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Abstract

With the end of Moore’s Law within sight, quantum computers offer a tantalising paradigm shift
in computational power. Currently, many quanta are competing to realise such a revolutionary
device, of which this thesis considers one in particular: linear optical quantum computation
(LOQC). Over the past decade LOQC architectures have developed from “efficient” but
unfeasible toy models to serious contenders. A significant step in previous works was the
blueprint of an LOQC architecture that could be conceivably implemented with idealised optical
components.

However, in reality nature is not kind and devices not ideal. As such, we consider open
questions addressing gaps between LOQC’s theoretical architecture and experimental constraints.
In doing so, a selection of numerical tools are also developed for the design, simulation and
analyses of novel architectures. Specifically, we consider three problems.

Firstly, can an infinite-sized quantum state be realised within a finite-sized device? Through
development of a simple, generalised model, we find some small, finite device size at which the
infinite state is faithfully reproduced. We also find that increasing device size above this confers
no advantage, thereby identifying some necessary and sufficient minimum LOQC device size.

Secondly, we consider the challenge of accommodating unheralded photon loss in an LOQC
architecture, a problem for which no previous solution was known. By developing a novel
protocol for optimal teleportation on stabilizer states, we show that unheralded loss may be
tolerated, perhaps entirely, by adaptive measurement strategies.

Finally, we consider the optimisation of LOQC architectures via local complementation.
This work both sets hard limits on the states accessible by postselected linear optics circuits as
well as develops novel tools for the analysis of higher-dimensional quantum states.

We conclude with an example of how such works can be combined to optimise the LOQC
architecture as well as provide improved device resource estimates.
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Introduction

Perhaps the two most intriguing classes of phenomena to a human mind are those which can

be experienced but not understood and those which can be understood but not experienced.

Like most revolutionary physical theories, quantum phenomena began in the former category,

manifest in the form of decaying atoms to ultraviolet catastrophes. This collection of unsolved

problems provided the impetus the search for a complete quantum theory during the first half

of the 20th century. By the end of the 1920’s, recognisable quantum theories based on matrix

and wave mechanics had been developed by the likes of Heisenberg, Born, and Jordan and

Schrödinger respectively. Over the next decade, these theories were made rigorous by Dirac’s

quantum operator theory and the description of quantum mechanics as a theory of linear

operators by von Neumann.

By the end of the 1950’s the final cogs of quantum mechanics had been put in place and

researchers began to explore the implications of their newfound theories. It was not long

before concepts from classical information theory began to be imported to a quantum setting,

ultimately birthing the modern field of quantum information theory. Soon after, the use of

quantum information processing for computation began to develop, spurred by the idea of

a universal quantum computer as conceived in 1985 by the Church-Turing-Deutsch (CTD)

principle [4]. The CTD principle formalised the initial musings of physicists such as Feynman,

having proclaimed three years previously that “nature isn’t classical, dammit, and if you want

to make a simulation of nature, you’d better make it quantum mechanical” [5].

Initial notions that some computational advantage could be achieved by quantum compu-

tation over classical computation were soon confirmed in the mid 1990’s by the discovery of

the quantum algorithms of Simon, Shor and Grover [6–8]. Specifically, Shor’s algorithm proved

that the important problem of integer factorisation could be solved efficiently on a quantum

computer, whereas no known efficient classical algorithm is known. More recent developments
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CHAPTER 1. INTRODUCTION

in the field of quantum algorithms have extended the promise of a quantum computational

advantage to important fields such as physical simulation [9, 10], machine learning [11, 12] and

linear algebra methods [13]. For an overview of quantum algorithms, see Ref. [14].

At the turn of the 21st century, the phenomena of quantum computation therefore falls

squarely in the latter class: understood, but not experienced. Preventing the realisation of

quantum computers stands the small issue of reality. Unfortunately, perfect quantum particles

interacting in controlled and infinitely precise ways exist only abstractly in theorists’ minds.

Ironically, it is exactly this ability to forego realistic imperfections and concatenate mathematical

concepts that allowed such rapid theoretical developments, and precisely the inclusion of such

imperfections that currently prevents their realisation.

However, over the last decade we have begun to address this challenge, and the race to

produce the world’s first large-scale quantum computer has well and truly begun. While the

past five years has seen the number of different quantum computing hardware companies

soar, most proposals can be classed based on their quanta, or quantum platform of choice:

superconducting, matter-based, photonic, or some hybrid thereof. Historically, superconducting

and matter-based approaches have made rapid progress in device size and functionality, with the

likes of Google, IBM, and Intel currently leading in terms of device size and control. However,

despite the early promise (and more often than not hype), there remains a long road before

supra-classical quantum computation is achieved. Although new and revelatory results in the

theory of quantum computation are regularly found, much is still unknown about the true

scalability of each platform’s architecture. This latter issue of scalability is brought into stark

focus by conservative estimates suggesting that with sizes of at least three to four orders of

magnitude greater than today’s are needed. It is quite possible that we shall look back on

current devices with the same hindsight as we do now with vacuum tube computers—that

is, state-of-the-art devices that push the technology’s boundary, but which are ultimately

impractical for large-scale implementation.

This thesis considers one candidate platform for the future of scalable quantum computing

device, namely linear optical quantum computation (LOQC) using an integrated silicon photonic

architecture. Given it has yet to boast device sizes rivalling superconducting and matter-based

platforms, it is reasonable to ask: what makes LOQC an interesting prospect for a future device?

The answer is (at least in part) that LOQC’s fundamental challenges are predominantly bottom-

heavy, that is they apply to the microscopic-level engineering of devices, such as on-demand

single-photon sources, deterministic entanglement, lossy waveguides and fast feedforward control

electronics. However, if such challenges can be addressed, the platforms’ realisation as a photonic

integrated circuit (PIC) provides compatibility with current CMOS technologies and fabrication

techniques and therefore a high potential for miniaturisation and scalability.

Importantly, the above factors can be contrasted with superconducting and matter-based

architectures which have predominantly top-heavy architectural challenges. Engineers of such
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platforms can create and control small quantum devices with relative ease, but on the other

hand face restrictions and challenges in the planarity, miniaturisation and large-scale manufac-

turability of such devices. For example, constructing a large-scale quantum computer based

on a superconducting platform may require a single large planar chip to be contained entirely

within a single dilution fridge maintained at tens of millikelvin, without thermal disruption

from significant control circuits. Just as it remains an open question whether the bottom-heavy

challenges of LOQC may be addressed in the future, the same is also true for top-heavy

challenges for other platforms. As speculation continues on the ultimate platform for future

quantum computers, we should be careful to not to let a lack of initial progress on the former

lead us to conclude on the latter.

Another reason for the preference towards superconducting and matter-based platforms

is due to LOQC’s architectural heterodoxy. Unlike other platforms, it has not been until

recently that LOQC’s architectural development has advanced from a theoretical curiosity to a

(relatively) feasible proposal [15, 16]. Recent reductions in resource requirements for LOQC have

clarified the platform’s theoretical model of a large-scale architecture to the extent that the

integration of experimental constraints is necessary for further progress [17]. It is the inclusion

of these realistic constraints that is the focus of this thesis, of which we address a selection of

which that are most problematic.

In the rest of this chapter we first introduce the necessary theoretical concepts underpinning

quantum computation in Section 1.1, followed by a brief history of LOQC in Section 1.2, and

finishing with an overview of the integrated silicon photonics platform in Section 1.3. These

sections aim to provide a conceptual basis for the holistic overview of the LOQC architecture

presented in the following chapter. The remaining chapters of this thesis are then dedicated to

addressing a selection of open problems within the large-scale LOQC architecture as well as

those of near-future photonic devices.

1.1 Quantum computation

We now introduce the basic concepts of quantum computation. The following draws from

Nielsen & Chuang [18], Preskill [19] and Kok [20].

1.1.1 Classical and quantum states

Consider a classical physical object that has n possible distinct or orthogonal states, such as an

arbitrarily-weighted n-sided die. At any given time the probability of the object being in one

of any of its states can be described by a probability distribution P . If the probability of the

object in state i is the scalar value pi, P can be described by the n-dimensional real vector

P = (p1, p2, . . . , pn) where pi ∈ R, 0 ≤ pi ≤ 1. (1.1)

3



CHAPTER 1. INTRODUCTION

Assuming all possible states of the object have been considered, at any time we must always

find the object in one of them, or equivalently the sum over all probabilities is conserved and

equal to one, such that

|P | =
∑
i

|pi| = 1, (1.2)

where |P | is known as P ’s 1-norm.

Now consider a second object over the same states defined by probability distribution

Q = (q1, . . . , qn). A reasonable question to ask is: what is the probability of finding the two

objects in the same state? If the probability of both states being in state i is given by piqi, it

follows that the probability of the objects both being found in any of the same state is given by

the dot product of their probability distributions

P ·Q =
∑
i

piqi. (1.3)

Geometrically, this can be understood as the projection of P onto Q (or vice versa).

Now consider a quantum analogue of the same object. In quantum mechanics, each scalar

probability pi is replaced with a complex probability amplitude. The probability of finding the

object in state i is given by the two-norm |ai|2. The state of the quantum object is then given

by the n-dimensional complex state vector

|ψ〉 = (a1, a2, . . . , an) where ai ∈ C, (1.4)

which is conserved under the 2-norm, or normalised such that

‖ψ‖ =
√
〈ψ|ψ〉 =

√∑
i

|ai|2 = 1. (1.5)

States where ‖ψ‖ = 1 are known as pure states. Note that in the above we have used the

Dirac bra-ket notation convention where kets |·〉 denote (column) vectors and bras 〈·| represent

conjugate or dual (row) vectors, such that 〈ψ|† = |ψ〉. Dot and tensor products are also

abbreviated as 〈ψ|φ〉 ≡ 〈ψ| · |φ〉 and |ψ〉〈φ| ≡ |ψ〉⊗ 〈φ| respectively. By applying this convention

to the unit vector of each basis state i, we can rewrite the object’s quantum state as

|ψ〉 = a1 |1〉+ a2 |2〉+ . . .+ an |n〉 =
∑
i

ai |i〉 , (1.6)

where |1〉 = (1, 0, . . . , 0), |2〉 = (0, 1, . . . , 0), . . . , |n〉 = (0, 0, . . . , 1).

Quantum states exist as vectors in a Hilbert space H, or |ψ〉 ∈ H. Hilbert spaces are complex

vector spaces which are complete in the norm (‖ψ‖ =
√
〈ψ|ψ〉) on which an inner product 〈ψ|φ〉

between vectors is defined. Larger Hilbert spaces are constructed from smaller ones via a tensor

product structure, such that H = C⊗n ≡ Cn for an n-dimensional Hilbert space. The combined

state of two quantum states |i〉 and |j〉 is given by |i〉 |j〉 ≡ |i〉 ⊗ |j〉, and commonly abbreviated
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to |ij〉. The inner product is a function that maps two vectors to a complex number with the

properties of:

Positivity: 〈ψ|ψ〉 > 0 for |ψ〉 6= 0, (1.7)

Linearity: 〈ψ| (α |φ1〉+ β |φ2〉) = α 〈ψ|φ1〉+ β 〈ψ|φ2〉 , (1.8)

Skew symmetry: 〈ψ|φ〉 = 〈φ|ψ〉∗ , (1.9)

where ∗ denotes complex conjugation. Similarly to classical probability distributions, the inner

product gives the probability amplitude overlap between one quantum state and another. For

example, for orthogonal basis states, we have

〈i|j〉 = δij . (1.10)

More generally, for two arbitrary quantum states |ψ〉 =
∑

i ai |i〉 and |φ〉 =
∑

i bi |i〉 the

probability of finding either state in the other is therefore given by

|〈ψ|φ〉|2 =

∣∣∣∣∣∑
i

a∗i bi

∣∣∣∣∣
2

(1.11)

How does a change from real probabilities to complex amplitudes change the physics of

such objects? Consider Equations 1.3 and 1.11 that give the probability of finding one object in

the same state as another in the classical and quantum cases respectively. In the classical case,

we see that piqi > 0 for each term in P ·Q, whereas in the quantum case a∗i bi ∈ C for |〈ψ|φ〉|2

(even though 0 ≤ |〈ψ|φ〉|2 ≤ 1). This seemingly subtle change allows distinctly non-classical

phenomena to be observed. For example, consider two fair classical coins, each having two

states heads (H) or tails (T), described by the probability distributions A = B = (1
2 ,

1
2). The

probability of finding both coins in the same state is A · B = 1
4 + 1

4 = 1
2 , as confirmed by

enumeration of the four equally likely two-coin states: HH, HT, TH, or TT. Now consider two

quantum coins

|↑〉 = (
1√
2
,

1√
2

) =
1√
2

(|H〉+ |T 〉) and

|↓〉 = (
1√
2
,− 1√

2
) =

1√
2

(|H〉 − |T 〉). (1.12)

Since
∣∣∣ 1√

2

∣∣∣2 =
∣∣∣− 1√

2

∣∣∣2 = 1
2 , the probability of finding each quantum coin in either heads or tails

matches that of the classical coins, and so are (in some sense) fair. However, if we ask for the

probability of finding |↑〉 in state |↓〉, we find that

|〈↑|↓〉|2 =

∣∣∣∣( 1√
2

)
·
(

1√
2

)
+

(
1√
2

)
·
(
− 1√

2

)∣∣∣∣2 =

∣∣∣∣12 − 1

2

∣∣∣∣2 = 0, (1.13)

or equivalently, that |↑〉 and |↓〉 are orthogonal.
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At this point any reasonable classical physicist should ask: “How can it possibly be the case

that individually both |↑〉 and |↓〉 are found in heads or tails with equal probability, yet the two

state’s themselves are completely distinct?” The answer comes from the fact that the probability

distributions A and B represent classical mixtures of the object’s basis states, whereas |↑〉 and

|↓〉 are quantum superpositions of basis states. In the classical case, a statistical mixture is used

to describes the observer’s uncertainty of the physical system, however the object itself has no

uncertainty in its own state, naturally existing in one of its distinct basis states, whereas in the

quantum case, a superposition describes the physical state of an object. In this picture, it is no

longer correct to view quantum state vectors as representing some observer’s uncertainty in

finding the object in a given basis state, but instead as representing physically distinct states

in and of themselves, describing a fundamental physical uncertainty of the object. For example,

just as {|H〉 , |T 〉} provides a set of distinct basis states for a quantum coin, so too do {|↑〉 , |↓〉},
as we have seen.

