
rotations. For two qubits, a universal two-qubit gate set is produced by including any two-qubit
entangling gate with the aforementioned single-qubit gates. In fact, it can be shown that if

arbitrary two-qubit gates can be performed between qubits, then such a gate set is sufficient
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Bell state measurement
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Figure 1.3: Quantum circuit for teleportation.

for efficient approximation of arbitrary operations on any number of qubits, or for universal
quantum computation [18, 22]. The most common universal gate set is { H,T, CNOT}, although
many equivalent choices exist, such as the {H,S,CNOT, CCNOT}, where CCNOT is also
known as the Toffoli gate®.

Having outlined the theoretical necessities for universal quantum computation, we now
consider the experimental necessities. Historically, the requirements for quantum computation
have centred around DiVincenso’s infamous criteria [23]. Published at the turn of the century,
The Physical Implementation of Quantum Computation outlines five desiderata for quantum

computation:

i) “A scalable physical system with well characterized qubits.”

ii) “The ability to initialize the state of the qubits to a simple fiducial state.”

1v

)
)
iii) “Long relevant decoherence times, much longer than the gate operation time.”
) “A universal set of quantum gates.”

)

v) “A qubit-specific measurement capability.”

From an architectural perspective, the most challenging of these are iii) and iv), as they
represent a fundamental dichotomy between theoretical and experimental quantum computation.
In order to achieve long decoherence times, or equivalently, low-error quantum gates, a quantum
computation must be fault-tolerant, usually achieved by applying quantum error correction
(QEC). Here, fault tolerance refers to a computational architecture in which a logical error
caused by one faulty component is not multiplied by later operations to produce multiple
logical errors across the larger quantum computation [18]. Without QEC, quantum computers
suffer from the same problems as analogue computation, where a build-up of many small,
undetectable errors irrevocably corrupts the computation over time. To prevent this, QEC

encodes the desired quantum state in a larger system of entangled qubits to produce a logical

2 A Toffoli gate applies a bit flip to the target qubit contingent on both controls being equal to one, and
hence is a doubly-controlled NOT or CCNOT gate.
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Magic states Space-time overhead per Physical qubits in factory (and evaluation time)
required magic state in qubit rounds required for time-optimal computation
Type Count pe = 1073 pe = 107* Pe = 1072, fineasir = 0.175c Pe = 107, fincagstr = 0.115c
Problem te =105 te=10"s te =105 fe =10"%s
1000-bit Shor Toffoli 101060 1.41x107 5.35x10° 1.73x 108 1.73x 108 6.30x10° 6.30x10°
(6.6 weeks) (11h) (6.6 weeks) (11h)

2000-bit Shor Toffoli 10115t 1.66x 107 5.71x10° 2.18x 108 2.18x 108 6.97x10° 6.97x10°
(53 weeks) (3.7 days) (53 weeks) (3.7 days)

4000-bit Shor Toffoli 10241 1.94x 107 6.12x10° 2.50x 108 2.50x 108 7.69x10° 7.69x10°
(8 years) (4.2 weeks) (8 years) (4.2 weeks)

Table 1.1: Resource requirements for supra-classical quantum computation. Based on state-
of-the-art methods for magic-state distillation, the table depicts resource requirements for
performing Shor’s algorithm to factor an N-bit number, for N = 1000, 2000, and 4000. Here
space-time overhead describes the space-time volume of qubits required to distill each Toffoli
magic state, and pg, tmeas/fi, and tsc denote the physical gate error rate, time for a round of
measurement and feedforward and the time taken for a round of error correction respectively.
Table reproduced without adaptation from Ref. [27] under the CC BY 4.0 license.

qubit. One important element of fault-tolerance is the ability to perform logically encoded qubit
gates by a sequence of physical gates that do not multiply or propagate any errors already
present in the system. An encoded logical operator which achieves this is known as transversal.
However, a fundamental result in quantum computation, known as Eastin-Knill theorem, states
that no QEC code can simultaneously support a universal and transversal gate set [24]. To
overcome this, techniques such as magic state distillation [25] or the concatenation of multiple
codes [26] must be used (see Chapter 2 for further discussion). Ironically, we therefore find that
the protocols needed to achieve iii) fundamentally prohibit iv) from being straightforwardly
achieved.

For modern-day quantum computation architectures, this dichotomy represents the two
central challenges preventing the realisation of large-scale devices, that is the reduction of
physical errors and the implementation of a logical error-corrected universal gate set. Without
a reduction in physical errors, resource requirements for QEC are prohibitively large, and
similarly, without efficiently-implementable error-corrected universal gates, physical error rates
must be made improbably small. Therefore, both challenges must be addressed in tandem
for quantum computation to be realised. As an example for the scale of the challenge faced
by any quantum computation’s architecture, Table 1.1 provides requirements for a quantum
computer to perform a selection of supra-classical computations of varying difficulties. Given
that the model used to generated these estimates represents a highly-idealised device, such

results provide a stark motivation towards addressing the aforementioned challenges.
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1.2 A brief history of LOQC architectures

To contextualise the full description of a modern LOQC architecture provided in Chapter 2, we
now provide a brief history of LOQC architecture development. The following draws from the
works of Kok, et. al. [28] and Gimeno-Segovia [16].

1.2.1 Early photonic architectures

Following the discoveries described in the previous Section, the 1990’s saw a great increase
in the study of scalable architectures for quantum computation. Specifically, widespread
research was conducted into which quanta could efficiently simulate known theoretical models
of quantum computation. For many physical systems, such as those of two-level spin states,
their characterisation as systems of evolving and interacting qubits could be straightforwardly
derived, and the circuit model almost directly implemented via the Hamiltonians of known
interactions. For photons, it was shown early on that a single photon input to an optical circuit
composed of only linear phase shifters and polarising beamsplitters was sufficient to simulate
an arbitrary quantum computation [29]. However, because such interferometers were defined
over an exponential number of optical modes, this proposal and others—such as schemes for
factoring numbers and performing Fourier transforms [30-32]—ultimately provided inefficient
and non-scalable LOQC architectures.

In light of such results, many believed that interferometers containing linear optical com-
ponents alone would not be sufficient for scalable photonic quantum computation. Because of
this, much interest was given to the study of photonics architectures based on nonlinear optical
interactions [33-38]. In most cases, such architectures leveraged the nonlinear optical phase shift
of a Kerr medium or an atomic cavity to mediate the photon-photon interaction not present
in the interference patterns of linear optics, thereby allowing conditional phase gates to be
theoretically constructed. However, in practice, naturally-occurring Kerr nonlinearities are far
too weak [39], such that incredibly long interaction lengths would be required to produce a suf-
ficient effect. Similarly, the low probability of light-matter coupling interactions in atom-cavity
systems and the challenge of cross-platform integration also prohibits their straightforward use
in otherwise all-photonic schemes. Furthermore, even if such systems could be engineered, it is
likely that the photon loss rates associated with extended interaction lengths would be equally

prohibitive in any large-scale architecture.

1.2.2 The KLM scheme and teleportation-based LOQC

However, despite an initially pessimistic outlook for LOQC, in 2000 Knill, Laflamme and
Milburn showed that quantum computation could in fact be efficiently simulated using linear
optics with only a polynomial overhead of resources [40]. Their construction, now known as

the KLM scheme, focussed around the use of a postselected nonlinear sign or NS gate, which
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allowed a conditional phase gate to be implemented on two path-encoded photonic qubits with
probability p = %6 = 6.25%. To increase the probability of two-qubit gates, success rates are
then boosted through the consumption of additional ancillary states in complicated teleportation
circuits which could be produced and stored offfine, i.e. prior to the desired computation. For
example, they showed that the success of a conditional phase gate could be boosted to p = i
by the consumption of a single photonic Bell pair state. Finally, to achieve near-deterministic
gates, quantum error correction repetition codes were leveraged to prevent the potentially
catastrophic effect of gate failure on the remaining computational state.

Although such a discovery represented a landmark achievement in the field of LOQC, it
was clear the requirements of such a scheme were still vastly beyond near- or even far-future
experimental implementations of optical circuits, for example, requiring ~ 6.014 x 10° Bell pairs
to passed through tens of thousands of ideal optical elements and per logical entangling CZ gate
[16]. While some variants to KLM’s initial scheme were proposed [41, 42], the next big reduction
in resource requirements was introduced by Yoran and Reznik’s “entanglement chain” protocol
[43], which relied on so-called hyperentangled path-polarisation photon states to circumvent
some of the entangling gates required by the KLM scheme. Using networks of long entangled
chains of these states, it was shown that the desired circuit-model operation could be performed
via teleportation of a logical state across many physical photonic states. It was also shown that
CZ gates operating with p > % were sufficient to construct the needed hyperentangled states,
thereby reducing the number of Bell pairs needed by an order of magnitude to =~ 2.9 x 10° per
logical CZ gate [16].

1.2.3 Cluster states, fusion gates and measurement-based quantum

computation

The initial concept of performing quantum computation via teleportation across some large pre-
prepared entangled state was generalised by Nielsen’s so-called cluster-state scheme [44]. This
protocol used KLM’s CZ gates boosted to probability p = % to grow large grid-like entangled
networks of path-encoded photonic states on which measurement-based quantum computation or
MBQC can be performed (as discussed in greater detail in Chapter 2). Importantly, on failure
of an entangling gate, Nielsen’s construction scheme removes only a single qubit from the larger
state, thereby allowing larger states to be more efficiently constructed. Such improvements
reduced the number of Bell pairs consumed per logical CZ to ~ 1.075 x 10%.

In 2005, the construction of such large-scale photonic cluster states was subsequently
improved through the introduction of Browne and Rudolph’s entangling fusion gates [45].
Importantly, fusion gates provided not only significant reductions in the theoretical resource
requirements, but also relaxed experimental constraints. Firstly, by replacing the Mach-Zehnder-
type photon interference used in previous CZ gates with simpler Hong-Ou-Mandel interference

[46], fusion gates reduced the necessary phase stability of interferometers used for photonic
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entangling operations. Secondly, some variants of their proposal do not require photon number-
resolving detectors, significantly reducing constraints on the detector types applicable to the
scheme. Thirdly, photon loss events could be heralded by fusion gates, therefore reducing
potentially catastrophic errors that would otherwise be propagated into the latter stages of
computation. Finally, through the use of redundantly-encoded qubits composed of entangled
photon pairs, the destructive effect of failed entangling gates was also significantly reduced.
Through these improvements this scheme further reduced the number of Bell pairs per logical
CZ gate to only =~ 52, hence providing greater than four orders of magnitude reduction in

resource requirements when compared to KLM’s original scheme.

1.2.4 Ballistic percolation-based architectures

The first elements of what we would consider a modern LOQC architecture came with the
introduction of percolation theory to reduce the penalty imposed by probabilistic gates. One
major problem presented by previous schemes was that gate failures were addressed by repeat-
until-success construction strategies, in which the number of entangled operations on any given
qubit is potentially unbounded. Given that such repetitions would require large, complex optical
switching networks to repeatedly reroute successful events to further entangling gates, the
degree of photon loss in such schemes would be prohibitively large. However, these issues were
avoided in Kieling, Rudolph, and Eisert’s percolation construction scheme [47], which describes
a regular lattice of small entangled resource states which are probabilistically entangled to
neighbouring states in the lattice. In such a scheme, percolation theory can be applied to show
that long-range entanglement is generated when the probability of successful entanglement p
exceeds some critical threshold value p., above which an ideal MBQC resource state can be
deterministically extracted via block renormalisation processes [48-50]. Perhaps surprisingly,
the authors found such a scheme’s resource overhead scales only sub-logarithmically when
compared to using deterministic entangling gates, and furthermore that a heralded photon loss
rate of up to 10% could be to accommodated.

However, one significant drawback of the original percolation-based architectures was the
requirement for on-demand sources of n-qubit GHZ states for n = 5,7, etc., which are not easily
produced by linear optical circuits. This requirement was subsequently reduced to sources of
3-qubit entangled states by the work of Gimeno-Segovia, et. al. [15], in which it was shown
that p = % boosted fusion of 3-GHZ states was sufficient to produce the large-scale entangled
states necessary for LOQC. Further proposals from Gimeno-Segovia, et. al. also considered
the multiplexing requirements for deterministic generation of such states [16, 51], thereby
completing the first truly modern blueprint of an LOQC architecture from photon source to
logical qubit. Importantly, such a scheme entirely avoids the need for costly repeat-until-success
strategies (which have been since shown to be practically infeasible [52]), presenting an entirely

ballistic architecture for LOQC in which photons interact a fixed number of approximately
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Figure 1.4: LOQC device mock-up. The chip’s colours from left to right denote the different
optical processes involved. First, generation of photon-pairs (magenta), where some input pump
beam is diverted by optical splitters (i) to a series of SFWM sources, such as spiralled waveguide
(ii) or ring-resonator (iii) sources. Second, pump removal (yellow) by Bragg refraction (iv)
or CROW-based (v) filters and wavelength-division multiplexing by asymmetric MZI (vi) or
ring resonator (vii) filters. Third, active and passive optical components (green), including
thin-film thermal phase shifters (viii), waveguide couplers (ix), and waveguide crossings (x).
Next, detectors (cyan), such as superconducting nanowire single-photon detectors (xi). Finally,
optical and electrical output (blue), including chip-to-fibre grating couplers and classical control
and feed-forward electronics. Image reproduced with permissions from [54], copyright 2016
IEEE.

O(10) active optical elements.

Due to the recent advances of this novel architecture, sometimes referred to as QNIX
[16], the realisation of an experimentally-viable LOQC architecture is now tantalisingly close.
From this point forward, one significant area for improvement in LOQC architectures is in
the integration of realistic experimental errors. For example, at present there is no known
way to address unheralded photon loss within a percolated architecture. Following the above
exciting history of LOQC architecture development, addressing challenges such as these forms
the central motivation of this thesis, with the ultimate hope that their solutions advance us

another small step closer to a more realistic and realisable LOQC architecture.

1.3 Integrated quantum photonics

Although this thesis is primarily concerned with developments in the theoretical architecture
of an LOQC device, a holistic understanding of its experimental implementation is crucial
nevertheless. As such, here we overview the technological foundations of a modern LOQC
proposal based on integrated silicon-photonics, and defer the description of theoretical photonic
quantum computation to Chapter 2. As a visual aide, Figure 1.4 depicts a mock-up of LOQC
device. For more detailed descriptions of the integrated silicon-photonic platform the reader is
directed to Refs. [53-55].
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1.3.1 Waveguides

Prior to the manipulation of light it must first be confined, which achieved using waveguides. A
waveguide is a structure that—yes, you guessed it—guides waves. This is achieved through the
exploitation of the total internal reflection of waves at the boundary between two media with
differing refractive indices. Optical waveguides are constructed using a core of high refractive
index material surrounded by a cladding material with low refractive index. In silicon photonics,
this core is silicon, but the cladding may be air, silica, a polymer or some other dielectric
material. In integrated silicon photonics strip waveguides are commonly used, consisting of
oblong strips of monocrystalline silicon surrounded by layer of silicon oxide, as depicted in
Figure 1.5a.

The state of light confined within a waveguide can be decomposed into a basis of orthogonal
optical modes. By reducing the dimensions of the strip’s cross section, fewer optical modes are
supported, such that below some size only a single optical mode is supported; such a structure
is known as a single-mode waveguide. Photon loss in waveguides occurs when the waveguide’s
supported mode is not completely confined, allowing it to become coupled with other optical
modes in the environment. Due to the atomic-level smoothness of monocrystalline silicon on the
top and bottom of the strip, the majority of loss in such waveguides is due to side wall surface
roughness [56, 57]. Waveguide loss can therefore be reduced by optimising mode profiles and
improved fabrication techniques that increase side-wall smoothness. Current state-of-the-art
waveguides can achieve loss rates as low as 0.3dB/cm [58-61].

For further details on waveguides, see Refs. [62, 63].

1.3.2 Photon sources

Firstly, we consider the task of producing single photons. Currently, the workhorse of photon
production in silicon is the nonlinear optical x(®) process of spontaneous four-wave mixing
(SEFWM). In SFWM, two degenerate input pump photons are elastically scattered, producing a
non-degenerate photon pair (with individual photons usually labelled signal and idler). When
such a material is excited by the coherent state of a laser pulse, the result is a two-mode
squeezed state describing the superposition over different numbers of SEFWM pair emissions.
By only weakly exciting the nonlinear material, the emission of higher-order photon pairs is
suppressed and single-photon pair production dominates (see Section 2.3.1 for more detail).
This allows the source to approximate a probabilistic single-photon pair source in the weakly
pumped regime.

In a simple model of a lossless, weakly-pumped source the probability of pair production is
€ o v P2L?, (1.67)

where ~ is the material’s nonlinear effective coupling constant, P is the pump pulse’s peak

power, L the interaction length, and £ is known as the squeezing parameter [64]. Since 7 is
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Figure 1.5: Integrated silicon photonic components. a) Strip waveguide cross-section with optical
mode profile overlay [53]. b) One-to-two optical mode splitter. ¢) & d) Spiral waveguide [66]
and ring resonator SFWM single-photon pair sources. e) & f) Bragg reflector [67] and coupled
resonator optical waveguide (CROW) [68] pump-removal filters. g) & h) Asymmetric MZI
and ring resonator [69] wavelength division multiplexers. i) & j) Directional and multi-mode
interference (MMI) coupler [54] used for mediating photon interference. k) Waveguide crossing
[70]. 1) Spiral waveguide delay line [70]. m) Microelectromechanical system (MEMS) switch
for optical rerouting [71]. n) Superconducting nanowire single photon detector (SNSPD) [72].
o) Chip-to-fibre grating coupler [73]. Images reproduced with adaptations under CC BY 4.0
licenses.

fixed by the material and P limited in the weakly pumped regime, modern sources usually seek
to maximise L. For example, the simplest photon source is the spiral waveguide, depicted in
Figure 1.5¢, consisting of a long, spiralled track of silicon strip waveguide. Another approach to
increasing pair production probabilities is by coupling with optical cavities, which have the
effect of increasing interaction length L. For example, one popular choice of optical cavity is
the ring resonator [65], as depicted in Figure 1.5d. Cavity sources also have a number of other
useful properties, such as reduced device footprint and well-defined, spectrally separable signal
and idler emission spectra [54].

After pair production, the remaining pump is removed by a series of optical filters. This
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is usually achieved using corrugated-waveguide Bragg reflectors or coupled-resonator optical
waveguide (CROW) filters, depicted in Figures 1.5e and 1.5f respectively. It has been shown that
CROW-based filters can achieve incredible pump suppression, reaching up to 100 dB [68]. After
pump removal, the remaining non-degenerate photon pairs are then split by wavelength-division
multiplexers (WDM) in the form of asymmetric Mach-Zehnder Interferometers (MZI) or ring
resonators, depicted in Figure 1.5g and 1.5h respectively. Demultiplexing photon pairs allows
the measurement of one photon to herald the existence of the other, thereby providing the basis
of a heralded single-photon source. However, because SEFWM pair emission is probabilistic, extra
work must be done to produce a deterministic single-photon source, as discussed in Section
2.3.1.

1.3.3 Linear optical components

Once single photons are produced, they can then be used to create photonic qubits. As will be
shown in Section 2.3.2, evolving photonic qubit states can be achieved by simple MZI circuits
consisting of only integrated beamsplitters and phase shifters.

In integrated silicon photonics, beamsplitters can be passively implemented using either
directional or multi-mode interference (MMI) couplers. In a directional coupler, depicted in
Figure 1.51, two waveguides are brought into close proximity such that the evanescent fields
of each waveguide mode overlap, creating a coupling between them. By tuning the distance
between waveguides and the length over which they are adjacent, one can implement an arbitrary
beamsplitter operation between the optical modes. In a MMI coupler, depicted in Figure 1.5j,
two modes are coupled into a single silicon block supporting multiple modes. Within the MMI
complex interference patterns emerge as a function of the MMI’s shape and length, however, by
careful design, the interference pattern at the MMI’s output modes can be arbitrary chosen to
implement the desired beamsplitter operation between modes. Other important passive optical
components are waveguide crossings and optical delay lines, depicted in Figures 1.5k and 1.51
respectively, both of which are straightforward optical structures and so have low loss.

Active components play two key roles in integrated photonics. Firstly, thermo-optic phase
modulators (TOPMs) are used to impart phase shifts on waveguides’ optical modes. In a
TOPM, a resistive thin-film is fabricated on top of the oxide layer directly above a waveguide,
such that when a current is passed through the film it heats the waveguide, raising its effective
refractive index and therefore increasing the optical path length of any mode passing through
it. This difference in path length imparts a relative optical phase difference between a photon
passing through the heated mode and another in an unheated waveguide, hence imparting
a (relative) phase shift between the modes. In combination with the directional couplers or
MMIs, TOPMs can be used to construct reconfigurable MZIs that enable arbitrary linear
transformations between optical modes, which we shall see in Section 2.3.2 can be used to

perform arbitrary single-qubit unitaries. In general, TOPMs are simple, robust and very low loss
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components, however, its effect is temperature dependant, disappearing at low temperatures.
As such investigating low-temperature phase modulators is an active area of current research.