1.1.2 Quantum measurement

Unfortunately for quantum physicists, nature does not allow direct access to state’s probability

amplitudes. Instead, information must be gained by measurement of physical observables. In

quantum mechanics, observables are mathematically represented as self-adjoint or Hermitian

operators. An operator A is a linear map in Hilbert space, taking vectors to vectors, such that

A : |ψ〉 → A |ψ〉 where A(α |ψ〉+ β |φ〉) = αA |ψ〉+ βA |φ〉 and A† = A. (1.14)

It follows that (A |ψ〉)† = 〈ψ|A and 〈ψ|A|φ〉 = 〈φ|A|ψ〉∗ for all vectors |ψ〉 and |φ〉. Observables

are defined over some set of orthonormal basis states {|i〉}, and have spectral representation

A =
∑
i

λiPi where Pi = |i〉〈i| , (1.15)

and Pi is known as the projector onto the basis state |i〉. It is easy to see that projectors have

the properties

P 2
i = Pi, P †i = Pi, and

∑
i

Pi = I, (1.16)

where I is the identity operator. Since A |i〉 = λi |i〉 then λi is the eigenvalue of eigenstate |i〉.
An important property of Hermitian operators is that their eigenvalues must be real.

Physically, λi represent the measurement outcomes associated with eigenstate |i〉. If a

measurement of A is performed on a state |ψ〉, the probability of finding outcome λi is given by

pψ(λi) = ‖Pi |ψ〉‖2 = 〈ψ|Pi|ψ〉 = |〈i|ψ〉|2 (1.17)

The projection onto any given eigenstate represents the nonlinear collapse of one state onto

another due to measurement. In reality, collapse occurs probabilistically upon measurement,
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with |ψ〉 found in the state |i〉 with probability pψ(λi). After a measurement, the projected state

Pi |ψ〉 has length ‖Pi |ψ〉‖ ≤ 1, and so must be renormalised. Measurement of |ψ〉 by observable

A =
∑

i λiPi returning outcome λi therefore performs the transformation

|ψ〉 → Pi |ψ〉
‖Pi |ψ〉‖

. (1.18)

Consider we had multiple copies of |ψ〉 on which the same measurement A is performed.

Since each measurement returns an outcome probabilistically, an average over eigenvalues

returned provides an average measurement result 〈A〉, also known as an expectation value, given

by

〈A〉ψ =
∑
i

λipψ(λi) = 〈ψ|A|ψ〉 . (1.19)

Similarly, the spread of outcomes or the measurement’s uncertainty is given by the variance

Varψ(A) = (∆ψ(A))2 =
〈
A2
〉
ψ
− 〈A〉2ψ , (1.20)

where ∆ψ(A) is the standard deviation of A’s measurement outcomes.

For example, consider the measurement of the quantum coin state |H〉 in the {|↑〉 , |↓〉}
basis described by the operator X = P↑ − P↓. We find that

pH(λ↑) = |〈↑|H〉|2 =

∣∣∣∣ 1√
2

(〈H|+ 〈T |) |H〉
∣∣∣∣2 =

1

2
|〈H|H〉+ 〈H|T 〉|2 =

1

2
|1 + 0|2 =

1

2

pH(λ↓) = |〈↓|H〉|2 =

∣∣∣∣ 1√
2

(〈H| − 〈T |) |H〉
∣∣∣∣2 =

1

2
|〈H|H〉 − 〈H|T 〉|2 =

1

2
|1− 0|2 =

1

2
, (1.21)

and that 〈X〉ψ = 1
2 − 1

2 = 0. It follows that |H〉 is in an equal superposition of |↑〉 and |↓〉,
which is seen by noting that |H〉 = 1√

2
(|↑〉+ |↓〉). For the variance we find that

VarH(X) =
〈
X2
〉
H
− 〈X〉2H = 〈I〉H − 〈X〉2H = 1 (1.22)

where we have used X2 = I, 〈I〉ψ = 〈ψ|ψ〉 = 1. This indicates that there is maximum uncertainty

in measurement outcomes, as expected.

1.1.3 Quantum operations

In quantum mechanics, Hamiltonians are operators that corresponds to the kinetic and potential

energy of a given system, such that

H |k〉 = Ek |k〉 (1.23)

where the eigenvalues Ek of eigenvectors |k〉 represent the quantised energy levels of the system.

States’ evolution in time under the influence of some Hamiltonian H is given by the Schrödinger

equation

H |ψ(t)〉 = i~
∂

∂t
|ψ(t)〉 , (1.24)
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where H is Hermitian. Given a state |ψ(0)〉 at some initial time t = 0, we can solve the

Schrödinger equation to show that

|ψ(t)〉 = U(t) |ψ(0)〉 , U(t) = e−
i
~Ht, (1.25)

where U(t) is unitary.

More generally, a unitary U is an invertible map that takes pure states to pure states in

Hilbert space. From unitarity we have U †U = UU † = I such that U † = U−1 enacts the inverse

of U . It follows that U preserves the inner product of Hilbert spaces, such that 〈ψ′|φ′〉 = 〈ψ|φ〉
for |ψ′〉 = U |ψ〉 and |φ′〉 = U |φ〉. Unlike Hermitian observables, unitary operators may also

have complex eigenvalues. In real Hilbert spaces, unitary operations are represented as rotations;

to aid visualisation, it is common to extend this metaphor to complex Hilbert spaces to describe

quantum unitaries as rotations on quantum states. Like rotations on real vectors, the order in

which unitaries are applied to a state is important. The difference in action of unitaries A and

B applied as AB or BA is given by the commutator

[A,B] = AB −BA such that AB |ψ〉 = (BA+ [A,B]) |ψ〉 . (1.26)

Hence AB and BA apply the same operation on all states if and only if [A,B] = 0 and are said

to commute.

There are two equivalent ways to calculate the effect of unitaries on quantum observables,

known as the Schrödinger and Heisenberg picture. In the Schrödinger picture, unitaries act on

states, rotating vectors in Hilbert space. In the Heisenberg picture, unitaries act on operators,

changing their basis. To see this, consider the expectation value of an observable A on some

state |ψ〉, such that 〈A〉ψ = 〈ψ|A|ψ〉. Now consider applying some unitary U as represented by

|ψ′〉 = U |ψ〉 in the Schrödinger picture, such that 〈A〉ψ′ = 〈ψ′|A|ψ′〉. However, we observe that

〈A〉ψ′ =
〈
ψ′
∣∣A∣∣ψ′〉 = 〈ψ|U †AU |ψ〉 = 〈U †AU〉ψ =

〈
A′
〉
ψ

(1.27)

and so the unitary evolution on states |ψ′〉 = U |ψ〉 can be equivalently represented by the

unitary evolution of observables A′ = U †AU . More generally, the time evolution of an observable

A(t) under some Hamiltonian is described by the Heisenberg equation

d

dt
A(t) =

i

~
[H,A(t)] +

∂A(t)

∂t
, (1.28)

providing an equivalent to the Schrödinger equation in the Heisenberg picture.

Finally, a global phase operator U = eiϕ has no effect on observables, since U †AU =

e−iϕAeiϕ = A for any observable A. Two states which are equivalent up to a global phase are

therefore physically indistinguishable and so considered to be the same, such that

|ψ〉 ' |φ〉 = eiϕ |ψ〉 ⇔ |〈ψ|φ〉|2 = 1, (1.29)

where ' is used to denote equivalency.

8



1.1. QUANTUM COMPUTATION

1.1.4 Qubits

Up until now, we have largely considered phenomena on quantum and classical coins, however

these are simply everyday analogues of the more general concepts of classical and quantum bits.

A physical system with only two states can be abstracted to a single classical binary digit or bit

b ∈ {0, 1} and represents the fundamental unit of classical information. Equivalently, a 2-level

quantum system can be abstractly represented as a single quantum bit or qubit, defined as

|ψ〉 = α |0〉+ β |1〉 , (1.30)

where α, β ∈ C, or written in vector form

|ψ〉 =

(
α

β

)
where |0〉 =

(
1

0

)
, |1〉 =

(
0

1

)
. (1.31)

Like the classical bit, the qubit is the fundamental unit of quantum information and the primary

quantum system considered in quantum algorithms and computation. Unlike the classical bit,

qubits can be defined in any orthonormal basis {|ψ〉 ,
∣∣ψ⊥〉}, where ‖ψ‖ =

∥∥ψ⊥∥∥ = 1 and〈
ψ⊥
∣∣ψ〉 = 0. Three important orthonormal bases are the mutually unbiased bases1 {|0〉 , |1〉},

{|+〉 , |−〉}, and {|L〉 , |R〉}, where

|+〉 ≡ 1√
2

(|0〉+ |1〉) =
1√
2

(
1

1

)
, |−〉 ≡ 1√

2
(|0〉 − |1〉) =

1√
2

(
1

−1

)
,

|L〉 ≡ 1√
2

(|0〉+ i |1〉) =
1√
2

(
1

i

)
, |R〉 ≡ 1√

2
(|0〉 − i |1〉) =

1√
2

(
1

−i

)
. (1.32)

As with classical computing, elementary qubit operations are represented by digitised

quantum logic gates. Three important qubit logic gates are the Pauli matrices

X ≡ |+〉〈+| − |−〉〈−| =
(

0 1

1 0

)
(1.33)

Y ≡ |L〉〈L| − |R〉〈R| =
(

0 −i
i 0

)
(1.34)

Z ≡ |0〉〈0| − |1〉〈1| =
(

1 0

0 −1

)
(1.35)

where ZX = iY and all three are Hermitian. The Pauli matrices obey the commutation relations

[X,Y ] = 2iZ, [Y,Z] = 2iX, [Z,X] = 2iY (1.36)

{X,Z} = {X,Y } = {Y, Z} = 0, (1.37)

1 Two bases A and B are mutually unbiased if |〈i|j〉|2 = 1
2
∀ |i〉 ∈ A, |j〉 ∈ B.
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where {A,B} = AB+BA and if {A,B} = 0 then A and B are said to anticommute. The Pauli

matrices can be exponentiated to provide a set of orthogonal continuous qubit rotations in

Hilbert space

Rx(θ) ≡ e−iθX/2 = cos
θ

2
I− i sin

θ

2
X =

(
cos θ2 −i sin θ

2

−i sin θ
2 cos θ2

)
(1.38)

Ry(θ) ≡ e−iθY/2 = cos
θ

2
I− i sin

θ

2
Y =

(
cos θ2 − sin θ

2

sin θ
2 cos θ2

)
(1.39)

Rz(θ) ≡ e−iθZ/2 = cos
θ

2
I− i sin

θ

2
Z =

(
e−iθ/2 0

0 eiθ/2

)
(1.40)

Together with the identity matrix, the Pauli matrices form a basis for any rotations in a

2-dimensional Hilbert space. An arbitrary single-qubit unitary can therefore be described by a

rotation about some real unit vector n̂ = (nx, ny, nz), such that

Rn̂(θ) ≡ e−iθn̂·σ/2 = cos
θ

2
I− i sin

θ

2
(nxX + nyY + nzZ) , (1.41)

where σ = (X,Y, Z).

Up to a global phase, all single-qubit pure states can be defined by angles θ and ϕ, such

that

|ψ〉 = cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉 (1.42)

By associating θ, ϕ with the angles of 3D polar coordinates (r, θ, ϕ) for r = 1, qubit states can

be visualised as vectors on the surface of a unit sphere known as the Bloch sphere, as depicted

in Figure 1.1. Antipodal points along each perpendicular axis, are associated with eigenstates of

the Pauli matrices X, Y , and Z, with qubit rotations Rx, Ry, and Rz represented by rotations

about each axis respectively.

In addition to gates implementing continuous rotations, a set of digitised quantum gates

are also commonly considered, namely the Hadamard (H), phase (S) and π
8 -gate (T), where

H = |+〉〈0|+ |−〉〈1| = |0〉〈+|+ |1〉〈−| = 1√
2

(
1 1

1 −1

)
(1.43)

S = |0〉〈0|+ i |1〉〈1| = |L〉〈+|+ |R〉〈−| =
(

1 0

0 i

)
(1.44)

T = |0〉〈0|+ eiπ/4 |1〉〈1| =
(

1 0

0 eiπ/4

)
. (1.45)

The Hadamard and phase gates belong to a class of quantum gates known as Clifford gates.

Clifford gates, or more generally the Clifford group C, are defined as the set of operators that

map Pauli operators to Pauli operators under conjugation, such that UPU † = Q for U ∈ C and

10



1.1. QUANTUM COMPUTATION

Figure 1.1: The Bloch sphere. All single-qubit pure states can be depicted (up to a global phase)
as vectors on the surface of a unit sphere with 3D polar coordinates (1, θ, φ). Antipodal points
along each axis are associated eigenvectors of a Pauli matrices such that their associated qubit
rotations are represented by rotations about that axis. Figure adapted from Ref. [18].

P,Q ∈ P , where P is the Pauli group. For example, for the Hadamard and phase gates we find

that

HXH = Z, HY H = −Y, HZH = X (1.46)

SXS† = Y, SY S† = −X, SZS† = Z (1.47)

On the other hand, T is a non-Clifford gate. It can be subsequently shown that any arbitrary

single-qubit rotation can be efficiently approximated by some sequence of H and T gates. This

result, known as the Solovay-Kitaev theorem, is a fundamental result of quantum computation

theory, allowing quantum computation to be performed efficiently using on a small set of

quantum gates, preventing the need for directly implementing arbitrary quantum rotations.

1.1.5 Quantum entanglement and classical mixtures

A surprising phenomena emerging from quantum superposition is that of quantum entangle-

ment. Consider the (entirely classical) operation of the controlled-NOT (CNOT) gate, which

conditionally flips the bit value of some target bit based the value of another control bit. Written

in Dirac notation, the gate’s action on the qubits is given by

CNOT = |00〉〈00|+ |01〉〈01|+ |10〉〈11|+ |11〉〈10| , (1.48)

11
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where the first qubit is the control. Applying the CNOT to the two-qubit state |+〉 |0〉, we find

that

CNOT |+〉 |0〉 =
1√
2

(|00〉+ |11〉). (1.49)

Both qubits are now in a correlated superposition state, known as an entangled state; specifically,

the above state is known as a Bell state. Upon measurement in the {|0〉 , |1〉} basis, both qubits

are always found in same state, either |0〉 or |1〉 with equal probability. The above Bell state is

a member of the so-called Bell basis for two qubit states {|Φ+〉 , |Φ−〉 , |Ψ+〉 , |Ψ−〉}, where∣∣Φ+
〉

=
1√
2

(|00〉+ |11〉),
∣∣Φ−〉 =

1√
2

(|00〉 − |11〉),∣∣Ψ+
〉

=
1√
2

(|01〉+ |10〉),
∣∣Ψ−〉 =

1√
2

(|01〉 − |10〉). (1.50)

Importantly, correlation due to qubit entanglement exists across multiple measurement

bases. For example, we observe that for the above Bell state,

1√
2

(|00〉+ |11〉) =
1√
2

(|++〉+ |−−〉) =
1√
2

(|LR〉+ |RL〉), (1.51)

and so qubits have correlated outcomes in both the {|0〉 , |1〉} and {|+〉 , |−〉} measurement bases

and anticorrelated outcomes in the {|L〉 , |R〉} basis. This is a highly non-classical phenomena,

with no direct classical analogue. An imperfect but illustrative analogy is the following: consider

being dealt two cards face down from a standard deck by a magician who guarantees that both

cards will always agree on suit and number, regardless of which property you decide to check.

Such a trick is impossible to do classically, as two cards of the same suit cannot share the same

number, and vice versa. However, in the quantum case, if two entangled cards are dealt in a

correlated superposition of suit and number, such a paradox can be achieved.

More generally, a quantum state is entangled if and only if it cannot be written as the tensor

product of more than one state. For example, for the aforementioned Bell state, we observe

that if |Φ+〉 = |ψ〉 |φ〉, then

1√
2

(|00〉+ |11〉) = (α |0〉+ β |1〉)⊗ (γ |0〉+ δ |1〉)

= αγ |00〉+ αδ |01〉+ βγ |10〉+ βδ |11〉 (1.52)

⇒ αδ = βγ = 0 and αγ = βδ =
1√
2

(1.53)

It is easy to see that both statements in Equation 1.53 cannot be simultaneously satisfied, and

hence |Φ+〉 6= |ψ〉 |φ〉 by contradiction.

From the above argument, it follows that entangled states cannot be precisely defined by

the states of their constituent components, but rather must be defined as a collective state over

all components. To see this, consider separating the qubits of |Φ+〉 to two different observers,

Alice and Bob, who are both unaware that they each hold one half of a Bell pair. Alice and

12



1.1. QUANTUM COMPUTATION

Bob are now individually tasked with establishing the state of their qubit given infinite copies

Individually, the outcomes Alice and Bob each find from measurements in any Pauli basis occur

randomly and with equal probability. Unaware of the other’s existence, both Alice and Bob

can only logically conclude that their measurement outcomes are indistinguishable from those

produced by a random bit generator, or equivalently, their state is an equally-weighted classical

mixture of |0〉 and |1〉.
Classical mixtures of states such as these cannot be represented in state vector picture,

and instead must be represented by mixed states. Mixed states are represented by density

operators, where the classical mixture of a set of arbitrary pure states {|ψi〉}, each occurring

with probability pi is defined by the density operator

ρ =
∑
i

pi |ψi〉〈ψi| , (1.54)

where
∑

i pi = 1. All the operations we have so far seen applied to pure states have equivalent

representations in the mixed state picture. For example, unitary evolution of density operators

is given by

ρ
U−→ UρU †. (1.55)

After measurement of some observable A =
∑

i λiPi yielding outcome i the post-measurement

density operator is given by
PiρPi

Tr (Piρ)
, (1.56)

where Tr (A) =
∑

i 〈i|A|i〉 for an orthonormal basis {|i〉} and is known as the trace function

The expectation value of A on state ρ is given by

〈A〉ρ = Tr (Aρ) . (1.57)

More generally, a density operator is any positive operator that has unit trace, such that

〈ψ|ρ|ψ〉 > 0 ∀ |ψ〉 and Tr (ρ) = 1. (1.58)

A useful consequence of these conditions is that density operators representing mixtures of

non-orthogonal states can always be spectrally decomposed into mixtures of orthogonal states,

that is, any mixture of non-orthogonal states is indistinguishable from some other mixture of

orthogonal states. Single-qubit density operators can be written in the form

ρ =
1

2
(I + r · σ) (1.59)

where r is a real 3D vector where ‖r‖ ≤ 1, known as the Bloch vector. As such, density matrices

can be represented as vectors on the Bloch sphere, where pure states lie on surface and mixed

states within the state’s interior. It follows that r = (0, 0, 0) represents the state ρ = I
2 which is

maximally mixed for all qubit bases, thereby yielding random, equally weighted measurement

13
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Figure 1.2: Quantum circuit model components.

results in all bases. As in the state vector case, composite density operators are composed by

tensor product, e.g. ρ12 = ρ1 ⊗ ρ2. If ρ = |ψ〉〈ψ| represents a pure state, then ρ2 = ρ; similarly

Tr
(
ρ2
)
≤ 1 with equality if and only if ρ is pure.

An important application of density matrices is in the calculation of reduced states, used

to describe the subsystems of composite quantum states. Consider an arbitrary state ρAB

shared between Alice (A) and Bob (B). The local states held individually by Alice and Bob are

referred to as reduced states and are represented by the reduced density operators ρA and ρB

respectively, and are given by the equation

ρA = TrB (ρAB) , (1.60)

where TrB (·) is the partial trace operator over system B, such that

TrB (ρ) =
∑
i

B〈i| ρ |i〉B , (1.61)

where {|i〉B} is an orthonormal basis for subsystem B. For example, in the previous Bell state

example, we can see that for ρAB = |Φ+〉〈Φ+|AB, then

TrB (ρAB) = B〈0| ρAB |0〉B + B〈1| ρAB |1〉B
=

1

2
(|0〉〈0|A + |1〉〈1|A) =

IA
2

(1.62)

where |i〉〈i|A ≡ |i〉A ⊗ 〈i|A, and similarly TrA (ρAB) = IB/2, and hence as previously noted,

Alice and Bob individually hold a state which is locally indistinguishable from the completely

classical maximally mixed state.

An important use of entanglement is for quantum teleportation [21]. Consider the state

|ψ〉 |Φ+〉 where |ψ〉 = α |0〉+ β |1〉

|ψ〉
∣∣Φ+

〉
=

1√
2

(α |000〉+ α |011〉+ β |100〉+ β |111〉) (1.63)
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By noting that

|00〉 =
1√
2

(
∣∣Φ+

〉
+
∣∣Φ−〉), |01〉 =

1√
2

(
∣∣Ψ+

〉
+
∣∣Ψ−〉),

|10〉 =
1√
2

(
∣∣Ψ+

〉
−
∣∣Ψ−〉), |11〉 =

1√
2

(
∣∣Φ+

〉
−
∣∣Φ−〉), (1.64)

then |ψ〉1 |Φ+〉23 can be rewritten in the Bell basis on qubits 1 and 2, such that

|ψ〉1
∣∣Φ+

〉
23

=
1

2

[ ∣∣Φ+
〉

12
(α |0〉3 + β |1〉3) +

∣∣Φ−〉
12

(α |0〉3 − β |1〉3) +∣∣Ψ+
〉

12
(β |0〉3 + α |1〉3) +

∣∣Ψ−〉
12

(β |0〉3 − α |1〉3)
]
. (1.65)

Performing a Bell basis measurement on qubits 1 and 2 is equivalent to applying H1CNOT12

followed by two computational basis state measurements. After H1CNOT12 we observe that

H1CNOT12 |ψ〉1
∣∣Φ+

〉
23

=
1

2

[
|00〉12 (α |0〉3 + β |1〉3) + |10〉12 (α |0〉3 − β |1〉3) +

|01〉12 (β |0〉3 + α |1〉3) + |11〉12 (β |0〉3 − α |1〉3)
]

=
1

2

∑
i,j∈{0,1}

|ij〉12X
j
3Z

i
3(α |0〉3 + β |1〉3) (1.66)

Hence, we can see measurement of qubits 1 and 2 in the computational basis yielding outcomes

i and j produces a state which is locally equivalent to the original state up to the known

operator XiZi. Applying the necessary correction thereby completes the protocol, achieving

deterministic teleportation of |ψ〉 from qubit 1 to 3.

1.1.6 Quantum circuits

A convenient way to depict quantum computing protocols and algorithms is through the

quantum circuit model. As in the classical circuit model of computation, the quantum circuit

model represents qubits as quantum information-carrying wires, who’s local evolution and

interaction is mediated by discrete gates, as depicted in Figure 1.2. Quantum circuits often

include classical control wires, thereby allowing complex algorithms and architectural processes

to be depicted in a formulaic and intuitive way. For example, the circuit for the quantum

teleportation protocol described in the previous section is depicted in Figure 1.3.

1.1.7 Universal quantum computation

As we have already noted, arbitrary single-qubit quantum operations can be approximated using

only a small, finite set of gates, such as {H,T}, known as a universal gate set for single-qubit

rotations. For two qubits, a universal two-qubit gate set is produced by including any two-qubit

entangling gate with the aforementioned single-qubit gates. In fact, it can be shown that if

arbitrary two-qubit gates can be performed between qubits, then such a gate set is sufficient
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Figure 1.3: Quantum circuit for teleportation.

for efficient approximation of arbitrary operations on any number of qubits, or for universal

quantum computation [18, 22]. The most common universal gate set is {H,T,CNOT}, although

many equivalent choices exist, such as the {H,S,CNOT,CCNOT}, where CCNOT is also

known as the Toffoli gate2.

Having outlined the theoretical necessities for universal quantum computation, we now

consider the experimental necessities. Historically, the requirements for quantum computation

have centred around DiVincenso’s infamous criteria [23]. Published at the turn of the century,

The Physical Implementation of Quantum Computation outlines five desiderata for quantum

computation:

i) “A scalable physical system with well characterized qubits.”

ii) “The ability to initialize the state of the qubits to a simple fiducial state.”

iii) “Long relevant decoherence times, much longer than the gate operation time.”

iv) “A universal set of quantum gates.”

v) “A qubit-specific measurement capability.”

From an architectural perspective, the most challenging of these are iii) and iv), as they

represent a fundamental dichotomy between theoretical and experimental quantum computation.

In order to achieve long decoherence times, or equivalently, low-error quantum gates, a quantum

computation must be fault-tolerant, usually achieved by applying quantum error correction

(QEC). Here, fault tolerance refers to a computational architecture in which a logical error

caused by one faulty component is not multiplied by later operations to produce multiple

logical errors across the larger quantum computation [18]. Without QEC, quantum computers

suffer from the same problems as analogue computation, where a build-up of many small,

undetectable errors irrevocably corrupts the computation over time. To prevent this, QEC

encodes the desired quantum state in a larger system of entangled qubits to produce a logical

2 A Toffoli gate applies a bit flip to the target qubit contingent on both controls being equal to one, and
hence is a doubly-controlled NOT or CCNOT gate.
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Table 1.1: Resource requirements for supra-classical quantum computation. Based on state-
of-the-art methods for magic-state distillation, the table depicts resource requirements for
performing Shor’s algorithm to factor an N -bit number, for N = 1000, 2000, and 4000. Here
space-time overhead describes the space-time volume of qubits required to distill each Toffoli
magic state, and pg, tmeas/ff, and tsc denote the physical gate error rate, time for a round of
measurement and feedforward and the time taken for a round of error correction respectively.
Table reproduced without adaptation from Ref. [27] under the CC BY 4.0 license.

qubit. One important element of fault-tolerance is the ability to perform logically encoded qubit

gates by a sequence of physical gates that do not multiply or propagate any errors already

present in the system. An encoded logical operator which achieves this is known as transversal.

However, a fundamental result in quantum computation, known as Eastin-Knill theorem, states

that no QEC code can simultaneously support a universal and transversal gate set [24]. To

overcome this, techniques such as magic state distillation [25] or the concatenation of multiple

codes [26] must be used (see Chapter 2 for further discussion). Ironically, we therefore find that

the protocols needed to achieve iii) fundamentally prohibit iv) from being straightforwardly

achieved.