Secondly, actively-controlled optical switches are a necessary component of any LOQC
device. Given that TOPMs can implement arbitrary linear mode transformations, they can
provide accurate, low-loss switches [74]. There are also a number of other promising optical
switches proposed for an integrated silicon photonics platform, such all-optical modulators
based on carrier-injection [75] or nonlinear optical loop mirror (NOLM) systems [76], although
such devices have yet to be integrated into LOQC devices. Another interesting prospect is the
use of microelectromechanical system (MEMS) switches, depicted in Figure 1.5m, that leverage
piezoelectric effects to mediate the coupling between a cantilevered and strip waveguide. If large
switching networks are ultimately required in an LOQC device, then recent demonstrations of
large MEMS switch arrays provide a promising option if asymmetric loss rates can be sufficiently
reduced [71].

For further discussion of linear optical components for LOQC, see Refs. [54, 55].

1.3.4 Detectors

As we shall see in Section 2.3.3, current proposals for LOQC rely on the assumption of high-
efficiency number-resolving photon detectors (NRPDs). To achieve this there are two main
options of detector architecture available to an LOQC device.

The first option is to use true photon number resolving detectors such as superconducting
transition-edge sensors (TESs). TESs are extremely sensitive calorimetric devices operated at
the cusp of the superconducting transition that can detect extremely small amounts of absorbed
energy through an ultra-sensitive temperature-resistance dependance. Recent demonstrations on
integrated silica-on-silicon waveguides at 1550 nm have shown individual sensors with efficiencies
of up to 40%, which can be further increased up to 80% when multiplexed [77]. Furthermore,
individual fibre-based TESs have achieved efficiencies of up to 95% at 1550 nm when embedded
within a cavity structure, able to detect up to 8 photons clearly [78]; this provides an optimistic
outlook for future development in integrated TESs. In addition to number resolution and high
efficiency, one key advantage of TESs is that they have negligible dark counts, i.e. false-positive
photon detection events. However, TESs typically also have low temporal resolution with large
time readout errors, known as jitter, of about 100 ns, as well as long detector reset times of
about 1 us [79] (although the latter may be improved to 100 ns at the cost of faster readout
electronics [80]). Also, TESs operate at temperatures around 100 mK, therefore requiring
advanced cooling technology.

The second option is to use non-number-resolving detectors in a multiplexed scheme, known
as a fanout detector architecture. This principle relies on dividing many-photon states into
a series of spatially [81] or temporally [82] separated single-photons using the anti-bunching

of multi-photon states on a beamsplitter. Theoretically, by cascading of beamsplitters to a
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sufficiently large detector array, the probability of two photons impinging on a single detector
becomes vanishingly small. However, such a scheme requires highly-efficient detectors, as the
probability of correctly detecting an n-photon state using a fanout composed of individual
detectors with efficiency n is n™.

Currently, the most promising candidate detectors for a fanout architecture is the super-
conducting nanowire single-photon detector (SNSPD), depicted in Figure 1.5n. In an SNSPD,
an ultra-thin photoreceptive niobium nitride wire is etched on top of a waveguide and is
biased just below its critical current (the point at which the wire becomes resistive), such that
when a photon interacts with the wire a resistive hotspot is formed that can be detected as a
voltage pulse [83, 84]. State-of-the-art SNSPDs operating at 1550 nm have been shown to have
high efficiencies (up to 93%), low dark count rates (10% c.p.s), low jitter (150 ps), fast reset
times (40 ns) and operate in a temperature range of 1-4 K [85]. Furthermore, the scope for
future improvements in SNSPD technology is large, such as through cavity integration [86] and
better fabrication consistency in large-area SNSPDs [87]. Because of these factors, SNSPDs are
currently applied in many optical quantum technologies and so are a likely candidate for use in
a fanout detector scheme within an LOQC device.

For further discussion of single-photon detectors, see Ref. [79].

1.3.5 Putting it all together and turning it on

Finally, we consider the highly non-trivial task of combining all the above components to
produce a single large-scale LOQC device. There are many many physical and engineering
factors to be considered before combining the above technologies in a unified platform, and a full
discussion of which is well beyond the scope of this work (and more pertinently, the expertise of
the author). However, there are a number of high-level questions regarding the full integration of
components within existing VLSI (very-large scale integration) process frameworks, a selection
of which we address here.

Firstly, the degree of component integration must be addressed. At the very least, single-
photon generation and subsequent linear optical circuitry must be performed on a single
integrated silicon photonics chip. Also, given the high degree of loss associated with coupling
photons off-chip to optical fibres, it is highly likely that photon detectors will also need to be
integrated to achieve necessary detection efficiencies. In the case of superconducting detectors,
this will require significant cooling of the entire device. The effects of such cooling on phenomena
which has almost exclusively been studied at room-temperature is largely unknown. Next, the
question of classical control integration is also a significant consideration. While integration of
electronic CMOS control circuits is important for reducing the need for lengthy optical delay
lines, this must also be achieved without a detrimental effect to underlying optical components.
Here, there are two options: either control circuits are directly integrated onto photonics chips

using CMOS fabrication techniques, or classical processing is performed off-chip on an external
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but proximate device, such as in a bump-bonded flip-chip setup. If an LOQC device is to be
further miniaturised, it may be necessary for pump laser sources to be also integrated, although
this would likely require improved optical mode confinement and additional filtering compared
to the off-chip case. Finally, we note that in the case that there exists some hitherto unknown
hard limit on the degree of integration or the device size, then chip-to-chip interconnects have
been demonstrated [88] and so may provide a viable alternative to a monolithic device if off-chip
couplers, depicted in Figure 1.50, can be sufficiently improved.

Secondly, unless fabrication techniques can be significantly improved, device characterisation
and correction will be an important and non-trivial factor for a large-scale LOQC device. For
example, since they occur on fixed components, uncorrected systematic and/or stochastic
fabrication errors on passive devices can have a catastrophic cumulative effect on device
performance. It is therefore likely that at least near-future LOQC devices will have a substantial
amount of auxiliary optical circuits for in-device characterisation that will allow for errors
to be corrected by active components. For example, detectable errors in the reflectivity of
beamsplitter components may be accommodated by compensatory tuning of active phase
shifters. Furthermore, while a certain degree of uncorrected stochastic error may be tolerated
by quantum error correction (see Section 2.4.2), space-like or time-like correlated errors are
particularly detrimental to fault-tolerant thresholds [89]. It is therefore imperative that any
such sources of correlated errors can be identified, characterised, and (ideally) removed, or at
least considered within the quantum error correction code.

Finally, there remains the meta-challenge of how to locally optimise each and every compo-
nent in a way which is consistent with every other. Like the proverbial chain, each aforementioned
link in LOQC’s physical architecture must hold strong for the overall device to stand any
chance of working. Currently, the majority of researchers (literally and metaphorically) forge
each link in separate, specialised foundries that allow local parameters to be freely optimised
to maximise the performance of a specific component. However, reproducing these hard-won
gains within a unified fabrication process under global parameter choices will be a significant
theoretical and experimental challenge, requiring substantial amount of simulation as well as
practical trial-and-error. As such, one of the implicit goals of this thesis is to advocate for an
increasingly holistic approach to LOQC architecture design in which local component-level
decisions are made with global device-level consequences in mind. If this can be achieved I
believe that LOQC stands a significant chance of realising a device that allows us to finally

experience what we now merely understand.
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A modern LOQC architecture

We now present a theoretical overview of a modern architecture for linear optical quantum
computation. The aim of this chapter is to provide a complete, top-to-bottom description of the
theoretical LOQC architecture as it publicly exists today. The explicit audience of this chapter
is two-fold. Firstly, it is written in order to provide a holistic blueprint for future generations of
researchers engaged in the theoretical study of LOQC, so that it can be understood how a series
of individual component processes are interfaced to produce the overall device. Secondly, it is
provided as an accessible overview of the architecture for those engaged in the experimental
development of LOQC, so that they may understand how machine-level design choices and
optimisations may be percolated through an architecture to affect logical-level processes. As
such, the chapter is written so that it may be easily understandable to those experimentalists
without a heavily theoretical background, yet contains sufficient details and references to the
original literature for theorists who may benefit from these.

We begin the chapter by overviewing the key challenges that distinguish the LOQC architec-
ture from that of others, providing an underlying motivation and conceptual framework for the
presented architecture. In Section 2.2, we then introduce necessary theoretical background on
the topics of measurement-based quantum computation (MBQC), graph states, and quantum
photonics. In Section 2.3 our description of an LOQC device begins with the low-level architec-
ture, considering how universal resource states for quantum computation can be constructed
from probabilistic photon sources, linear optical components, photon detectors, and classical
feed-forward circuits. Next, in Section 2.4 we consider the high-level architecture, describing
how fault-tolerant and error-corrected quantum computation can be performed on a universal
photonic resource state using only changes in measurement bases and classical post-processing.
Finally, in Section 2.5 we conclude the chapter with a discussion of the open questions and

problems of an LOQC architecture and provide a selection of areas for future improvement.
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2.1 Introduction to a modern LOQC architecture

To provide a conceptual background, we now consider the fundamental challenges faced in
an LOQC architecture, as well as how they may be averted by use of a measurement-based

approach to quantum computation.

2.1.1 Challenges in an LOQC architecture

Linear optical quantum computation is unlike most implementations of quantum computation.
As described in the previous section, conventional models of quantum computation envisaged
qubits and gates as described by the quantum circuit model. This model implicitly relies on
static, isolated qubits that are kept alive for most (or even all) of the computation, during
which they are repeatedly interacted with to produce quantum superposition, entanglement and
to perform measurements. With photons there are three key issues in replicating this model.

Firstly, photons are not static qubits. Once created, photons cannot be easily confined to a
single spatial location, and instead are transmitted through optical media and the components
of any desired interaction. Unlike a static qubit, where the qubit remains static while the
interaction is applied dynamically to it, in LOQC the interactive media remains static as the
photon dynamically propagates through it. This demands a fundamentally different control
architecture, preventing the use of a single control mechanism which can repeatedly act on one
or more qubits, but rather requiring sequences of physically separate controls on a single device
per qubit.

Secondly, in linear optics photons are non-interacting bosons. This presents both a cost and
benefit to an LOQC architecture. On the one hand, a photonic qubit confined in a passive optical
fibre suffers practically no decoherence. Unlike a solid-state qubit, photonic qubit states do not
decay into some ground state, and so have the potential for high stability when well confined.
However, non-interaction also means that two photonic qubits cannot be directly entangled
and hence linear optical entangling gates are fundamentally probabilistic. Furthermore, in
all known entangling gates, photonic qubits that fail to become entangled are lost, thereby
preventing repeated entanglement attempts on a single qubit. This means that a photonic
quantum computer cannot rely on entanglement being produced during a quantum computation,
but must be produced prior to other quantum operations instead.

Finally, measurement of photonic qubits is usually achieved through absorption in a detector.
Unlike measurement in a solid-state architecture, this is a destructive process which consumes
the qubit, preventing its reuse later in the computation. In combination with an architecture
based on photons’ interaction with a series of fixed components (and which minimises the use of
lossy active components, such as optical switches), destructive measurements favour a ballistic
architecture in which the length of and interactions within each photon’s world-line—from

generation to measurement—is fixed.
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These constraints respectively demand an architecture in which: i) the times at which
photons may interact with active elements is fixed, ii) entanglement need not be generated
on-demand; and iii) qubits only exist for some fixed lifetime, after which they must be measured.
These requirements prevent an LOQC device from directly implementing quantum algorithms
as described by their quantum circuit, and instead motivates the use of a measurement-based

architecture.