For modern-day quantum computation architectures, this dichotomy represents the two

central challenges preventing the realisation of large-scale devices, that is the reduction of

physical errors and the implementation of a logical error-corrected universal gate set. Without

a reduction in physical errors, resource requirements for QEC are prohibitively large, and

similarly, without efficiently-implementable error-corrected universal gates, physical error rates

must be made improbably small. Therefore, both challenges must be addressed in tandem

for quantum computation to be realised. As an example for the scale of the challenge faced

by any quantum computation’s architecture, Table 1.1 provides requirements for a quantum

computer to perform a selection of supra-classical computations of varying difficulties. Given

that the model used to generated these estimates represents a highly-idealised device, such

results provide a stark motivation towards addressing the aforementioned challenges.
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1.2 A brief history of LOQC architectures

To contextualise the full description of a modern LOQC architecture provided in Chapter 2, we

now provide a brief history of LOQC architecture development. The following draws from the

works of Kok, et. al. [28] and Gimeno-Segovia [16].

1.2.1 Early photonic architectures

Following the discoveries described in the previous Section, the 1990’s saw a great increase

in the study of scalable architectures for quantum computation. Specifically, widespread

research was conducted into which quanta could efficiently simulate known theoretical models

of quantum computation. For many physical systems, such as those of two-level spin states,

their characterisation as systems of evolving and interacting qubits could be straightforwardly

derived, and the circuit model almost directly implemented via the Hamiltonians of known

interactions. For photons, it was shown early on that a single photon input to an optical circuit

composed of only linear phase shifters and polarising beamsplitters was sufficient to simulate

an arbitrary quantum computation [29]. However, because such interferometers were defined

over an exponential number of optical modes, this proposal and others—such as schemes for

factoring numbers and performing Fourier transforms [30–32]—ultimately provided inefficient

and non-scalable LOQC architectures.

In light of such results, many believed that interferometers containing linear optical com-

ponents alone would not be sufficient for scalable photonic quantum computation. Because of

this, much interest was given to the study of photonics architectures based on nonlinear optical

interactions [33–38]. In most cases, such architectures leveraged the nonlinear optical phase shift

of a Kerr medium or an atomic cavity to mediate the photon-photon interaction not present

in the interference patterns of linear optics, thereby allowing conditional phase gates to be

theoretically constructed. However, in practice, naturally-occurring Kerr nonlinearities are far

too weak [39], such that incredibly long interaction lengths would be required to produce a suf-

ficient effect. Similarly, the low probability of light-matter coupling interactions in atom-cavity

systems and the challenge of cross-platform integration also prohibits their straightforward use

in otherwise all-photonic schemes. Furthermore, even if such systems could be engineered, it is

likely that the photon loss rates associated with extended interaction lengths would be equally

prohibitive in any large-scale architecture.

1.2.2 The KLM scheme and teleportation-based LOQC

However, despite an initially pessimistic outlook for LOQC, in 2000 Knill, Laflamme and

Milburn showed that quantum computation could in fact be efficiently simulated using linear

optics with only a polynomial overhead of resources [40]. Their construction, now known as

the KLM scheme, focussed around the use of a postselected nonlinear sign or NS gate, which
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allowed a conditional phase gate to be implemented on two path-encoded photonic qubits with

probability p = 1
16 = 6.25%. To increase the probability of two-qubit gates, success rates are

then boosted through the consumption of additional ancillary states in complicated teleportation

circuits which could be produced and stored offline, i.e. prior to the desired computation. For

example, they showed that the success of a conditional phase gate could be boosted to p = 1
4

by the consumption of a single photonic Bell pair state. Finally, to achieve near-deterministic

gates, quantum error correction repetition codes were leveraged to prevent the potentially

catastrophic effect of gate failure on the remaining computational state.

Although such a discovery represented a landmark achievement in the field of LOQC, it

was clear the requirements of such a scheme were still vastly beyond near- or even far-future

experimental implementations of optical circuits, for example, requiring ≈ 6.014×106 Bell pairs

to passed through tens of thousands of ideal optical elements and per logical entangling CZ gate

[16]. While some variants to KLM’s initial scheme were proposed [41, 42], the next big reduction

in resource requirements was introduced by Yoran and Reznik’s “entanglement chain” protocol

[43], which relied on so-called hyperentangled path-polarisation photon states to circumvent

some of the entangling gates required by the KLM scheme. Using networks of long entangled

chains of these states, it was shown that the desired circuit-model operation could be performed

via teleportation of a logical state across many physical photonic states. It was also shown that

CZ gates operating with p > 1
2 were sufficient to construct the needed hyperentangled states,

thereby reducing the number of Bell pairs needed by an order of magnitude to ≈ 2.9× 105 per

logical CZ gate [16].

1.2.3 Cluster states, fusion gates and measurement-based quantum

computation

The initial concept of performing quantum computation via teleportation across some large pre-

prepared entangled state was generalised by Nielsen’s so-called cluster-state scheme [44]. This

protocol used KLM’s CZ gates boosted to probability p = 2
3 to grow large grid-like entangled

networks of path-encoded photonic states on which measurement-based quantum computation or

MBQC can be performed (as discussed in greater detail in Chapter 2). Importantly, on failure

of an entangling gate, Nielsen’s construction scheme removes only a single qubit from the larger

state, thereby allowing larger states to be more efficiently constructed. Such improvements

reduced the number of Bell pairs consumed per logical CZ to ≈ 1.075× 104.

In 2005, the construction of such large-scale photonic cluster states was subsequently

improved through the introduction of Browne and Rudolph’s entangling fusion gates [45].

Importantly, fusion gates provided not only significant reductions in the theoretical resource

requirements, but also relaxed experimental constraints. Firstly, by replacing the Mach-Zehnder-

type photon interference used in previous CZ gates with simpler Hong-Ou-Mandel interference

[46], fusion gates reduced the necessary phase stability of interferometers used for photonic
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entangling operations. Secondly, some variants of their proposal do not require photon number-

resolving detectors, significantly reducing constraints on the detector types applicable to the

scheme. Thirdly, photon loss events could be heralded by fusion gates, therefore reducing

potentially catastrophic errors that would otherwise be propagated into the latter stages of

computation. Finally, through the use of redundantly-encoded qubits composed of entangled

photon pairs, the destructive effect of failed entangling gates was also significantly reduced.

Through these improvements this scheme further reduced the number of Bell pairs per logical

CZ gate to only ≈ 52, hence providing greater than four orders of magnitude reduction in

resource requirements when compared to KLM’s original scheme.

1.2.4 Ballistic percolation-based architectures

The first elements of what we would consider a modern LOQC architecture came with the

introduction of percolation theory to reduce the penalty imposed by probabilistic gates. One

major problem presented by previous schemes was that gate failures were addressed by repeat-

until-success construction strategies, in which the number of entangled operations on any given

qubit is potentially unbounded. Given that such repetitions would require large, complex optical

switching networks to repeatedly reroute successful events to further entangling gates, the

degree of photon loss in such schemes would be prohibitively large. However, these issues were

avoided in Kieling, Rudolph, and Eisert’s percolation construction scheme [47], which describes

a regular lattice of small entangled resource states which are probabilistically entangled to

neighbouring states in the lattice. In such a scheme, percolation theory can be applied to show

that long-range entanglement is generated when the probability of successful entanglement p

exceeds some critical threshold value pc, above which an ideal MBQC resource state can be

deterministically extracted via block renormalisation processes [48–50]. Perhaps surprisingly,

the authors found such a scheme’s resource overhead scales only sub-logarithmically when

compared to using deterministic entangling gates, and furthermore that a heralded photon loss

rate of up to 10% could be to accommodated.

However, one significant drawback of the original percolation-based architectures was the

requirement for on-demand sources of n-qubit GHZ states for n = 5, 7, etc., which are not easily

produced by linear optical circuits. This requirement was subsequently reduced to sources of

3-qubit entangled states by the work of Gimeno-Segovia, et. al. [15], in which it was shown

that p = 3
4 boosted fusion of 3-GHZ states was sufficient to produce the large-scale entangled

states necessary for LOQC. Further proposals from Gimeno-Segovia, et. al. also considered

the multiplexing requirements for deterministic generation of such states [16, 51], thereby

completing the first truly modern blueprint of an LOQC architecture from photon source to

logical qubit. Importantly, such a scheme entirely avoids the need for costly repeat-until-success

strategies (which have been since shown to be practically infeasible [52]), presenting an entirely

ballistic architecture for LOQC in which photons interact a fixed number of approximately
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Figure 1.4: LOQC device mock-up. The chip’s colours from left to right denote the different
optical processes involved. First, generation of photon-pairs (magenta), where some input pump
beam is diverted by optical splitters (i) to a series of SFWM sources, such as spiralled waveguide
(ii) or ring-resonator (iii) sources. Second, pump removal (yellow) by Bragg refraction (iv)
or CROW-based (v) filters and wavelength-division multiplexing by asymmetric MZI (vi) or
ring resonator (vii) filters. Third, active and passive optical components (green), including
thin-film thermal phase shifters (viii), waveguide couplers (ix), and waveguide crossings (x).
Next, detectors (cyan), such as superconducting nanowire single-photon detectors (xi). Finally,
optical and electrical output (blue), including chip-to-fibre grating couplers and classical control
and feed-forward electronics. Image reproduced with permissions from [54], copyright 2016
IEEE.

O(10) active optical elements.

Due to the recent advances of this novel architecture, sometimes referred to as QNIX

[16], the realisation of an experimentally-viable LOQC architecture is now tantalisingly close.

From this point forward, one significant area for improvement in LOQC architectures is in

the integration of realistic experimental errors. For example, at present there is no known

way to address unheralded photon loss within a percolated architecture. Following the above

exciting history of LOQC architecture development, addressing challenges such as these forms

the central motivation of this thesis, with the ultimate hope that their solutions advance us

another small step closer to a more realistic and realisable LOQC architecture.

1.3 Integrated quantum photonics

Although this thesis is primarily concerned with developments in the theoretical architecture

of an LOQC device, a holistic understanding of its experimental implementation is crucial

nevertheless. As such, here we overview the technological foundations of a modern LOQC

proposal based on integrated silicon-photonics, and defer the description of theoretical photonic

quantum computation to Chapter 2. As a visual aide, Figure 1.4 depicts a mock-up of LOQC

device. For more detailed descriptions of the integrated silicon-photonic platform the reader is

directed to Refs. [53–55].
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1.3.1 Waveguides

Prior to the manipulation of light it must first be confined, which achieved using waveguides. A

waveguide is a structure that—yes, you guessed it—guides waves. This is achieved through the

exploitation of the total internal reflection of waves at the boundary between two media with

differing refractive indices. Optical waveguides are constructed using a core of high refractive

index material surrounded by a cladding material with low refractive index. In silicon photonics,

this core is silicon, but the cladding may be air, silica, a polymer or some other dielectric

material. In integrated silicon photonics strip waveguides are commonly used, consisting of

oblong strips of monocrystalline silicon surrounded by layer of silicon oxide, as depicted in

Figure 1.5a.

The state of light confined within a waveguide can be decomposed into a basis of orthogonal

optical modes. By reducing the dimensions of the strip’s cross section, fewer optical modes are

supported, such that below some size only a single optical mode is supported; such a structure

is known as a single-mode waveguide. Photon loss in waveguides occurs when the waveguide’s

supported mode is not completely confined, allowing it to become coupled with other optical

modes in the environment. Due to the atomic-level smoothness of monocrystalline silicon on the

top and bottom of the strip, the majority of loss in such waveguides is due to side wall surface

roughness [56, 57]. Waveguide loss can therefore be reduced by optimising mode profiles and

improved fabrication techniques that increase side-wall smoothness. Current state-of-the-art

waveguides can achieve loss rates as low as 0.3dB/cm [58–61].

For further details on waveguides, see Refs. [62, 63].

1.3.2 Photon sources

Firstly, we consider the task of producing single photons. Currently, the workhorse of photon

production in silicon is the nonlinear optical χ(3) process of spontaneous four-wave mixing

(SFWM). In SFWM, two degenerate input pump photons are elastically scattered, producing a

non-degenerate photon pair (with individual photons usually labelled signal and idler). When

such a material is excited by the coherent state of a laser pulse, the result is a two-mode

squeezed state describing the superposition over different numbers of SFWM pair emissions.

By only weakly exciting the nonlinear material, the emission of higher-order photon pairs is

suppressed and single-photon pair production dominates (see Section 2.3.1 for more detail).

This allows the source to approximate a probabilistic single-photon pair source in the weakly

pumped regime.

In a simple model of a lossless, weakly-pumped source the probability of pair production is

|ξ|2 ∝ γ2P 2L2, (1.67)

where γ is the material’s nonlinear effective coupling constant, P is the pump pulse’s peak

power, L the interaction length, and ξ is known as the squeezing parameter [64]. Since γ is
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Figure 1.5: Integrated silicon photonic components. a) Strip waveguide cross-section with optical
mode profile overlay [53]. b) One-to-two optical mode splitter. c) & d) Spiral waveguide [66]
and ring resonator SFWM single-photon pair sources. e) & f) Bragg reflector [67] and coupled
resonator optical waveguide (CROW) [68] pump-removal filters. g) & h) Asymmetric MZI
and ring resonator [69] wavelength division multiplexers. i) & j) Directional and multi-mode
interference (MMI) coupler [54] used for mediating photon interference. k) Waveguide crossing
[70]. l) Spiral waveguide delay line [70]. m) Microelectromechanical system (MEMS) switch
for optical rerouting [71]. n) Superconducting nanowire single photon detector (SNSPD) [72].
o) Chip-to-fibre grating coupler [73]. Images reproduced with adaptations under CC BY 4.0
licenses.

fixed by the material and P limited in the weakly pumped regime, modern sources usually seek

to maximise L. For example, the simplest photon source is the spiral waveguide, depicted in

Figure 1.5c, consisting of a long, spiralled track of silicon strip waveguide. Another approach to

increasing pair production probabilities is by coupling with optical cavities, which have the

effect of increasing interaction length L. For example, one popular choice of optical cavity is

the ring resonator [65], as depicted in Figure 1.5d. Cavity sources also have a number of other

useful properties, such as reduced device footprint and well-defined, spectrally separable signal

and idler emission spectra [54].

After pair production, the remaining pump is removed by a series of optical filters. This
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is usually achieved using corrugated-waveguide Bragg reflectors or coupled-resonator optical

waveguide (CROW) filters, depicted in Figures 1.5e and 1.5f respectively. It has been shown that

CROW-based filters can achieve incredible pump suppression, reaching up to 100 dB [68]. After

pump removal, the remaining non-degenerate photon pairs are then split by wavelength-division

multiplexers (WDM) in the form of asymmetric Mach-Zehnder Interferometers (MZI) or ring

resonators, depicted in Figure 1.5g and 1.5h respectively. Demultiplexing photon pairs allows

the measurement of one photon to herald the existence of the other, thereby providing the basis

of a heralded single-photon source. However, because SFWM pair emission is probabilistic, extra

work must be done to produce a deterministic single-photon source, as discussed in Section

2.3.1.

1.3.3 Linear optical components

Once single photons are produced, they can then be used to create photonic qubits. As will be

shown in Section 2.3.2, evolving photonic qubit states can be achieved by simple MZI circuits

consisting of only integrated beamsplitters and phase shifters.

In integrated silicon photonics, beamsplitters can be passively implemented using either

directional or multi-mode interference (MMI) couplers. In a directional coupler, depicted in

Figure 1.5i, two waveguides are brought into close proximity such that the evanescent fields

of each waveguide mode overlap, creating a coupling between them. By tuning the distance

between waveguides and the length over which they are adjacent, one can implement an arbitrary

beamsplitter operation between the optical modes. In a MMI coupler, depicted in Figure 1.5j,

two modes are coupled into a single silicon block supporting multiple modes. Within the MMI

complex interference patterns emerge as a function of the MMI’s shape and length, however, by

careful design, the interference pattern at the MMI’s output modes can be arbitrary chosen to

implement the desired beamsplitter operation between modes. Other important passive optical

components are waveguide crossings and optical delay lines, depicted in Figures 1.5k and 1.5l

respectively, both of which are straightforward optical structures and so have low loss.

Active components play two key roles in integrated photonics. Firstly, thermo-optic phase

modulators (TOPMs) are used to impart phase shifts on waveguides’ optical modes. In a

TOPM, a resistive thin-film is fabricated on top of the oxide layer directly above a waveguide,

such that when a current is passed through the film it heats the waveguide, raising its effective

refractive index and therefore increasing the optical path length of any mode passing through

it. This difference in path length imparts a relative optical phase difference between a photon

passing through the heated mode and another in an unheated waveguide, hence imparting

a (relative) phase shift between the modes. In combination with the directional couplers or

MMIs, TOPMs can be used to construct reconfigurable MZIs that enable arbitrary linear

transformations between optical modes, which we shall see in Section 2.3.2 can be used to

perform arbitrary single-qubit unitaries. In general, TOPMs are simple, robust and very low loss
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components, however, its effect is temperature dependant, disappearing at low temperatures.

As such investigating low-temperature phase modulators is an active area of current research.

Secondly, actively-controlled optical switches are a necessary component of any LOQC

device. Given that TOPMs can implement arbitrary linear mode transformations, they can

provide accurate, low-loss switches [74]. There are also a number of other promising optical

switches proposed for an integrated silicon photonics platform, such all-optical modulators

based on carrier-injection [75] or nonlinear optical loop mirror (NOLM) systems [76], although

such devices have yet to be integrated into LOQC devices. Another interesting prospect is the

use of microelectromechanical system (MEMS) switches, depicted in Figure 1.5m, that leverage

piezoelectric effects to mediate the coupling between a cantilevered and strip waveguide. If large

switching networks are ultimately required in an LOQC device, then recent demonstrations of

large MEMS switch arrays provide a promising option if asymmetric loss rates can be sufficiently

reduced [71].

For further discussion of linear optical components for LOQC, see Refs. [54, 55].

1.3.4 Detectors

As we shall see in Section 2.3.3, current proposals for LOQC rely on the assumption of high-

efficiency number-resolving photon detectors (NRPDs). To achieve this there are two main

options of detector architecture available to an LOQC device.

The first option is to use true photon number resolving detectors such as superconducting

transition-edge sensors (TESs). TESs are extremely sensitive calorimetric devices operated at

the cusp of the superconducting transition that can detect extremely small amounts of absorbed

energy through an ultra-sensitive temperature-resistance dependance. Recent demonstrations on

integrated silica-on-silicon waveguides at 1550 nm have shown individual sensors with efficiencies

of up to 40%, which can be further increased up to 80% when multiplexed [77]. Furthermore,

individual fibre-based TESs have achieved efficiencies of up to 95% at 1550 nm when embedded

within a cavity structure, able to detect up to 8 photons clearly [78]; this provides an optimistic

outlook for future development in integrated TESs. In addition to number resolution and high

efficiency, one key advantage of TESs is that they have negligible dark counts, i.e. false-positive

photon detection events. However, TESs typically also have low temporal resolution with large

time readout errors, known as jitter, of about 100 ns, as well as long detector reset times of

about 1 µs [79] (although the latter may be improved to 100 ns at the cost of faster readout

electronics [80]). Also, TESs operate at temperatures around 100 mK, therefore requiring

advanced cooling technology.

The second option is to use non-number-resolving detectors in a multiplexed scheme, known

as a fanout detector architecture. This principle relies on dividing many-photon states into

a series of spatially [81] or temporally [82] separated single-photons using the anti-bunching

of multi-photon states on a beamsplitter. Theoretically, by cascading of beamsplitters to a

25



CHAPTER 1. INTRODUCTION

sufficiently large detector array, the probability of two photons impinging on a single detector

becomes vanishingly small. However, such a scheme requires highly-efficient detectors, as the

probability of correctly detecting an n-photon state using a fanout composed of individual

detectors with efficiency η is ηn.

Currently, the most promising candidate detectors for a fanout architecture is the super-

conducting nanowire single-photon detector (SNSPD), depicted in Figure 1.5n. In an SNSPD,

an ultra-thin photoreceptive niobium nitride wire is etched on top of a waveguide and is

biased just below its critical current (the point at which the wire becomes resistive), such that

when a photon interacts with the wire a resistive hotspot is formed that can be detected as a

voltage pulse [83, 84]. State-of-the-art SNSPDs operating at 1550 nm have been shown to have

high efficiencies (up to 93%), low dark count rates (103 c.p.s), low jitter (150 ps), fast reset

times (40 ns) and operate in a temperature range of 1–4 K [85]. Furthermore, the scope for

future improvements in SNSPD technology is large, such as through cavity integration [86] and

better fabrication consistency in large-area SNSPDs [87]. Because of these factors, SNSPDs are

currently applied in many optical quantum technologies and so are a likely candidate for use in

a fanout detector scheme within an LOQC device.

For further discussion of single-photon detectors, see Ref. [79].

1.3.5 Putting it all together and turning it on

Finally, we consider the highly non-trivial task of combining all the above components to

produce a single large-scale LOQC device. There are many many physical and engineering

factors to be considered before combining the above technologies in a unified platform, and a full

discussion of which is well beyond the scope of this work (and more pertinently, the expertise of

the author). However, there are a number of high-level questions regarding the full integration of

components within existing VLSI (very-large scale integration) process frameworks, a selection

of which we address here.

Firstly, the degree of component integration must be addressed. At the very least, single-

photon generation and subsequent linear optical circuitry must be performed on a single

integrated silicon photonics chip. Also, given the high degree of loss associated with coupling

photons off-chip to optical fibres, it is highly likely that photon detectors will also need to be

integrated to achieve necessary detection efficiencies. In the case of superconducting detectors,

this will require significant cooling of the entire device. The effects of such cooling on phenomena

which has almost exclusively been studied at room-temperature is largely unknown. Next, the

question of classical control integration is also a significant consideration. While integration of

electronic CMOS control circuits is important for reducing the need for lengthy optical delay

lines, this must also be achieved without a detrimental effect to underlying optical components.

Here, there are two options: either control circuits are directly integrated onto photonics chips

using CMOS fabrication techniques, or classical processing is performed off-chip on an external
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but proximate device, such as in a bump-bonded flip-chip setup. If an LOQC device is to be

further miniaturised, it may be necessary for pump laser sources to be also integrated, although

this would likely require improved optical mode confinement and additional filtering compared

to the off-chip case. Finally, we note that in the case that there exists some hitherto unknown

hard limit on the degree of integration or the device size, then chip-to-chip interconnects have

been demonstrated [88] and so may provide a viable alternative to a monolithic device if off-chip

couplers, depicted in Figure 1.5o, can be sufficiently improved.

Secondly, unless fabrication techniques can be significantly improved, device characterisation

and correction will be an important and non-trivial factor for a large-scale LOQC device. For

example, since they occur on fixed components, uncorrected systematic and/or stochastic

fabrication errors on passive devices can have a catastrophic cumulative effect on device

performance. It is therefore likely that at least near-future LOQC devices will have a substantial

amount of auxiliary optical circuits for in-device characterisation that will allow for errors

to be corrected by active components. For example, detectable errors in the reflectivity of

beamsplitter components may be accommodated by compensatory tuning of active phase

shifters. Furthermore, while a certain degree of uncorrected stochastic error may be tolerated

by quantum error correction (see Section 2.4.2), space-like or time-like correlated errors are

particularly detrimental to fault-tolerant thresholds [89]. It is therefore imperative that any

such sources of correlated errors can be identified, characterised, and (ideally) removed, or at

least considered within the quantum error correction code.

Finally, there remains the meta-challenge of how to locally optimise each and every compo-

nent in a way which is consistent with every other. Like the proverbial chain, each aforementioned

link in LOQC’s physical architecture must hold strong for the overall device to stand any

chance of working. Currently, the majority of researchers (literally and metaphorically) forge

each link in separate, specialised foundries that allow local parameters to be freely optimised

to maximise the performance of a specific component. However, reproducing these hard-won

gains within a unified fabrication process under global parameter choices will be a significant

theoretical and experimental challenge, requiring substantial amount of simulation as well as

practical trial-and-error. As such, one of the implicit goals of this thesis is to advocate for an

increasingly holistic approach to LOQC architecture design in which local component-level

decisions are made with global device-level consequences in mind. If this can be achieved I

believe that LOQC stands a significant chance of realising a device that allows us to finally

experience what we now merely understand.
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2
A modern LOQC architecture

We now present a theoretical overview of a modern architecture for linear optical quantum

computation. The aim of this chapter is to provide a complete, top-to-bottom description of the

theoretical LOQC architecture as it publicly exists today. The explicit audience of this chapter

is two-fold. Firstly, it is written in order to provide a holistic blueprint for future generations of

researchers engaged in the theoretical study of LOQC, so that it can be understood how a series

of individual component processes are interfaced to produce the overall device. Secondly, it is

provided as an accessible overview of the architecture for those engaged in the experimental

development of LOQC, so that they may understand how machine-level design choices and

optimisations may be percolated through an architecture to affect logical-level processes. As

such, the chapter is written so that it may be easily understandable to those experimentalists

without a heavily theoretical background, yet contains sufficient details and references to the

original literature for theorists who may benefit from these.

We begin the chapter by overviewing the key challenges that distinguish the LOQC architec-

ture from that of others, providing an underlying motivation and conceptual framework for the

presented architecture. In Section 2.2, we then introduce necessary theoretical background on

the topics of measurement-based quantum computation (MBQC), graph states, and quantum

photonics. In Section 2.3 our description of an LOQC device begins with the low-level architec-

ture, considering how universal resource states for quantum computation can be constructed

from probabilistic photon sources, linear optical components, photon detectors, and classical

feed-forward circuits. Next, in Section 2.4 we consider the high-level architecture, describing

how fault-tolerant and error-corrected quantum computation can be performed on a universal

photonic resource state using only changes in measurement bases and classical post-processing.

Finally, in Section 2.5 we conclude the chapter with a discussion of the open questions and

problems of an LOQC architecture and provide a selection of areas for future improvement.
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2.1 Introduction to a modern LOQC architecture

To provide a conceptual background, we now consider the fundamental challenges faced in

an LOQC architecture, as well as how they may be averted by use of a measurement-based

approach to quantum computation.

2.1.1 Challenges in an LOQC architecture

Linear optical quantum computation is unlike most implementations of quantum computation.

As described in the previous section, conventional models of quantum computation envisaged

qubits and gates as described by the quantum circuit model. This model implicitly relies on

static, isolated qubits that are kept alive for most (or even all) of the computation, during

which they are repeatedly interacted with to produce quantum superposition, entanglement and

to perform measurements. With photons there are three key issues in replicating this model.

Firstly, photons are not static qubits. Once created, photons cannot be easily confined to a

single spatial location, and instead are transmitted through optical media and the components

of any desired interaction. Unlike a static qubit, where the qubit remains static while the

interaction is applied dynamically to it, in LOQC the interactive media remains static as the

photon dynamically propagates through it. This demands a fundamentally different control

architecture, preventing the use of a single control mechanism which can repeatedly act on one

or more qubits, but rather requiring sequences of physically separate controls on a single device

per qubit.

Secondly, in linear optics photons are non-interacting bosons. This presents both a cost and

benefit to an LOQC architecture. On the one hand, a photonic qubit confined in a passive optical

fibre suffers practically no decoherence. Unlike a solid-state qubit, photonic qubit states do not

decay into some ground state, and so have the potential for high stability when well confined.