2.1.2 Advantages of a measurement-based architecture for LOQC

The core conceptual difference between the circuit and measurement-based models of quantum
computation is the simple, yet profound difference between time-like and space-like single-qubit
channels. The equivalence between the two models can be intuitively understood by viewing
a single qubit evolving over (discretised) time as the teleportation of a state along a series of
time-like separated instances of the physical qubit. Within this picture, qubit measurement
and the fed-forward correction operators required for teleportation are implicitly performed by
nature.

In the measurement-based model of quantum computation, teleportation across time-like
separated instances of a single qubit is simply replaced with teleportation across a sequence
of space-like separated qubits. As such, in this new picture measurements and corrections
must be explicitly performed on each space-like qubit; it is these measurements to which the
name measurement-based refers. Now consider an arbitrary quantum computation on time-like
qubits, perhaps one in which the precise sequence of gates has yet to be determined. In the
measurement-based picture, the universal choice of which gates to apply between which qubits
at which times is be replaced by the production of some entangled array of space-like separated
qubits that provides a universal fabric or resource state for quantum computation.

At the physical level, a measurement-based architecture is therefore primarily concerned
with the construction of such a universal resource state, which is utilised from fast feed-forward
control circuits and high-efficiency measurements. Such an architecture provides a number of
advantages that make it more appropriate for LOQC than a circuit-based architecture.

Firstly, in measurement-based quantum computation (MBQC) each qubit only engages in
three predetermined and sequential interactions: entanglement, rotation, and measurement.
This leads to a significant reduction in the complexity of the architecture as qubit control may
be almost entirely fixed, replacing the need for any quantum gate to be performed on any qubit
at any time as in the circuit model. Furthermore, a fixed sequence of interactions through which
all qubits pass directly resembles the experimental implementation of optical circuits, thereby
providing a natural model for an LOQC architecture.

Secondly, in MBQC the production of a highly-entangled universal resource state can
precede the quantum computation, which can then be performed with only single qubit gates,

measurements and feed-forward. This division between the stages of the architecture engaged
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in the entanglement generation and the quantum computation itself allows the challenges
associated with generating entanglement between photonic qubits to be addressed separately.
If such entanglement generation can be achieved, this is equivalent to providing deterministic
entangling gates during the quantum computation. Crucially, this prevents the resource costs
of entanglement generation from being compounded with those of the quantum computation
itself, such as the mid-circuit failure of an entangling gate requiring parts of or even the whole
computation to be discarded.

Finally, an MBQC architecture does not require qubits with arbitrarily long lifetimes.
This allows for photonic qubits to exist for a known, predefined duration after which they are
measured. This also reduces the need for dynamic control, allowing photons to exist in predefined
circuits which implement a quantum computation simply by changes of local measurement-basis.

We can see that the above advantages of a measurement-based architecture directly address
the aforementioned challenges in an LOQC architecture. As such, since the advent of the
measurement-based paradigm, the main challenge in the field of LOQC architecture development
has been the efficient construction of an MBQC resource state. While probabilistic entangling
gates make this a non-trivial task, in the last decade it has been proved not an impossible one.
As with all architectures, once a substrate for quantum computation is achieved, quantum error
correction can then be applied for fault-tolerant quantum computation.

To distinguish the different processes involved, it is convenient to separate the LOQC
architecture into two levels: the low-level and high-level architecture. The low-level architecture
spans from the generation of single photons to the construction of a MBQC resource state.
This level primarily describes the control and manipulation of photonic quantum states and
hence concerns the engineering of physical devices. From here, the high-level architecture
spans from the post-processing of an MBQC resource state to the quantum error correction
needed for fault-tolerant quantum computation. Conversely to the low-level, these abstract
high-level process are implemented entirely though changes of measurement bases and the
classical co-processing of measurement results. As such the MBQC resource state acts as the
central keystone of the LOQC architecture, providing a clear divide between the architecture’s
physical and computational control processes. Before describing the modern LOQC architecture,

we now introduce measurement-based quantum computation in detail.

2.2 Measurement-based quantum computation

In order to represent a viable model of quantum computation, a measurement-based approach
(sometimes referred to as the one-way model) must be able to reproduce each element of a
quantum circuit, namely a qubit wire, a universal gate set, and projective measurements. The
following draws from the works of Nielsen & Chuang [18] and Kok & Lovett [90].
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2.2.1 Quantum teleportation

Let us initially consider the task of teleporting! an arbitrary qubit state |¥) onto some
blank ancilla state |0). The teleportation protocol can be divided into three distinct steps:

entanglement, measurement, and correction, depicted below:

Entangle Measure Correct
[ N et [

@) ﬂ—‘f f m \

[
0) )

I JL____JdlL=—=_=

Figure 2.1: A basic quantum teleportation circuit

First, the target state |¥) = «|0) + 5 |1) is entangled with the ancilla |+) state through the
two-qubit control-phase gate CZ = [00)00] 4 [01)01] + [10)10] — [11)(11]

1
CZ W) |+) ZCZE(MOO)+04|01)+ﬁ|10)+ﬁ|11)) (2.1)
1
= ﬁ(&l00>+a|01>+5|10> — B[11)) (2.2)
:i(|+> (a|+) +81=) + =) (al+) = B[-)))- (2.3)

V2
Next, the first qubit is measured in the Pauli X basis {|+),|—)}, equivalent to applying a
Hadamard gate followed by a measurement in the computational (Pauli Z) basis {|0) , |1)}. After
the measurement, the ancilla qubit is one of two states depending on the binary measurement
outcome m = 0,1 (each occurring with equal probability %), indicating the first qubit has been
projected onto the |+) or |—) eigenstate respectively such that the second qubit is in the state
‘\I”>: al+)+p4|=) fm=0 (2.4)
al+)=p|—-) ifm=1
Finally, to recover the original state, one of two correction operators is applied. In the
case of m = 0, the post-measurement state is H |¥) and the original state is recovered by
applying the correction operation H = [0)+]| + |1)}{—| since H? = I. In the case of m = 1, the
post-measurement state is X H |¥) and the original state is recovered by applying the correction
operation HX = |0)+| — |1)(—|. These cases are therefore encapsulated by the generalised
correction operator HX™ = |0)(+| + (—1)" |1)}—|, as depicted in Figure 2.1.

! We note that technically the protocol introduced here is that of quantum state transfer rather than quantum
teleportation [91, 92]. These protocols are distinguished by the need for an entangling operation between two
parties (say Alice and Bob) in a state transfer protocol, whereas no such operation is needed in teleportation due
to the existence of an initial entangled resource state shared across both two parties, as depicted in Figure 1.3.
So, although the reader should note that protocols are technically different, for simplicity we shall not distinguish
them here.
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After correction the state |¥) has been successfully teleported from one qubit to another.
Note that even though the measurement outcome m is probabilistic, the initial state is transferred
deterministically. Given that no overall logical operation is performed on the target state by
the end of the protocol, this is logically equivalent to the identity operation. Hence, the circuit
described in Figure 2.1 provides a measurement-based analogue of the quantum circuit model’s

qubit wire, also known as a single-qubit channel.

2.2.2 Measurement-based qubit operations

We can also show that the above protocol can be used to enact qubit rotations on the target
state [91, 93]. Let us consider the task of teleporting the Z-rotated state Uz(«)|¥), where
Ua(l) = e='%" and A is a Hermitian operator. By noting that [Uz(a), CZ] = 0, it is easy to see
that Uz(«) can be enacted on |¥) during measurement by a change of measurement basis to
M(a) =Uz(a)XUz(—a):

|T) — M () e m

+) Uz(a) |¥)

Figure 2.2: A measurement-based Z-rotation

If correction is not applied, then the state X™HUz(«) |¥) is produced. To enact an arbitrary
single qubit gate Uy (6) which performs a rotation about axis 7 by angle 6, it can be shown [18§]

that any unitary can be decomposed (up to a global phase) as

Ui(0) = Uz(7)Ux (B)Uz(c) (2.5)
=H-HUz(v) HUz(B) - HUz(a), (2.6)

where we have used the fact that HUx (8)H = Uz() and H? = 1. Cascading three uncorrected

measurement-based Z-rotations with outputs k, 1, m € {0,1} produces the output state

[Wou) = X" HUZ() X' HUZ(B) X" HUz(a) | W) (2.7)
= X" Z'X* - HUZ((=1)™y) - HUz((=1)*8) - HUz() |¥) . (2.8)

The desired Uz (#) is thereby achieved from the following circuit:
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Figure 2.3: A measurement-based arbitrary qubit rotation

where measurement angles —f3, —v are chosen for k£, = 1 respectively. Each measurement basis
angle now depends on the previous measurement result, and the protocol is only completed
after a final round of corrections are applied. The process of requiring past measurements to
control future gates is commonly known as feed-forward. Similarly, the above circuit can be
simplified to the initial entanglement of the target state and some ancillae qubits, followed by
measurement and correction. In practise, the final Hadamard in Figure 2.3 can also be applied
using an additional teleportation step by measurement in the M (0) = X basis. Corrections can
therefore be reduced to a single gate from {I, X, Y, Z} (up to a global phase).

Whilst enacting single-qubit gates is relatively laborious in MBQC, entangling CZ operations
are more simply reproduced. If we consider two measurement-based qubit wires, represented by
two series of cascaded teleportation, then a CZ between them is simulated by an additional
CZ applied during resource state construction. Since [CZ;;, CZy| = 0 V 4, j, k, 1 the specific
construction order of the CZ gates is also irrelevant.

Finally, once the desired state has been teleported onto the last ancilla qubit and any
correction operators applied, the qubit can be measured as usual. Since arbitrary measurement
bases (including Bell state measurements) can be achieved by some quantum circuit followed by
computational basis measurements, we can assume that all final ancilla qubits are ultimately
measured in the Z basis.

Because corrective Pauli operations do not change states’ bases, intermediate correction
operators may be avoided by commutation with future gates and only considered during
post-processing. For Clifford gates H, CZ and S, commutation is achieved without changing

future measurement angles as

CZ12X1 = X122C%212, Cl12Z1 = Z1Claa,
HX = 7ZH, HZ = XH,
SX =YS, S7=278, (2.9)

and commutation through future arbitrary single-qubit gates is achieved by simple measurement
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Figure 2.4: An example graph state. A graph state defined by graph G = (V, E) is produced
by applying a CZ gate for each edge in E on the set of |[+) qubits representing vertices of V.
Note that because [CZ;j, CZy]) = 0V 4,4, k,l the particular order in which CZ’s are applied to
is irrelevant.

angle updates

Uﬁ,(a7ﬂ77)X = XUﬁ(—Ck,ﬁ, _’)/)
Uﬁ(aw@af)/)z = ZUﬁ(av _57’7)' (210)

After commutation to a final layer of single-qubit Pauli operators on a set output qubits, the
operators’ effect on computational basis measurements is at most to change the some subset of
measurement bases to —Z. Hence, all final layer corrections may be straightforwardly enacted

by appropriate classical post-processing.

2.2.3 Graph states

Since U (0) is an arbitrary qubit rotation, then Figure 2.3 can depict an arbitrary state
preparation circuit by setting |¥) = |+). Taking this circuit as the input state to any larger
measurement-based computation, we can see that arrays of CZ-like entangled |+) qubits can
provide a blank resource state for MBQC. Such states are commonly depicted as graph states
using a graphical representation G = (V, E), whereby each initially unentangled qubit |+), is
associated with the graph vertex v € V and each subsequently applied CZ,, with the graph
edges (u,v) € E. For example, taking |¥) = |+) in Figure 2.3, we can depict the initial state
as the four-vertex graph state with V' ={1,2,3,4} and F = {(1,2), (2,3), (3,4)}, depicted in
Figure 2.4. Given its linearity, such a state is known as a linear graph state.

In general, we define the qubit graph states as a subset of the stabilizer states (see Chapter
4 for an introduction to the stabilizer formalism and stabilizer states) that can be represented
by simple, undirected graphs. Specifically, each graph state |G) is uniquely defined by the graph
G = (V, E) with vertex and edge sets V and E respectively such that

&)= [ <z QI+, (2.11)

(ij)eE  veV

and is defined by stabilizer generators

Go={Ki=X; (X Z;VieV} (2.12)
JENG(3)
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Figure 2.5: Effects of Pauli-basis measurement on linear cluster states. A Z-basis measure-
ment simply disconnects the qubit from the cluster leaving other bonds unchanged; X-basis
measurements creates a redundantly encoded qubit pair between the two adjacent neighbours;
and Y-basis measurements directly connect the two adjacent neighbours. Note that in the X
measurement case, a graph state in which one qubit is redundantly encoded qubit is locally
equivalent (up to a Hadamard) to the same graph state but with an additional qubit singularly
entangled to the qubit at the redundantly-encoded qubit’s position, commonly referred to as a
dangling qubit.

where Ng(v) = {u : (u,v) € E} is the set of nodes in the neighbourhood of v in G. Due to this
equivalence, we shall sometimes refer to the state as the graph and vice versa, with distinctions
only made when necessary.

A useful property of graph states is that each Pauli measurement deterministically alters
a graph state’s entanglement structure [94]. While all three measurement bases {X,Y, Z}
will disentangle the qubit from its neighbours in the graph state, they differ by their effect
on entanglement between qubits in said neighbourhood. Measurement of a qubit in the Z-
basis has no effect on any entanglement shared between the qubit’s neighbours. On the
other hand, the measurement of a qubit in the Y-basis causes all pair-wise entanglement
within the neighbourhood to be flipped, i.e. it has the effect of graph complementation within
the neighbourhood subgraph. In the case of a qubit in a linear graph state, this simply
produces entanglement between the two adjacent qubits. The generalised action of an X-basis
measurement is more involved than the previous two cases and is described fully in [94]. For
our purposes it is enough to consider the X measurement on a qubits within a linear graph
state in which the two adjacent qubits are merged into a single redundantly encoded qubit with
logical basis states |0), = |00) and |1); = |11). Although this produces a non-graph state, such
a redundantly-encoded qubit equivalent (is up to a Hadamard) to single qubit with a dangling
neighbour. Later we will see that such states can be useful during the construction of larger
cluster states. The actions of these measurements when applied to a linear cluster are visually
depicted in Figure 2.5.

Graph states have a diverse array of applications. For example, graph states were first
defined by Schlingermann and Werner in Ref. [95] to provide an alternative description for
quantum error correcting stabilizer codes, known as graph codes [95]. Later work by Danielsen
and Parker used such state’s graphical properties to classify the set of stabilizer codes of up
to 12 qubits [96]. In Ref. [97], Anders and Briegel showed that the graph-state formalism
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Figure 2.6: A measurement-based CNOT gate. Here Z measurements act to remove unneeded
qubits from the cluster state, with the remaining X and Y measurements performing the desired
CNOT operation between some arbitrary two-qubit state prepared on the inputs. After all
highlighted measurements and corrections are complete, the desired state is found on the two
remaining output qubits. Note that all non-Z measurements must be performed column-by-
column, left-to-right due to the flow conditions depicted in Figure 2.7. Figure concept taken
from Ref. [103].

can also be straightforwardly extended for efficient simulation of stabilizer states, providing a
graphical alternative to Aaronson and Gottesman’s tableau approach [98]. More recently, Zhao,
et. al. presented an algorithm in Ref. [99] which utilises graph states to perform operations on
classical graph data structures more efficiently than any classical algorithm, showing that graph
states can also provide a basis for novel quantum algorithms. Furthermore, in addition to qubit
states considered above, the graph-state formalism can also be extended to describe systems
of higher-dimension quantum systems [100], finding application in areas from constructing
mutually unbiased bases [101] to quantum secret sharing [102].

Because of their intuitive visualisations of the complex entanglement present in high-
dimensional and highly-entangled states, we shall make frequent use of graph states to describe
the states produced by large-scale architectures and otherwise throughout this thesis. Returning
to their relevance to a MBQC circuits, we now show how specific classes of graph states can be

used to achieve universal quantum computation.

2.2.4 Cluster states as universal resource for QC

From the above we have seen that in the measurement-based picture, universal quantum
computation therefore requires the construction of some initial resource graph state that not
only can enact a universal gate set, but can enact them in any order. Such a state is known as
a universal resource state. The simplest universal resource state is the graph state represented
by a regular 2D square lattice, also known as a cluster state [104].

For example, consider applying a measurement-based CNOT, as depicted by Figure 2.6.

Here we take a 7 x 5 2D square lattice cluster state containing some two-qubit input state,
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and assign each non-output qubit a Pauli measurement basis. In Figure 2.6 it is clear that
the action of the Z-basis measurements is to remove qubits that are not needed, leaving a
state on which the desired CNOT is achieved via X- and Y-basis measurements. It is easy
to see how single-qubit rotations may be performed on a 2D cluster state lattice by similarly
producing linear cluster states on which sequences of measurements are performed as described
in Section 2.2.2. By showing a 2D cluster state lattice can enact the two-qubit CNOT and
arbitrary single-qubit gates (along with state initialisation and measurement), it follows that it
is a sufficient resource state for universal quantum computation.

Other graph-state lattices have also been shown to be universal resources for MBQC. For
example in Ref. [105], Van den Nest, et. al. showed that the 2D Hexagonal, Triangular and
Kagome lattices could be efficiently reduced to the 2D cluster state and therefore support
universal MBQC. Using the same reasoning, it also follows each lattice’s 3D variant is also
universal for MBQC. More generally, it has been shown that the classes of states which support
universal MBQC are those which are unbounded in the entanglement measures of entropic
entanglement width, Schmidt-rank width, geometric measure and Schmidt measure [105, 106],
or equally those that are equivalent to graph states represented by graphs with unbounded
rank width [107]. Perhaps counterintuitively however, such conditions on states’ entanglement
are necessary but not sufficient as it has been shown that the majority of highly-entangled
pure qubit states are “too entangled” to be useful as a MBQC resource state [108, 109]. This
excludes states represented by various types of graphs, such as cycle graphs, cographs, graphs
locally equivalent to trees, graphs of bounded tree width, graphs of bounded clique width, or
distance-hereditary graphs, and excludes many classes of well-known quantum states, such as
W states, GHZ states, linear cluster states [110].

A final consideration for MBQC on any graph state is regarding the causal ordering of
measurements and correction operators during a measurement-based quantum computation.
For example, we saw in Figure 2.3 that qubits in a linear cluster state must be measured
sequentially so that the necessary measurement updates may be applied. More generally, one can
only guarantee that any measurement-pattern consisting solely of Uz (a)-basis measurements
projecting onto the X—Y plane deterministically realise a unitary between some set of input and
output qubits if the graph has a property known as flow [112]. While the technical definition
of flow is beyond the scope of this work, for our purposes it is enough to note that flow
conditions define a partial ordering on qubits determining their measurement order. Later
work further generalised flow to the gFlow condition, extending to measurement patterns
containing projections onto the X-Y, X-Z, and Y—-Z planes [113]. From these insights it was
more recently shown that the causal forward cone, which defines the causal relationship between
measurements and corrections, is equal to the information cone, which defines the causal spread
of information within MBQC [111]. Such conditions put important restrictions on the graph

structure of MBQC resources.
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Figure 2.7: Cluster state gFlow conditions. Red arrows depict gFlow-paths and indicate the
partial ordering of qubit measurement and correction. Sets of qubits where measurements
can be simultaneously performed are grouped into a measurement round R;, indexed by their
position in the ordering. When the gFlow condition is applied to the 2D cluster state, we find
that one possible gFlow is provided by the sequential measurement of qubit columns in the
order Ry, ..., Rg. Figure concept taken from Ref. [111].

As such, a natural measurement ordering is found when the gFlow conditions are applied to
the 2D cluster state. Specifically, one possible gFlow is given by the sequential measurement of
qubit columns {R;}, as depicted in Figure 2.7. Such an ordering can also be directly extended
to 3D, in which {R;} are represented by consecutive lattice planes. While other choices for
gFlow exist, we shall see that this ordering provides a natural and convenient choice for an
architecture in which a cluster state is generated on the fly, where in each time-step a new

input layer is measured and a new output layer added.

2.3 Low-level architecture

We shall now present the current model of a low-level LOQC architecture. This follows the
LOQC architecture originally presented in Ref.’s [15, 16, 51] as realised using an integrated
silicon photonics platform. For brevity, the chronological development of the architecture will
only be described where necessary; for a full history of advances in LOQC architectures, see
Refs. [16, 28].

2.3.1 Producing single photons

In conventional implementations of quantum computers, qubits are encoded on some degree of
freedom of a larger object, such as the electronic spin state of an atom, or the internal flux
of a superconducting wire loop. In such models, the initialisation of the qubit is achieved by

preparing the host object in a certain physical state, from which a qubit is then knowingly
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Figure 2.8: Two-mode squeezing pair production. Solid lines depicts theoretical pair emission
probabilities P, (§) of a n-photon pair as a function of the squeezing parameter’s absolute value
|¢|]. The dashed line depicts the signal-to-noise ratio of single-photon pair emission. Image
concept from Ref. [53].

created and can be checked by straightforward methods. However, unlike the naturally-occurring
two-level quantum systems described above, in LOQC photons do not fundamentally exist
as qubits, but rather must be made to represent them via some artificial encoding scheme.
Furthermore, once a photonic qubit is created, its existence cannot be easily verified, since
there are no practical and deterministic methods for verifying the existence of a photon in
a mode without destructive measurement. This restriction demands a novel approach to the
qubit generation in an LOQC architecture in which the creation of single photons can be
deterministically inferred or heralded.