However, non-interaction also means that two photonic qubits cannot be directly entangled

and hence linear optical entangling gates are fundamentally probabilistic. Furthermore, in

all known entangling gates, photonic qubits that fail to become entangled are lost, thereby

preventing repeated entanglement attempts on a single qubit. This means that a photonic

quantum computer cannot rely on entanglement being produced during a quantum computation,

but must be produced prior to other quantum operations instead.

Finally, measurement of photonic qubits is usually achieved through absorption in a detector.

Unlike measurement in a solid-state architecture, this is a destructive process which consumes

the qubit, preventing its reuse later in the computation. In combination with an architecture

based on photons’ interaction with a series of fixed components (and which minimises the use of

lossy active components, such as optical switches), destructive measurements favour a ballistic

architecture in which the length of and interactions within each photon’s world-line—from

generation to measurement—is fixed.
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These constraints respectively demand an architecture in which: i) the times at which

photons may interact with active elements is fixed, ii) entanglement need not be generated

on-demand; and iii) qubits only exist for some fixed lifetime, after which they must be measured.

These requirements prevent an LOQC device from directly implementing quantum algorithms

as described by their quantum circuit, and instead motivates the use of a measurement-based

architecture.

2.1.2 Advantages of a measurement-based architecture for LOQC

The core conceptual difference between the circuit and measurement-based models of quantum

computation is the simple, yet profound difference between time-like and space-like single-qubit

channels. The equivalence between the two models can be intuitively understood by viewing

a single qubit evolving over (discretised) time as the teleportation of a state along a series of

time-like separated instances of the physical qubit. Within this picture, qubit measurement

and the fed-forward correction operators required for teleportation are implicitly performed by

nature.

In the measurement-based model of quantum computation, teleportation across time-like

separated instances of a single qubit is simply replaced with teleportation across a sequence

of space-like separated qubits. As such, in this new picture measurements and corrections

must be explicitly performed on each space-like qubit; it is these measurements to which the

name measurement-based refers. Now consider an arbitrary quantum computation on time-like

qubits, perhaps one in which the precise sequence of gates has yet to be determined. In the

measurement-based picture, the universal choice of which gates to apply between which qubits

at which times is be replaced by the production of some entangled array of space-like separated

qubits that provides a universal fabric or resource state for quantum computation.

At the physical level, a measurement-based architecture is therefore primarily concerned

with the construction of such a universal resource state, which is utilised from fast feed-forward

control circuits and high-efficiency measurements. Such an architecture provides a number of

advantages that make it more appropriate for LOQC than a circuit-based architecture.

Firstly, in measurement-based quantum computation (MBQC) each qubit only engages in

three predetermined and sequential interactions: entanglement, rotation, and measurement.

This leads to a significant reduction in the complexity of the architecture as qubit control may

be almost entirely fixed, replacing the need for any quantum gate to be performed on any qubit

at any time as in the circuit model. Furthermore, a fixed sequence of interactions through which

all qubits pass directly resembles the experimental implementation of optical circuits, thereby

providing a natural model for an LOQC architecture.

Secondly, in MBQC the production of a highly-entangled universal resource state can

precede the quantum computation, which can then be performed with only single qubit gates,

measurements and feed-forward. This division between the stages of the architecture engaged
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in the entanglement generation and the quantum computation itself allows the challenges

associated with generating entanglement between photonic qubits to be addressed separately.

If such entanglement generation can be achieved, this is equivalent to providing deterministic

entangling gates during the quantum computation. Crucially, this prevents the resource costs

of entanglement generation from being compounded with those of the quantum computation

itself, such as the mid-circuit failure of an entangling gate requiring parts of or even the whole

computation to be discarded.

Finally, an MBQC architecture does not require qubits with arbitrarily long lifetimes.

This allows for photonic qubits to exist for a known, predefined duration after which they are

measured. This also reduces the need for dynamic control, allowing photons to exist in predefined

circuits which implement a quantum computation simply by changes of local measurement-basis.

We can see that the above advantages of a measurement-based architecture directly address

the aforementioned challenges in an LOQC architecture. As such, since the advent of the

measurement-based paradigm, the main challenge in the field of LOQC architecture development

has been the efficient construction of an MBQC resource state. While probabilistic entangling

gates make this a non-trivial task, in the last decade it has been proved not an impossible one.

As with all architectures, once a substrate for quantum computation is achieved, quantum error

correction can then be applied for fault-tolerant quantum computation.

To distinguish the different processes involved, it is convenient to separate the LOQC

architecture into two levels: the low-level and high-level architecture. The low-level architecture

spans from the generation of single photons to the construction of a MBQC resource state.

This level primarily describes the control and manipulation of photonic quantum states and

hence concerns the engineering of physical devices. From here, the high-level architecture

spans from the post-processing of an MBQC resource state to the quantum error correction

needed for fault-tolerant quantum computation. Conversely to the low-level, these abstract

high-level process are implemented entirely though changes of measurement bases and the

classical co-processing of measurement results. As such the MBQC resource state acts as the

central keystone of the LOQC architecture, providing a clear divide between the architecture’s

physical and computational control processes. Before describing the modern LOQC architecture,

we now introduce measurement-based quantum computation in detail.

2.2 Measurement-based quantum computation

In order to represent a viable model of quantum computation, a measurement-based approach

(sometimes referred to as the one-way model) must be able to reproduce each element of a

quantum circuit, namely a qubit wire, a universal gate set, and projective measurements. The

following draws from the works of Nielsen & Chuang [18] and Kok & Lovett [90].
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2.2.1 Quantum teleportation

Let us initially consider the task of teleporting1 an arbitrary qubit state |Ψ〉 onto some

blank ancilla state |0〉. The teleportation protocol can be divided into three distinct steps:

entanglement, measurement, and correction, depicted below:

Entangle Measure Correct

|Ψ〉 • H • m

|0〉 H • Xm H |Ψ〉

Figure 2.1: A basic quantum teleportation circuit

First, the target state |Ψ〉 = α |0〉+ β |1〉 is entangled with the ancilla |+〉 state through the

two-qubit control-phase gate CZ = |00〉〈00|+ |01〉〈01|+ |10〉〈10| − |11〉〈11|

CZ |Ψ〉 |+〉 = CZ
1√
2

(α |00〉+ α |01〉+ β |10〉+ β |11〉) (2.1)

=
1√
2

(α |00〉+ α |01〉+ β |10〉 − β |11〉) (2.2)

=
1√
2

(
|+〉 (α |+〉+ β |−〉) + |−〉 (α |+〉 − β |−〉)

)
. (2.3)

Next, the first qubit is measured in the Pauli X basis {|+〉 , |−〉}, equivalent to applying a

Hadamard gate followed by a measurement in the computational (Pauli Z) basis {|0〉 , |1〉}. After

the measurement, the ancilla qubit is one of two states depending on the binary measurement

outcome m = 0, 1 (each occurring with equal probability 1
2), indicating the first qubit has been

projected onto the |+〉 or |−〉 eigenstate respectively such that the second qubit is in the state

∣∣Ψ′〉 =

α |+〉+ β |−〉 if m = 0

α |+〉 − β |−〉 if m = 1
(2.4)

Finally, to recover the original state, one of two correction operators is applied. In the

case of m = 0, the post-measurement state is H |Ψ〉 and the original state is recovered by

applying the correction operation H = |0〉〈+|+ |1〉〈−| since H2 = I. In the case of m = 1, the

post-measurement state is XH |Ψ〉 and the original state is recovered by applying the correction

operation HX = |0〉〈+| − |1〉〈−|. These cases are therefore encapsulated by the generalised

correction operator HXm = |0〉〈+|+ (−1)m |1〉〈−|, as depicted in Figure 2.1.

1 We note that technically the protocol introduced here is that of quantum state transfer rather than quantum
teleportation [91, 92]. These protocols are distinguished by the need for an entangling operation between two
parties (say Alice and Bob) in a state transfer protocol, whereas no such operation is needed in teleportation due
to the existence of an initial entangled resource state shared across both two parties, as depicted in Figure 1.3.
So, although the reader should note that protocols are technically different, for simplicity we shall not distinguish
them here.
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After correction the state |Ψ〉 has been successfully teleported from one qubit to another.

Note that even though the measurement outcomem is probabilistic, the initial state is transferred

deterministically. Given that no overall logical operation is performed on the target state by

the end of the protocol, this is logically equivalent to the identity operation. Hence, the circuit

described in Figure 2.1 provides a measurement-based analogue of the quantum circuit model’s

qubit wire, also known as a single-qubit channel.

2.2.2 Measurement-based qubit operations

We can also show that the above protocol can be used to enact qubit rotations on the target

state [91, 93]. Let us consider the task of teleporting the Z-rotated state UZ(α) |Ψ〉, where

UA(θ) = e−
iθA
2 and A is a Hermitian operator. By noting that [UZ(α),CZ] = 0, it is easy to see

that UZ(α) can be enacted on |Ψ〉 during measurement by a change of measurement basis to

M(α) = UZ(α)XUZ(−α):

|Ψ〉 • M(α) • m

|+〉 • Xm H UZ(α) |Ψ〉

Figure 2.2: A measurement-based Z-rotation

If correction is not applied, then the state XmHUZ(α) |Ψ〉 is produced. To enact an arbitrary

single qubit gate Un̂(θ) which performs a rotation about axis n̂ by angle θ, it can be shown [18]

that any unitary can be decomposed (up to a global phase) as

Un̂(θ) = UZ(γ)UX(β)UZ(α) (2.5)

= H ·HUZ(γ) ·HUZ(β) ·HUZ(α), (2.6)

where we have used the fact that HUX(β)H = UZ(β) and H2 = I. Cascading three uncorrected

measurement-based Z-rotations with outputs k, l,m ∈ {0, 1} produces the output state

|Ψout〉 = XmHUZ(γ)X lHUZ(β)XkHUZ(α) |Ψ〉 (2.7)

= XmZ lXk ·HUZ((−1)mγ) ·HUZ((−1)kβ) ·HUZ(α) |Ψ〉 . (2.8)

The desired Un̂(θ) is thereby achieved from the following circuit:
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|Ψ〉 • M(α) • • k

|+〉 • • M(±β) • • l

|+〉 • • M(±γ) • m

|+〉 • Xm Z l Xk H Un̂(θ) |Ψ〉

Figure 2.3: A measurement-based arbitrary qubit rotation

where measurement angles −β, −γ are chosen for k, l = 1 respectively. Each measurement basis

angle now depends on the previous measurement result, and the protocol is only completed

after a final round of corrections are applied. The process of requiring past measurements to

control future gates is commonly known as feed-forward. Similarly, the above circuit can be

simplified to the initial entanglement of the target state and some ancillae qubits, followed by

measurement and correction. In practise, the final Hadamard in Figure 2.3 can also be applied

using an additional teleportation step by measurement in the M(0) = X basis. Corrections can

therefore be reduced to a single gate from {I, X, Y, Z} (up to a global phase).

Whilst enacting single-qubit gates is relatively laborious in MBQC, entangling CZ operations

are more simply reproduced. If we consider two measurement-based qubit wires, represented by

two series of cascaded teleportation, then a CZ between them is simulated by an additional

CZ applied during resource state construction. Since [CZij ,CZkl] = 0 ∀ i, j, k, l the specific

construction order of the CZ gates is also irrelevant.

Finally, once the desired state has been teleported onto the last ancilla qubit and any

correction operators applied, the qubit can be measured as usual. Since arbitrary measurement

bases (including Bell state measurements) can be achieved by some quantum circuit followed by

computational basis measurements, we can assume that all final ancilla qubits are ultimately

measured in the Z basis.

Because corrective Pauli operations do not change states’ bases, intermediate correction

operators may be avoided by commutation with future gates and only considered during

post-processing. For Clifford gates H, CZ and S, commutation is achieved without changing

future measurement angles as

CZ12X1 = X1Z2CZ12, CZ12Z1 = Z1CZ12,

HX = ZH, HZ = XH,

SX = Y S, SZ = ZS, (2.9)

and commutation through future arbitrary single-qubit gates is achieved by simple measurement
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1

|+〉
2

|+〉
CZ

3

|+〉
CZ

4

|+〉
CZ

Figure 2.4: An example graph state. A graph state defined by graph G = (V,E) is produced
by applying a CZ gate for each edge in E on the set of |+〉 qubits representing vertices of V .
Note that because [CZij ,CZkl] = 0 ∀ i, j, k, l the particular order in which CZ’s are applied to
is irrelevant.

angle updates

Un̂(α, β, γ)X = XUn̂(−α, β,−γ)

Un̂(α, β, γ)Z = ZUn̂(α,−β, γ). (2.10)

After commutation to a final layer of single-qubit Pauli operators on a set output qubits, the

operators’ effect on computational basis measurements is at most to change the some subset of

measurement bases to −Z. Hence, all final layer corrections may be straightforwardly enacted

by appropriate classical post-processing.

2.2.3 Graph states

Since Un̂(θ) is an arbitrary qubit rotation, then Figure 2.3 can depict an arbitrary state

preparation circuit by setting |Ψ〉 = |+〉. Taking this circuit as the input state to any larger

measurement-based computation, we can see that arrays of CZ-like entangled |+〉 qubits can

provide a blank resource state for MBQC. Such states are commonly depicted as graph states

using a graphical representation G = (V,E), whereby each initially unentangled qubit |+〉v is

associated with the graph vertex v ∈ V and each subsequently applied CZuv with the graph

edges (u, v) ∈ E. For example, taking |Ψ〉 = |+〉 in Figure 2.3, we can depict the initial state

as the four-vertex graph state with V = {1, 2, 3, 4} and E = {(1, 2), (2, 3), (3, 4)}, depicted in

Figure 2.4. Given its linearity, such a state is known as a linear graph state.