Current implementations of LOQC overcome this challenge by the creation of photon pairs,
whereby the presence of one photon is heralded by the detection of another. A common physical
mechanism for photon pair production is spontaneous parametric down-conversion (SPDC) or
spontaneous four-wave mixing (SFWM) due to ¥ and x(® non-linearities in certain optical
media when pumped with strong laser light. In an SEFWM process, two input pump photons are
absorbed by the interactive media and reemitted as a spectrally entangled photon pair. For

example, if a laser’s coherent pump state

la) = e*% Z % In), (2.13)

where |n) is the Fock state of n photons, excites a photon-pair source in which photons undergo
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spontaneous four-wave mixing (SFWM) [114], a two-mode squeezed state is created

o) ZEWAM ey = /1 — |¢? Z )™ |nsn) —icn Insn;) (2.14)
n=0

where € is the squeezing parameter and ¢ = €*#'2(&) tanh(|€]). It follows that the probability of

producing exactly n pairs is given by

Po(€) = lenl” = (1 = [¢[*)¢*" = (1 — tanh?(|¢])) tanh®"(|¢])
= ((sech(J¢]) tanh" ([¢]))”, (2.15)

where and we have used the fact that 1 —tanh?(z) = sech?(z). Figure 2.8 depicts P, (£) for n < 5,
showing that single-photon pair emission peaks at max¢(P;(£)) = 25%. However, although
Py (&) peaks at [€959| ~ 0.88, this is not necessarily the ideal & due to the high signal-to-noise
ratio of Pi(&a5%)/P>1(&a5%) = 1 [53]. To suppress higher-order emissions, non-linear sources are

usually operated in the weak-pump regime where & — 0 = ( ~ & and we take (% ~ 0, such that

) T [6) = 10,05) — €]LL), (2.16)
producing a state where the detection of any photons in the signal heralds the existence of a
single idler photon with high probability.

Because pair generation events occurs probabilistically, this prohibits SFWM’s direct use as
an on-demand single photon source for LOQC, sometimes colloquially known as a push-button
source. To create such a source, photon multiplexing (MUX) circuits must be used. MUX
schemes propose using multiple probabilistic sources to emulate a single deterministic source
through the use of spatial or temporal switching networks. In spatial MUX, depicted in Figure
2.9a, an array of spatially-separated probabilistic sources are simultaneously pumped by a laser
pulse such that the probability of one source emitting a photon pair is close to one. If one or
more photon emission is heralded, a switching network is appropriately configured to route one
photon to the output channel and discard any others. In temporal MUX, depicted in Figure
2.9b one source is regularly pumped such that the probability of emission within a certain time
period is close to one. If one or more photons are produced within the allotted period, a series
of switches route photons into delay-lines of differing lengths such that only one photon appears
at the output channel, discarding the rest.

Recent work has further shown that a variation on the above methods, known as relative
multiplering (RMUX) can be employed in order to minimise photon waste and hence maximise
per-photon yield efficiencies [51]. In an RMUX scheme the number of switches through which
each photon must pass is also decreased, reducing the architecture’s footprint as well as the
per-photon loss rate.

From an architectural perspective, there are a number of distinguishing factors between

spatial and temporal MUX to be considered:
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Figure 2.9: Spatial and temporal MUX schemes. a) In each round of spatial MUX an array of n
probabilistic sources produce a series of spatially-separated heralded single photons. Photons
are then stored in a delay line while heralding signals are processed to determine switch settings
that ensure only a single photon is present in the output mode. Taken in the aggregate, this
process can be viewed as setting a single n x 1 spatial switch network, whereby any mode can
always be switched to a marked output mode and unneeded photons are routed the remaining
modes where they are detected or otherwise dumped. In the above case, all photon sources fire
simultaneously and all but one photon are dumped, outputting a single photon. b) In each
round of temporal MUX, a single probabilistic source is fired n times, once every T seconds,
to produce a series of temporally-separated heralded single-photons. All photons are then
delayed while heralding signals are processed to control switches which divert photons into
delay lines of increasing length. Such a setup creates a n x 1 temporal switch network that can
arbitrarily delay photons by up to n temporal modes, thereby ensuring a photon exists in the
last temporal mode (assuming at least one input photon). A final switch is then used to divert
all other temporal modes into a detector or photon dump. In the above case, all modes contain
a photon and the photon in the second mode is chosen to be switched to the last mode via a
delay of 2T'; the remaining green, red and blue are routed to the detector (not depicted). Note
that here colours are used purely for labelling purposes only and photons are assumed to be
indistinguishable.

e Resource costs: It is clear that temporal MUX has a significantly reduced resource costs
compared to spatial MUX. Specifically, the n x 1 multiplexing of n spatial modes requires
n sources, n— 1 switches and n — 1 detectors, whereas in the temporal case the same switch
requires only a single source, [logy n] + 1 switches, and a single detector. (Both schemes
require n delay lines.) Not only does temporal MUX represent a significantly reduction in

the fabrication requirements, but also in control complexity and device footprint.

e Clock-rate: Reductions in spatial resource costs from temporal MUX are traded-off

against a reduction in device clock speed. For sources that fire every T' seconds (and
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assuming a switch reset time less than T'), an n x 1 spatial MUX can achieve a clock-rate
of 1/T Hz compared to 1/nT Hz for temporal MUX.

e Distinguishability and incoherent errors: Because optical gates rely on the spatial
interference of two otherwise indistinguishable photons, it is important to have a high
level of control of photons’ other physical degrees of freedom (e.g. polarisation, frequency,
time of arrival, etc). Given that each photon’s state depends on the components through
which it has interacted, each additional component brings with it some associated amount
of coherent noise, especially if it is actively controlled. For example, the photon sources
may need to be actively tuned to ensure all photons are emitted at equal frequencies.
Hence, an increased number of sources and switches in spatial MUX significantly increases
requirements for fabrication precision and/or tuning control when compared to a temporal
MUX scheme. In addition to coherent errors (which may be suppressed by improved
fabrication and active tuning), additional electrical and thermal components also increase
the rate of stochastic incoherent errors, such as jitter (random fluctuations in thermal

phase shifters), dephasing or loss.

e Loss: One potential disadvantage of a temporal MUX scheme is that photons experience
at least as much loss as the spatial case (from a single delay line and [log, n] + 1 switches),
as well as additional loss proportional to their delay time. Not only does this increase
average loss rates, but produces an anisotropic, non-iid (independent and identically
distributed) qubit loss model. Although such uncertainties may not have a significant
impact on associated error correction in the later architecture, lacking such information

could potentially decrease optimisation of error correction schemes [89].

For more details on optical MUX schemes for LOQC see Ref. [115].

2.3.2 Qubits from photons

Once single photons can be generated on demand they can provide the physical basis for an
encoded qubit.

While there are a variety of different qubit encodings using photons, such as polarisation,
orbital angular momentum, and temporal [90], current LOQC architecture proposals predomi-
nantly apply the dual-rail encoding scheme. In this path encoding, qubit’s computational basis
{|0),|1)} states (where an overbar is used to distinguish logical states from photon-number
states) are encoded by the photon’s position within two distinct optical modes, such as two
planar waveguides, as depicted in Figure 2.10a. Taking |0, 0)172 as the vacuum Fock state for

two waveguides, the logical basis states are then defined as

10) = [1,0)5 = a] 0,0), 5, |T) =10,1);5 = a}]0,0),, (2.17)
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a) Dual-rail (path) encoding b) Polarisation encoding
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Figure 2.10: Path and polarisation encoding for photonic qubits.

where |4, j); 5 is the Fock state of two waveguides with ¢ photons in mode 1 and j photons in
T
i

both photons are indistinguishable other than by the optical mode.

mode 2 and a; is the creation operator for mode i where d;-r In); = vn+1|n+1),. We assume
To create arbitrary superpositions of the qubit basis states, a combination of beam-splitters
and phase-shifters can be applied. As linear optical elements, these lead to linear transformations
of optical modes which can be described by passive? Bogoliubov transformations of the mode
operators [90]. To see this, consider the Hamiltonian describing linear two-mode coupling, such
as that of a beamsplitter
H = ih(g*alay — gasal), (2.18)
where |g| is the coupling strength between modes and arg(g) is the relative phase imparted.

The unitary evolution operator for linear two-mode coupling is therefore given by
U0,¢) = e 11 = exp (064%1@ - ae%la;), (2.19)
where 6 = |g|t, ¢ = arg(g). Because evolution is linear, we can represent the evolution of mode
operators as a linear transformation
T &I BS dJ{
U,0)" | +|U0,0)=Usg | .7 ] (2.20)
a3 g
where UE; is the unitary operator for an arbitrary beamsplitter. Solving the above equation

for Ug; can be achieved via the Baker-Campbell-Hausdorff formula

. T oA . n A ) 2 A A A ) n A A A A
e = pin[4, 8]+ L[4 (48]« + P[4 (4 [4B])]+.... e
from which it is easy to show that

BS cos(6) e~ sin(f)
Vog = (—eid’ sin(f)  cos(#) ) ' (2:22)

2 A passive Bogoliubov transformation is one in which creation (annihilation) operators are linearly mapped
to other creation (annihilation) operators, and hence conserve photon number.
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The action of an arbitrary beam-splitter between two photonic modes is therefore described by

the Bogoliubov transformation
&I — cos(H)dJ{ — €t sin(H)&;, &; — e sin(@)&{ + COS(G)&; (2.23)

Physically, we can see that ¢ is the phase shift imparted upon reflection and ¢ = cos(f) and
r = sin(f) are the beam-splitter’s transmission and reflectivity respectively, such that 72 +#% = 1.
Similarly, from the single-mode Hamiltonian H= ihyata, the action of a phase-shifter on

one of two optical mode can be defined by the Bogoliubov transformation

al = e al, al — al (2.24)

which (up to a global phase) can be similarly rewritten as the unitary matrix transformation

e’ 0 i
uy® = <o ) = Rz(y) = ¢"? (2.25)

By appropriate choice of ¢, we also find that

N B e

o= (e i) ==

Arbitrary single-qubit unitaries in the dual-rail encoding can therefore be performed by sequences
of beam-splitters and phase shifters. For example, it is easy to see that U ESU_B%O = H (up to
a global phase). Recalling Equation (2.5) for arbitrary single-qubit rotatQion af)out axis n by
angle 0, it follows that

Ua(0) = Uz(7)Ux (B)Uz(c) = Uz(7)HUz(B)HUz(cx)
_77PS BS PS BS PS
- U‘H’%U—%@Uﬁ-F%U—%,OUa

= U, U (JUB°URS (ULP, (2.28)

where o/ = a, 8’ = f+ 7, and 7' = v+ 5. An arbitrary single-qubit rotation can be therefore be
produced by use of a Mach-Zender interferometer (MZI), consisting of two 50:50 beam-splitters
and three variable phase-shifters, as depicted in Figure 2.11.

In some cases it will be convenient to consider the polarisation encoding of photonic qubits
in which the state is encoded by the photon’s transverse electric field vector. Depicted in Figure
2.10b, polarisation encoding is isomorphic to the dual-rail encoding, but with the logical qubit

state defined the orthogonal polarisation states |H) and |V') such that

0), = |H), = &} ;10);, and |1),=[V), =al,|0),, (2.29)

(2 (3 7
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Waveguide

Beam-splitter

| (50:50)
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Figure 2.11: Mach-Zehnder interferometer setup for single-qubit rotations. Given an appropriate
choice of (v, 3,7), the arbitrary qubit rotation U;(#) can be performed using two 50:50 beam-
splitters and variable phase-shifters.

where here |0), is the vacuum state of some optical mode i, and dl H’&j',v are the creation
operators for horizontal and vertical polarised photons in mode i respectively. As before,
transformations of polarisation-encoded photons by linear optics can be described by passive
Bogoliubov transformations.

One specific transformation we shall make use of is that of a Polarising Beam-Splitter (PBS),
an element of birefringent material in which an input photon’s reflection or transmission depends
only on its polarisation. For example, a H-V oriented PBS transmits horizontally-polarised

photons, whilst reflecting vertically-polarised photons, and provides the mode transformation

- o -
A g — 01y Gy 7 Aoy

K NN X

Ay g = Ay gy Ayy — Gy (2.30)

Rotations of polarisation-encoded qubits are achieved by use of rotated birefringent wave-

plates, with the mode transformation HWP(0) of a half wave-plate at angle 6 given by:
- L oavat ot o ooyt
ap — cos(20)ay +sin(20)ay,, ay, — cos(20)a;, — sin(20)ay,. (2.31)

For example, a polarisation-encoded version of the Hadamard can be implemented by a 22.5°
rotated HWP, producing the mode transformation
it o L (al+al), al - 1 (al, - aly). (2.32)
V2 V2
Complex phase shifts can similarly be imparted by quarter-wave plates (QWP). For example,
a QWP can be used to implement the phase shift

al, — e 75, al, - e'ial. (2.33)
In the qubit picture we can see that the HWP and QWP are represented by rotations about
the Pauli Y and Z axes respectively. Figure 2.12 provides a simple optical circuit that trans-
form between polarisation- and path-encoded photonic qubit. It can also be shown that all
linear photonics circuits acting on polarisation-encoded qubits have an equivalent dual-rail

decomposition, and hence the two representations will be used interchangeably here.
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Polarisation-to-path encoder
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Figure 2.12: Converting between polarisation- and path-encoded photonic qubits. Polarisation-
encoded photonic qubits input on the left are mapped to path-encoded photonic qubits on
the right (and vice versa). The polarisation-to-path encoder consists of a PBS and a 90°
polarisation rotator (implemented by a 45° rotated HWP), depicted by the divided box and
ellipse respectively. Note that photon’s colour and time-bin are differentiated for illustrative
purposes only and are otherwise assumed equal.

%C Single photon
detector

Polarising

beam splitter

O 45° polarisation

rotating waveplate
a) Type-I Fusion b) Type-II Fusion

Figure 2.13: Type I and II fusion gates. For simplicity, both gates are depicted in their
polarisation-basis form. The detector must also be number polarisation and photon-number
resolving.

Finally, we address photonic qubit measurement. For single qubits, computational basis
measurements are straightforwardly implemented by the use of two photon detectors (one per
rail) or one polarisation-resolving detector in the case of a path- and polarisation-encoded
qubit respectively. (In practise polarisation measurements are generally implemented using
two non-polarisation resolving detectors and a PBS via a conversion to path-encoding prior to
measurement). Measurements in arbitrary single-qubit bases are therefore be implemented by

insertion of a single reconfigurable MZI prior to detection.
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2.3.3 Entangling gates for photonic qubits

Because photons are non-interacting bosons is it not possible to deterministically entangle
two photons with linear optics [116, 117]. In LOQC proposals, this is overcome by use of a
measurement-induced non-linearity, as most famously introduced in the Knill-Laflamme-Milburn
(KLM) scheme [40]. As previously discussed, such schemes use the fact that certain mode
transformations on dual-rail encoded qubits produce photonic states containing superposition
terms representing the desired non-linear interaction. However these terms occur in superposition
with others that do not describe a valid qubit transformation, such as the two-photon Fock states
|0, 2>172, |0, 2>172, and |1, 1>i7j. In the KLM scheme, this is overcome through the interaction of
ancilla states which are then measured to herald the success or failure of the desired entangling
interaction, leaving the target qubits unmeasured.

The problem with such a scheme is that while successful entanglement can be produced
with some probability p, with probability 1 — p the input photonic state is projected onto some
non-qubit state from which the input state cannot be recovered. For example, using KLM’s
original scheme, a single CZ can be produced with probability p = 1—16 by use of only two single
photon ancillae, or with p = i if a 2-photon Bell pair is additionally consumed. This presents a
challenge for LOQC architectures, whereby a single failed entangling gate can cause the failure
of an entire computation. While the probability p of gate success can be arbitrarily increased,
this is only achieved through the consumption of increasingly many ancilla states that are
increasingly costly to produce. For example, a single CZ-gate with 95% probability of success
would require at least 104 individual operations and the elimination of 1300 Bell states and 620
other ancillary states [118].

This problem is partially addressed by the introduction of so-called fusion gates by Browne
and Rudolph [45], depicted in the polarisation basis by Figure 2.13. In a fusion gate, the role
of heralded ancilla is played by one or both of the input qubit states, and hence one or both
are consumed by the gate, known as Type-I or Type-II fusion gates respectively. This allows a
standard fusion gate to operate with fusion success rate of py = % at the cost of consuming some
number of input qubits. On success, entanglement is created between any other qubits entangled
with the input qubits, whereas on failure one or both qubit is consumed and no entanglement
is generated; hence both fusion gates represent a type of a destructive entanglement swap
operation. A further motivation for the use of fusion gates is that their action can also be
simply described within the graph-state picture.

However, note that the existence of such a gate only provides half of the solution to growing
large-scale entangled states. To complete the scheme, an initial source of small entangled states
must also be known as well as an efficient protocol to fuse them together which succeeds despite
the probabilistic success of fusion gates. As such, we shall now describe the abstract action of
fusion gates and defer descriptions of the states on which they act and the larger construction

scheme to Sections 2.3.4 and 2.4.1 respectively.
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Figure 2.14: Constructing cluster states using Type-I fusion.

In a successful Type-I fusion only one of the two input qubits is measured, and entanglement
is created between the remaining qubit and those neighbouring the other. Intuitively, the Type-I
fusion operation can be seen as transferring all pair-wise entanglement from two input qubits to
the one output qubit. However, on failure, neither the detected nor output photonic state are
in qubit form which is represented as having performed a Z-measurement on both qubits. For
example, Type-I fusion can be used to join linear cluster states in both 1- and 2-dimensions, as
depicted in Figure 2.14.

In a successful Type-II fusion both input qubits are measured and entanglement is created
between their neighbourhoods. As with the action of X-measurements, a complete description of
the Type-II fusion is more involved than need be presented here (for which the reader is referred
to Refs. [16, 119]), however one simple case is observed when applied to 2-qubit redundantly
encoded logical qubits®. In the case of two input qubits with one part of a redundantly encoded
qubit pair, both qubits are consumed and entanglement between neighbours of all input qubits
are transferred onto the remaining qubit in the redundantly encoded pair. However, on failure
both input qubits are effectively measured in the X-basis. This provides a significant advantage
over Type-I fusion as it prevents the gate from destroying entanglement in the remaining graph
state at the cost of an additional qubit consumed on success. For example, Type-II fusion
provides an improved method of joining linear cluster states to produce 2-dimensional cluster
states, depicted in Figure 2.15. A second advantage of Type-II fusion is that it can herald
any loss of input photons as both success and failure outcomes occur on the detection of two

photons. Hence, if less than two photons are found across both detectors, loss is heralded and

3 An n-redundantly-encoded logical qubit |’zZ> = «|0) + B|1) is a state in which the logical computational
basis states are defined over n repetitions of the same basis on a set of physical qubits, such that iy = \i)@m. For
example, in the above fusion case, we consider the two-qubit redundantly encoded state |7j)> = «a|00) + B11).
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Figure 2.15: Constructing cluster states using Type-II fusion. Dashed qubits within a single
solid qubit represent redundantly encoded qubits.

can thereby accommodated within the architecture.

Another advantage of fusion gates is that they can be rotated to produce alternative
entangling operations on both success and failure. For example, it can be shown that by simply
applying rotated wave-plates prior to the fusion gate, Type-II failure outcomes can instead
apply a useful entanglement swap operation rather than the described X-measurement [16].

Lastly, the success probably of Type-II fusion may also be arbitrarily boosted at the cost of
additional input ancillae [120, 121]. For example, the probability of successful fusion p; can
be boosted to py = 75% at the cost of consuming one 2-photon entangled Bell pair (the Grice
scheme) or four single photons (the Fwert-van-Loock scheme), as depicted in Figures 2.16a and
2.16b respectively. From here the fusion probability can be arbitrarily increased at the cost of
increasingly large ancillae states that become increasingly difficult to build. Defining pgc l as
the fusion probability at boosting level N, where pg?] = 50%, p[fl} = 75%, it can be shown that

P =1- 2]\%1 (2.34)
from a gate that demands either M = 2V*+1 — 2 or 2M ancillary photons to be consumed in
the Grice and Ewert-van-Loock gates respectively.

For the Grice scheme [120], the ancilla state is of the form @2, |Y;) where |T;) is the

2¢-photon state

1 9i+2 gi+2
T3) = ﬁ( II a+ JI a
k=21+141 k=21F141
k odd k even
1 _ i _ i
= (0 + |)*) (2.35)
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Figure 2.16: Boosted fusion gate schemes. The success probability of fusion may be arbitrarily
increased by use of boosted fusion gates that consume additional ancillary photons. Here
we depict two known approaches to boosting that can be generalised to boosting level NV,
differentiated by their input ancillae states. This is achieved by the consumption of: a) an
ancillary two-photon Bell pair in the Grice scheme [120], and b) four single photons in the
Ewert-van-Loock scheme [121].

where |0) is the vacuum state, and so requires a series of increasingly large entangled GHZ
states. For the Ewert-van-Loock scheme [121], the ancilla state is of the form (®f\;1 |A;))®?
where |A;) is the 2'-photon state

2i+1 2i+1

20 = 5= IT @+ IT @)

k=241 k=241
k odd k even

= o2 40y (2.36)

V2

and so similarly requires a series of increasingly large entangled states. We shall later see that
whilst a high degree of boosting is unlikely to be beneficial in terms of an architecture’s resource
efficiency, some degree of boosting will be necessary to the architecture. It is not yet known
whether a similar boosting scheme exists for Type-I fusion.