In general, we define the qubit graph states as a subset of the stabilizer states (see Chapter

4 for an introduction to the stabilizer formalism and stabilizer states) that can be represented

by simple, undirected graphs. Specifically, each graph state |G〉 is uniquely defined by the graph

G = (V,E) with vertex and edge sets V and E respectively such that

|G〉 =
∏

(i,j)∈E

CZij
⊗
v∈V
|+〉v (2.11)

and is defined by stabilizer generators

GG =
{
Ki = Xi

⊗
j∈NG(i)

Zj ∀ i ∈ V
}

(2.12)
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Z : Z

X : X

Y : Y

Figure 2.5: Effects of Pauli-basis measurement on linear cluster states. A Z-basis measure-
ment simply disconnects the qubit from the cluster leaving other bonds unchanged; X-basis
measurements creates a redundantly encoded qubit pair between the two adjacent neighbours;
and Y -basis measurements directly connect the two adjacent neighbours. Note that in the X
measurement case, a graph state in which one qubit is redundantly encoded qubit is locally
equivalent (up to a Hadamard) to the same graph state but with an additional qubit singularly
entangled to the qubit at the redundantly-encoded qubit’s position, commonly referred to as a
dangling qubit.

where NG(v) = {u : (u, v) ∈ E} is the set of nodes in the neighbourhood of v in G. Due to this

equivalence, we shall sometimes refer to the state as the graph and vice versa, with distinctions

only made when necessary.

A useful property of graph states is that each Pauli measurement deterministically alters

a graph state’s entanglement structure [94]. While all three measurement bases {X,Y, Z}
will disentangle the qubit from its neighbours in the graph state, they differ by their effect

on entanglement between qubits in said neighbourhood. Measurement of a qubit in the Z-

basis has no effect on any entanglement shared between the qubit’s neighbours. On the

other hand, the measurement of a qubit in the Y -basis causes all pair-wise entanglement

within the neighbourhood to be flipped, i.e. it has the effect of graph complementation within

the neighbourhood subgraph. In the case of a qubit in a linear graph state, this simply

produces entanglement between the two adjacent qubits. The generalised action of an X-basis

measurement is more involved than the previous two cases and is described fully in [94]. For

our purposes it is enough to consider the X measurement on a qubits within a linear graph

state in which the two adjacent qubits are merged into a single redundantly encoded qubit with

logical basis states |0〉L = |00〉 and |1〉L = |11〉. Although this produces a non-graph state, such

a redundantly-encoded qubit equivalent (is up to a Hadamard) to single qubit with a dangling

neighbour. Later we will see that such states can be useful during the construction of larger

cluster states. The actions of these measurements when applied to a linear cluster are visually

depicted in Figure 2.5.

Graph states have a diverse array of applications. For example, graph states were first

defined by Schlingermann and Werner in Ref. [95] to provide an alternative description for

quantum error correcting stabilizer codes, known as graph codes [95]. Later work by Danielsen

and Parker used such state’s graphical properties to classify the set of stabilizer codes of up

to 12 qubits [96]. In Ref. [97], Anders and Briegel showed that the graph-state formalism
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Figure 2.6: A measurement-based CNOT gate. Here Z measurements act to remove unneeded
qubits from the cluster state, with the remaining X and Y measurements performing the desired
CNOT operation between some arbitrary two-qubit state prepared on the inputs. After all
highlighted measurements and corrections are complete, the desired state is found on the two
remaining output qubits. Note that all non-Z measurements must be performed column-by-
column, left-to-right due to the flow conditions depicted in Figure 2.7. Figure concept taken
from Ref. [103].

can also be straightforwardly extended for efficient simulation of stabilizer states, providing a

graphical alternative to Aaronson and Gottesman’s tableau approach [98]. More recently, Zhao,

et. al. presented an algorithm in Ref. [99] which utilises graph states to perform operations on

classical graph data structures more efficiently than any classical algorithm, showing that graph

states can also provide a basis for novel quantum algorithms. Furthermore, in addition to qubit

states considered above, the graph-state formalism can also be extended to describe systems

of higher-dimension quantum systems [100], finding application in areas from constructing

mutually unbiased bases [101] to quantum secret sharing [102].

Because of their intuitive visualisations of the complex entanglement present in high-

dimensional and highly-entangled states, we shall make frequent use of graph states to describe

the states produced by large-scale architectures and otherwise throughout this thesis. Returning

to their relevance to a MBQC circuits, we now show how specific classes of graph states can be

used to achieve universal quantum computation.

2.2.4 Cluster states as universal resource for QC

From the above we have seen that in the measurement-based picture, universal quantum

computation therefore requires the construction of some initial resource graph state that not

only can enact a universal gate set, but can enact them in any order. Such a state is known as

a universal resource state. The simplest universal resource state is the graph state represented

by a regular 2D square lattice, also known as a cluster state [104].

For example, consider applying a measurement-based CNOT, as depicted by Figure 2.6.

Here we take a 7 × 5 2D square lattice cluster state containing some two-qubit input state,
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and assign each non-output qubit a Pauli measurement basis. In Figure 2.6 it is clear that

the action of the Z-basis measurements is to remove qubits that are not needed, leaving a

state on which the desired CNOT is achieved via X- and Y -basis measurements. It is easy

to see how single-qubit rotations may be performed on a 2D cluster state lattice by similarly

producing linear cluster states on which sequences of measurements are performed as described

in Section 2.2.2. By showing a 2D cluster state lattice can enact the two-qubit CNOT and

arbitrary single-qubit gates (along with state initialisation and measurement), it follows that it

is a sufficient resource state for universal quantum computation.

Other graph-state lattices have also been shown to be universal resources for MBQC. For

example in Ref. [105], Van den Nest, et. al. showed that the 2D Hexagonal, Triangular and

Kagome lattices could be efficiently reduced to the 2D cluster state and therefore support

universal MBQC. Using the same reasoning, it also follows each lattice’s 3D variant is also

universal for MBQC. More generally, it has been shown that the classes of states which support

universal MBQC are those which are unbounded in the entanglement measures of entropic

entanglement width, Schmidt-rank width, geometric measure and Schmidt measure [105, 106],

or equally those that are equivalent to graph states represented by graphs with unbounded

rank width [107]. Perhaps counterintuitively however, such conditions on states’ entanglement

are necessary but not sufficient as it has been shown that the majority of highly-entangled

pure qubit states are “too entangled” to be useful as a MBQC resource state [108, 109]. This

excludes states represented by various types of graphs, such as cycle graphs, cographs, graphs

locally equivalent to trees, graphs of bounded tree width, graphs of bounded clique width, or

distance-hereditary graphs, and excludes many classes of well-known quantum states, such as

W states, GHZ states, linear cluster states [110].

A final consideration for MBQC on any graph state is regarding the causal ordering of

measurements and correction operators during a measurement-based quantum computation.

For example, we saw in Figure 2.3 that qubits in a linear cluster state must be measured

sequentially so that the necessary measurement updates may be applied. More generally, one can

only guarantee that any measurement-pattern consisting solely of UZ(α)-basis measurements

projecting onto the X–Y plane deterministically realise a unitary between some set of input and

output qubits if the graph has a property known as flow [112]. While the technical definition

of flow is beyond the scope of this work, for our purposes it is enough to note that flow

conditions define a partial ordering on qubits determining their measurement order. Later

work further generalised flow to the gFlow condition, extending to measurement patterns

containing projections onto the X–Y , X–Z, and Y –Z planes [113]. From these insights it was

more recently shown that the causal forward cone, which defines the causal relationship between

measurements and corrections, is equal to the information cone, which defines the causal spread

of information within MBQC [111]. Such conditions put important restrictions on the graph

structure of MBQC resources.
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Figure 2.7: Cluster state gFlow conditions. Red arrows depict gFlow-paths and indicate the
partial ordering of qubit measurement and correction. Sets of qubits where measurements
can be simultaneously performed are grouped into a measurement round Ri, indexed by their
position in the ordering. When the gFlow condition is applied to the 2D cluster state, we find
that one possible gFlow is provided by the sequential measurement of qubit columns in the
order R1, . . . , R6. Figure concept taken from Ref. [111].

As such, a natural measurement ordering is found when the gFlow conditions are applied to

the 2D cluster state. Specifically, one possible gFlow is given by the sequential measurement of

qubit columns {Ri}, as depicted in Figure 2.7. Such an ordering can also be directly extended

to 3D, in which {Ri} are represented by consecutive lattice planes. While other choices for

gFlow exist, we shall see that this ordering provides a natural and convenient choice for an

architecture in which a cluster state is generated on the fly, where in each time-step a new

input layer is measured and a new output layer added.

2.3 Low-level architecture

We shall now present the current model of a low-level LOQC architecture. This follows the

LOQC architecture originally presented in Ref.’s [15, 16, 51] as realised using an integrated

silicon photonics platform. For brevity, the chronological development of the architecture will

only be described where necessary; for a full history of advances in LOQC architectures, see

Refs. [16, 28].

2.3.1 Producing single photons

In conventional implementations of quantum computers, qubits are encoded on some degree of

freedom of a larger object, such as the electronic spin state of an atom, or the internal flux

of a superconducting wire loop. In such models, the initialisation of the qubit is achieved by

preparing the host object in a certain physical state, from which a qubit is then knowingly
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Figure 2.8: Two-mode squeezing pair production. Solid lines depicts theoretical pair emission
probabilities Pn(ξ) of a n-photon pair as a function of the squeezing parameter’s absolute value
|ξ|. The dashed line depicts the signal-to-noise ratio of single-photon pair emission. Image
concept from Ref. [53].

created and can be checked by straightforward methods. However, unlike the naturally-occurring

two-level quantum systems described above, in LOQC photons do not fundamentally exist

as qubits, but rather must be made to represent them via some artificial encoding scheme.

Furthermore, once a photonic qubit is created, its existence cannot be easily verified, since

there are no practical and deterministic methods for verifying the existence of a photon in

a mode without destructive measurement. This restriction demands a novel approach to the

qubit generation in an LOQC architecture in which the creation of single photons can be

deterministically inferred or heralded.

Current implementations of LOQC overcome this challenge by the creation of photon pairs,

whereby the presence of one photon is heralded by the detection of another. A common physical

mechanism for photon pair production is spontaneous parametric down-conversion (SPDC) or

spontaneous four-wave mixing (SFWM) due to χ(2) and χ(3) non-linearities in certain optical

media when pumped with strong laser light. In an SFWM process, two input pump photons are

absorbed by the interactive media and reemitted as a spectrally entangled photon pair. For

example, if a laser’s coherent pump state

|α〉 = e−
|α|2

2

∞∑
n=0

αn√
n!
|n〉 , (2.13)

where |n〉 is the Fock state of n photons, excites a photon-pair source in which photons undergo
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spontaneous four-wave mixing (SFWM) [114], a two-mode squeezed state is created

|α〉 SFWM−−−−−→ |ξ〉 =

√
1− |ζ|2

∞∑
n=0

(−ζ)n |nsni〉 =
∞∑
n=0

cn |nsni〉 (2.14)

where ξ is the squeezing parameter and ζ = ei arg(ξ) tanh(|ξ|). It follows that the probability of

producing exactly n pairs is given by

Pn(ξ) = |cn|2 = (1− |ζ|2)ζ2n =
(
1− tanh2(|ξ|)

)
tanh2n(|ξ|)

=
(

sech(|ξ|) tanhn(|ξ|)
)2
, (2.15)

where and we have used the fact that 1−tanh2(x) = sech2(x). Figure 2.8 depicts Pn(ξ) for n ≤ 5,

showing that single-photon pair emission peaks at maxξ(P1(ξ)) = 25%. However, although

P1(ξ) peaks at |ξ25%| ≈ 0.88, this is not necessarily the ideal ξ due to the high signal-to-noise

ratio of P1(ξ25%)/P>1(ξ25%) = 1 [53]. To suppress higher-order emissions, non-linear sources are

usually operated in the weak-pump regime where ξ → 0⇒ ζ ∼ ξ and we take ζ2 ≈ 0, such that

|α〉 SFWM−−−−−→ |ξ〉 = |0s0i〉 − ξ |1s1i〉 , (2.16)

producing a state where the detection of any photons in the signal heralds the existence of a

single idler photon with high probability.

Because pair generation events occurs probabilistically, this prohibits SFWM’s direct use as

an on-demand single photon source for LOQC, sometimes colloquially known as a push-button

source. To create such a source, photon multiplexing (MUX) circuits must be used. MUX

schemes propose using multiple probabilistic sources to emulate a single deterministic source

through the use of spatial or temporal switching networks. In spatial MUX, depicted in Figure

2.9a, an array of spatially-separated probabilistic sources are simultaneously pumped by a laser

pulse such that the probability of one source emitting a photon pair is close to one. If one or

more photon emission is heralded, a switching network is appropriately configured to route one

photon to the output channel and discard any others. In temporal MUX, depicted in Figure

2.9b one source is regularly pumped such that the probability of emission within a certain time

period is close to one. If one or more photons are produced within the allotted period, a series

of switches route photons into delay-lines of differing lengths such that only one photon appears

at the output channel, discarding the rest.

Recent work has further shown that a variation on the above methods, known as relative

multiplexing (RMUX) can be employed in order to minimise photon waste and hence maximise

per-photon yield efficiencies [51]. In an RMUX scheme the number of switches through which

each photon must pass is also decreased, reducing the architecture’s footprint as well as the

per-photon loss rate.