Lastly, we consider the requirements of detectors in the above circuits. Unlike the detectors
required for measurement of single photonic qubits, an additional consideration in the above
entanglement generation circuits and fusion gates is that they require photon number-resolving
detectors (PNRDs) to distinguish different photon coincidence patterns. For example, a pg}} =
75% Ewert-van-Loock fusion gate demands PNRDs that can distinguish up to 4-fold photon

coincidences—certainly a non-trivial experimental task (see Section 1.3.4). Also, in the case of
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Figure 2.17: Boosted fusion success probabilities with detector inefficiency in the Ewert-van-
Loock scheme. This plot shows that the advantage of increased gate success probabilities in
boosted fusion schemes is strongly contingent on high detector efficiencies, as described by
Equation (2.37). Notably, if detector inefficiencies are high (e.g. > 15%), then it is actually
worse to implement a scheme with boosting than none at all.

boosted fusion, the numbers of detectors per gate increases with increased fusion probability.
However, in the case of imperfect detectors, the increase in detectors needed for an additional
level of boosted fusion may ultimately lead to a decrease in overall gate performance. For
example, in the Ewert-van-Loock scheme with imperfect detectors, the probability of success for
N =1 fusion is %n‘l + inﬁ compared to 2 for the N = 0 case, where 7 is the detector efficiency
(and we have otherwise assumed perfect single-photon source) [121]. It therefore follows that
the boosted gate only provides a real-terms increase in success probability over the standard
fusion gate if n > V3 — 1 ~ 86%.

Extending this analysis to the coincidence patterns required for arbitrarily boosted Ewert-

van-Loock fusion gates, it can be shown that the probability of success for boosting level N is

1 N+2_ 1 N
Psyee = 1 (772 2 + <3 - 2N—1> 772 +1) : (2'37>

It is easy to confirm that for N =0 and N = 1 we find the known success probabilities of %nQ

given by

and %n‘l + in6 respectively, and similarly find Psyee = 1 — QN% for n = 1. Depicted in Figure
2.17, we see that increasing the boosting level N has a serious effect on the gates’ ability to
tolerate any detector inefficiencies. Notably, we find that N = 2 boosted fusion is only ever
advantageous for detector efficiencies above = 97% and N = 3 for above n ~ 99%. For N > 3,
the decrease in Py,e. with any associated fall below near-unit efficiency is so severe that such

gates are unlikely to be practical unless detector fabrication inaccuracies can be effectively
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removed. Clearly, such analyses are crucial for the development of sophisticated realistic models
of an LOQC architecture. For further analysis of fusion gates’ performance under realistic

detector models and their errors, see Ref. [122].

2.3.4 Producing universal resource states

Having shown how photons can be encoded as qubits, arbitrarily rotated and probabilistically
entangled, we are now ready to present the main blueprint for an LOQC architecture. The
outline of the low-level architecture is to take a collection of small entangled resource states and
through the application of fusion gates and measurements, produce a universal cluster state.
There are a number of universal cluster states one can choose from for such an architecture [15,
105, 123, 124], however for simplicity here we shall consider the task of constructing the cluster
state of simple cubic lattice structure.

Firstly, we consider the task of initial resource state generation, namely of 2-photon Bell pairs
and 3-photon Greenberger-Horne-Zeilinger (GHZ) states. Specifically, Bell pairs are required for
the boosted fusion gates used to grow a cluster state from 3-GHZ states. Note that an initial
entangled state of three photons is necessary given that each Type-II fusion consumes a pair of
qubits, and hence cannot increase the number of entangled qubits when applied only to Bell

pairs. Figure 2.18 depicts a scheme proposed by Zhang et. al. [125] that produce event-ready

3
16°

by procrustean distillation to pgen = % at the cost of an additional switch for correction [126].

Bell pairs from four single photons with probability pgen = which can be further increased
Note that this circuit leverages Type-II fusion as a sub-circuit and so can also herald photon
loss.

This approach can be similarly extended to the production of 3-GHZ states by a scheme
proposed by Varnava, et. al. [127]. In this circuit, depicted in Figure 2.19, six single photons
are input to produce a 3-photon GHZ state with probability pguz = 3% = 3.125%. A key
feature of this circuit is that it is robust to photon loss, where loss of photons during the
circuit is heralded by an incorrect detection pattern, allowing the final state to be discarded
[119]. Furthermore, any loss on input photons that is not heralded results in iid loss on the
output state. While this second feature may seem innocuous, it is crucial that any form of
correlated errors be suppressed in all architectures due to their catastrophic effect on high-level
architectural processes [89)].

However, to be of use in current LOQC architectures both Bell pairs and GHZ states need
to be produced on-demand, and hence cannot be directly produce by probabilistic circuits.
Following the same MUX methods used for single photons in Section 2.3.2, both resource state
generators will need to be multiplexed to produce near-deterministic versions. As before, an
RMUX scheme allows for a further reduction in state waste as well as switch depth and loss
tolerance [51]. The following architecture therefore describes the operation of a device after

(R)MUX has been successfully applied at both the single photon and the following resource state
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Figure 2.18: Optical circuit for generating photonic Bell states. The circuit takes four input
photons and outputs the entangled 2-photon Bell state in modes 1 and 2; success is heralded
upon detection of a two photons of opposite polarisation in the fusion gate. The success
probability of the circuit is p = % = 18.75%.

N % N % N %,
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Figure 2.19: Optical circuit for generating photonic GHZ states. The circuit takes six input
photons and on detection of a single photon in each detector outputs an entangled 3-photon
GHZ state; the success probability of the circuit is p = 3% = 3.125%.
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generation levels. However, because such a scheme would require the concatenation of a Bell or
GHZ state MUX circuit on top of an already-costly single-photon MUX circuit, at present this
represents a significant—perhaps even prohibitive—resource cost to the architecture.

Assuming 3-GHZ states can be produced on demand using MUX or otherwise, it is then
straightforward to arrange a fusion scheme to construct the desired percolated lattice. For
example, Figure 2.20a depicts the attempted fusion of five 3-GHZ states into a 7-GHZ state
and Figure 2.20c the various microclusters produced by each configuration of fusion success
and failures. From this it is easy to see that an n-GHZ state can be constructed using n — 2
many 3-GHZ states, which are entangled by n — 3 fusions gates. We note that this is not an
optimal strategy for generating n-GHZ states from single photons. In general, an n-GHZ state
may be produced from 2n single photons with probability 1/(22® — 1) [16]. However, on failure
such circuits do not produce entangled qubit states and so must be multiplexed if used; this is
contrasted to the fusion of 3-GHZ, where failed fusions do not require the resultant state to
be discarded. From such GHZ states it is straightforward to construct the desired percolated
lattice. For example, Figure 2.20b depicts the fusion of nearest-neighbour microclusters to
produce a percolated cubic lattice.

Once small states can be produced on-demand and entangled to create a percolated
universal resource state, all that remains to consider is measurement, feed-forward and classical
co-processing. Compared to the optical circuits needed for generating GHZ states and performing
fusions, the measurement-based processing of a percolated cluster state is relatively simple and
physically consists of delay-lines, single-qubit MZI’s, detectors and classical control circuitry.
For our purposes, the challenge of processing resource states can therefore be straightforwardly
abstracted to some set of time-ordered measurements on a large percolated cluster state, which
can be represented by the graph operations of node and edge addition and deletion. Importantly,
this abstraction allows all experimental errors to be conveniently visualised and parameterised
for inclusion in higher-level abstractions. For example, photon loss, probabilistic entanglement
and distinguishability are respectively represented as qubit node loss rates, edge probabilities
and distribution functions for qubit Pauli errors. This division between the optical circuits of
resource state generation and the classical control of subsequent state processing marks the key
boundary between the low- and high-level architecture.

An overview of LOQC’s low-level physical architecture is shown in Figure 2.21.

2.4 High-level architecture

We now consider enacting error-corrected quantum computation on a percolated resource state.
This process can be split into three substages: i) building a cluster state lattice; ii) applying
quantum error correction; and iii) enacting logical quantum circuits, as summarised by Figure

2.22. Specifically, this will be achieved by the renormalization of a percolated cluster state to a
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Figure 2.20: Microcluster production and fusion. a) The generation of 5- and 7-GHZ states from
three and five 3-GHZ states using two and four fusions (depicted in red) respectively. It is easy to
see how such an approach can be generalised to the production n-GHZ states using n —2 3-GHZ
states entangled with n—3 fusions gates. b) An array of 7-GHZ states which are fused to produce
the unit cell of a percolated cubic lattice. From the construction of arbitrarily-sized GHZ states,
it is easy to see that any percolated lattice may be similarly constructed, including semi-regular,
anisotropic and higher-dimensional lattices. c¢) Different 7-qubit microcluster configurations
produced by different combinations of fusion gate successes and failures. Bracketed numbers
refer to the indices of successful and failing fusion operations respectively. Given that a single
unit cell is constructed from the fusion of eight such microclusters, this highlights the incredible
diversity of structures possible in the final state produced.
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Figure 2.21: Overview of the low-level LOQC architecture. Here we depict the main physical
stages of a modern LOQC architecture. a) Heralded single photons are probabilistically gen-
erated by non-linear sources excited by some pulsed pump laser (which may or may not be
integrated on-chip). Significant filtering and source tuning is also likely required at this stage
to ensure maximally indistinguishable photons. Photons are then delayed, providing time for
configuration of the MUX switch network. b) Photon herald signals are fed-forward to a spatial
and/or temporal MUX switch network, producing a near-deterministic source of single photons.
Although photons are depicted in regular array to represent their determinism, in practise only
photons engaged in the same entanglement generation circuits need be synchronised. ¢) Small
entangled resource states are probabilistically generated. At the very least, current architectures
require both 2-photon Bell states and 3-photon GHZ states to be produced, although future
schemes may require the generation of more complex entangled states. States are again delayed
prior to the subsequent resource state MUX. d) Heralding signals from detectors in resource state
generation are fed-forward to a second MUX switch network, producing a near-deterministic
source of entangled states. As in b) photons in ancillae states and non-data qubits need only be
synchronised with the other photons they will interact with in fusion gates. e) Ancillae fusion
produces some known percolated 3D cluster state. Qubits in each time-like layer are delayed
prior to a round of reconfigurable measurements that enact the desired measurement-based
quantum computation. Stages a)—e) depict the architecture’s low-level stages, with all high-level
stages implemented through changes in data qubit’s measurement bases as chosen by the
classical co-processor.
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Figure 2.22: Overview of the high-level LOQC architecture. While depicted here as the three
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