From an architectural perspective, there are a number of distinguishing factors between

spatial and temporal MUX to be considered:
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Figure 2.9: Spatial and temporal MUX schemes. a) In each round of spatial MUX an array of n
probabilistic sources produce a series of spatially-separated heralded single photons. Photons
are then stored in a delay line while heralding signals are processed to determine switch settings
that ensure only a single photon is present in the output mode. Taken in the aggregate, this
process can be viewed as setting a single n× 1 spatial switch network, whereby any mode can
always be switched to a marked output mode and unneeded photons are routed the remaining
modes where they are detected or otherwise dumped. In the above case, all photon sources fire
simultaneously and all but one photon are dumped, outputting a single photon. b) In each
round of temporal MUX, a single probabilistic source is fired n times, once every T seconds,
to produce a series of temporally-separated heralded single-photons. All photons are then
delayed while heralding signals are processed to control switches which divert photons into
delay lines of increasing length. Such a setup creates a n× 1 temporal switch network that can
arbitrarily delay photons by up to n temporal modes, thereby ensuring a photon exists in the
last temporal mode (assuming at least one input photon). A final switch is then used to divert
all other temporal modes into a detector or photon dump. In the above case, all modes contain
a photon and the photon in the second mode is chosen to be switched to the last mode via a
delay of 2T ; the remaining green, red and blue are routed to the detector (not depicted). Note
that here colours are used purely for labelling purposes only and photons are assumed to be
indistinguishable.

• Resource costs: It is clear that temporal MUX has a significantly reduced resource costs

compared to spatial MUX. Specifically, the n× 1 multiplexing of n spatial modes requires

n sources, n−1 switches and n−1 detectors, whereas in the temporal case the same switch

requires only a single source, dlog2 ne+ 1 switches, and a single detector. (Both schemes

require n delay lines.) Not only does temporal MUX represent a significantly reduction in

the fabrication requirements, but also in control complexity and device footprint.

• Clock-rate: Reductions in spatial resource costs from temporal MUX are traded-off

against a reduction in device clock speed. For sources that fire every T seconds (and
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assuming a switch reset time less than T ), an n× 1 spatial MUX can achieve a clock-rate

of 1/T Hz compared to 1/nT Hz for temporal MUX.

• Distinguishability and incoherent errors: Because optical gates rely on the spatial

interference of two otherwise indistinguishable photons, it is important to have a high

level of control of photons’ other physical degrees of freedom (e.g. polarisation, frequency,

time of arrival, etc). Given that each photon’s state depends on the components through

which it has interacted, each additional component brings with it some associated amount

of coherent noise, especially if it is actively controlled. For example, the photon sources

may need to be actively tuned to ensure all photons are emitted at equal frequencies.

Hence, an increased number of sources and switches in spatial MUX significantly increases

requirements for fabrication precision and/or tuning control when compared to a temporal

MUX scheme. In addition to coherent errors (which may be suppressed by improved

fabrication and active tuning), additional electrical and thermal components also increase

the rate of stochastic incoherent errors, such as jitter (random fluctuations in thermal

phase shifters), dephasing or loss.

• Loss: One potential disadvantage of a temporal MUX scheme is that photons experience

at least as much loss as the spatial case (from a single delay line and dlog2 ne+1 switches),

as well as additional loss proportional to their delay time. Not only does this increase

average loss rates, but produces an anisotropic, non-iid (independent and identically

distributed) qubit loss model. Although such uncertainties may not have a significant

impact on associated error correction in the later architecture, lacking such information

could potentially decrease optimisation of error correction schemes [89].

For more details on optical MUX schemes for LOQC see Ref. [115].

2.3.2 Qubits from photons

Once single photons can be generated on demand they can provide the physical basis for an

encoded qubit.

While there are a variety of different qubit encodings using photons, such as polarisation,

orbital angular momentum, and temporal [90], current LOQC architecture proposals predomi-

nantly apply the dual-rail encoding scheme. In this path encoding, qubit’s computational basis

{|0̄〉 , |1̄〉} states (where an overbar is used to distinguish logical states from photon-number

states) are encoded by the photon’s position within two distinct optical modes, such as two

planar waveguides, as depicted in Figure 2.10a. Taking |0, 0〉1,2 as the vacuum Fock state for

two waveguides, the logical basis states are then defined as

|0̄〉 ≡ |1, 0〉1,2 = â†1 |0, 0〉1,2 , |1̄〉 ≡ |0, 1〉1,2 = â†2 |0, 0〉1,2 , (2.17)
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Figure 2.10: Path and polarisation encoding for photonic qubits.

where |i, j〉1,2 is the Fock state of two waveguides with i photons in mode 1 and j photons in

mode 2 and â†i is the creation operator for mode i where â†i |n〉i =
√
n+ 1 |n+ 1〉i. We assume

both photons are indistinguishable other than by the optical mode.

To create arbitrary superpositions of the qubit basis states, a combination of beam-splitters

and phase-shifters can be applied. As linear optical elements, these lead to linear transformations

of optical modes which can be described by passive2 Bogoliubov transformations of the mode

operators [90]. To see this, consider the Hamiltonian describing linear two-mode coupling, such

as that of a beamsplitter

Ĥ = i~(g∗â†1â2 − gâ1â
†
2), (2.18)

where |g| is the coupling strength between modes and arg(g) is the relative phase imparted.

The unitary evolution operator for linear two-mode coupling is therefore given by

U(θ, φ) = e−
i
~ Ĥt = exp

(
θe−iφâ†1â2 − θeiφâ1â

†
2

)
, (2.19)

where θ = |g|t, φ = arg(g). Because evolution is linear, we can represent the evolution of mode

operators as a linear transformation

U(θ, φ)†

(
â†1
â†2

)
U(θ, φ) = UBS

θ,φ

(
â†1
â†2

)
, (2.20)

where UBS
θ,φ is the unitary operator for an arbitrary beamsplitter. Solving the above equation

for UBS
θ,φ can be achieved via the Baker-Campbell-Hausdorff formula

eiλÂB̂e−iλÂ = B̂+ iλ
[
Â, B̂

]
+

(iλ)2

2!

[
Â,
[
Â, B̂

]]
+ . . .+

(iλ)n

n!

[
Â,
[
Â, . . .

[
Â, B̂

]]]
+ . . . , (2.21)

from which it is easy to show that

UBS
θ,φ =

(
cos(θ) e−iφ sin(θ)

−eiφ sin(θ) cos(θ)

)
. (2.22)

2 A passive Bogoliubov transformation is one in which creation (annihilation) operators are linearly mapped
to other creation (annihilation) operators, and hence conserve photon number.
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The action of an arbitrary beam-splitter between two photonic modes is therefore described by

the Bogoliubov transformation

â†1 → cos(θ)â†1 − eiφ sin(θ)â†2, â†2 → e−iφ sin(θ)â†1 + cos(θ)â†2. (2.23)

Physically, we can see that φ is the phase shift imparted upon reflection and t = cos(θ) and

r = sin(θ) are the beam-splitter’s transmission and reflectivity respectively, such that r2 +t2 = 1.

Similarly, from the single-mode Hamiltonian Ĥ = i~γâ†â, the action of a phase-shifter on

one of two optical mode can be defined by the Bogoliubov transformation

â†1 → e−iγ â†1, â†2 → â†2 (2.24)

which (up to a global phase) can be similarly rewritten as the unitary matrix transformation

UPS
γ =

(
eiγ 0

0 e−iγ

)
= RZ(γ) = eiγZ (2.25)

By appropriate choice of φ, we also find that

UBS
α,π

2
=

(
cos(α) −i sin(α)

−i sin(α) cos(α)

)
= RX(α) = eiαX , and (2.26)

UBS
β,0 =

(
cos(β) sin(β)

− sin(β) cos(β)

)
= RY (β) = eiβY . (2.27)

Arbitrary single-qubit unitaries in the dual-rail encoding can therefore be performed by sequences

of beam-splitters and phase shifters. For example, it is easy to see that UPS
π
2
UBS
−π

4
,0 = H (up to

a global phase). Recalling Equation (2.5) for arbitrary single-qubit rotation about axis n̂ by

angle θ, it follows that

Un̂(θ) = UZ(γ)UX(β)UZ(α) = UZ(γ)HUZ(β)HUZ(α)

= UPS
γ+π

2
UBS
−π

4
,0U

PS
β+π

2
UBS
−π

4
,0U

PS
α

= UPS
γ′ U

BS
−π

4
,0U

PS
β′ U

BS
−π

4
,0U

PS
α′ , (2.28)

where α′ = α, β′ = β+ π
2 , and γ′ = γ+ π

2 . An arbitrary single-qubit rotation can be therefore be

produced by use of a Mach-Zender interferometer (MZI), consisting of two 50:50 beam-splitters

and three variable phase-shifters, as depicted in Figure 2.11.

In some cases it will be convenient to consider the polarisation encoding of photonic qubits

in which the state is encoded by the photon’s transverse electric field vector. Depicted in Figure

2.10b, polarisation encoding is isomorphic to the dual-rail encoding, but with the logical qubit

state defined the orthogonal polarisation states |H〉 and |V 〉 such that

|0̄〉i ≡ |H〉i = â†i,H |0〉i and |1̄〉i ≡ |V 〉i = â†i,V |0〉i , (2.29)
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Figure 2.11: Mach-Zehnder interferometer setup for single-qubit rotations. Given an appropriate
choice of (α, β, γ), the arbitrary qubit rotation Un̂(θ) can be performed using two 50:50 beam-
splitters and variable phase-shifters.

where here |0〉i is the vacuum state of some optical mode i, and â†i,H , â
†
i,V are the creation

operators for horizontal and vertical polarised photons in mode i respectively. As before,

transformations of polarisation-encoded photons by linear optics can be described by passive

Bogoliubov transformations.

One specific transformation we shall make use of is that of a Polarising Beam-Splitter (PBS),

an element of birefringent material in which an input photon’s reflection or transmission depends

only on its polarisation. For example, a H-V oriented PBS transmits horizontally-polarised

photons, whilst reflecting vertically-polarised photons, and provides the mode transformation

â†1,H → â†1,H , â†1,V → â†2,V

â†2,H → â†2,H , â†2,V → â†1,V . (2.30)

Rotations of polarisation-encoded qubits are achieved by use of rotated birefringent wave-

plates, with the mode transformation HWP(θ) of a half wave-plate at angle θ given by:

â†H → cos(2θ)â†H + sin(2θ)â†V , â†V → cos(2θ)â†V − sin(2θ)â†H . (2.31)

For example, a polarisation-encoded version of the Hadamard can be implemented by a 22.5◦

rotated HWP, producing the mode transformation

â†H →
1√
2

(
â†H + â†V

)
, â†V →

1√
2

(
â†V − â

†
H

)
. (2.32)

Complex phase shifts can similarly be imparted by quarter-wave plates (QWP). For example,

a QWP can be used to implement the phase shift

â†H → e−i
π
4 â†H , â†V → ei

π
4 â†V . (2.33)

In the qubit picture we can see that the HWP and QWP are represented by rotations about

the Pauli Y and Z axes respectively. Figure 2.12 provides a simple optical circuit that trans-

form between polarisation- and path-encoded photonic qubit. It can also be shown that all

linear photonics circuits acting on polarisation-encoded qubits have an equivalent dual-rail

decomposition, and hence the two representations will be used interchangeably here.
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Figure 2.12: Converting between polarisation- and path-encoded photonic qubits. Polarisation-
encoded photonic qubits input on the left are mapped to path-encoded photonic qubits on
the right (and vice versa). The polarisation-to-path encoder consists of a PBS and a 90◦

polarisation rotator (implemented by a 45◦ rotated HWP), depicted by the divided box and
ellipse respectively. Note that photon’s colour and time-bin are differentiated for illustrative
purposes only and are otherwise assumed equal.

Figure 2.13: Type I and II fusion gates. For simplicity, both gates are depicted in their
polarisation-basis form. The detector must also be number polarisation and photon-number
resolving.

Finally, we address photonic qubit measurement. For single qubits, computational basis

measurements are straightforwardly implemented by the use of two photon detectors (one per

rail) or one polarisation-resolving detector in the case of a path- and polarisation-encoded

qubit respectively. (In practise polarisation measurements are generally implemented using

two non-polarisation resolving detectors and a PBS via a conversion to path-encoding prior to

measurement). Measurements in arbitrary single-qubit bases are therefore be implemented by

insertion of a single reconfigurable MZI prior to detection.
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2.3.3 Entangling gates for photonic qubits

Because photons are non-interacting bosons is it not possible to deterministically entangle

two photons with linear optics [116, 117]. In LOQC proposals, this is overcome by use of a

measurement-induced non-linearity, as most famously introduced in the Knill-Laflamme-Milburn

(KLM) scheme [40]. As previously discussed, such schemes use the fact that certain mode

transformations on dual-rail encoded qubits produce photonic states containing superposition

terms representing the desired non-linear interaction. However these terms occur in superposition

with others that do not describe a valid qubit transformation, such as the two-photon Fock states

|0, 2〉1,2, |0, 2〉1,2, and |1, 1〉i,j . In the KLM scheme, this is overcome through the interaction of

ancilla states which are then measured to herald the success or failure of the desired entangling

interaction, leaving the target qubits unmeasured.

The problem with such a scheme is that while successful entanglement can be produced

with some probability p, with probability 1− p the input photonic state is projected onto some

non-qubit state from which the input state cannot be recovered. For example, using KLM’s

original scheme, a single CZ can be produced with probability p = 1
16 by use of only two single

photon ancillae, or with p = 1
4 if a 2-photon Bell pair is additionally consumed. This presents a

challenge for LOQC architectures, whereby a single failed entangling gate can cause the failure

of an entire computation. While the probability p of gate success can be arbitrarily increased,

this is only achieved through the consumption of increasingly many ancilla states that are

increasingly costly to produce. For example, a single CZ-gate with 95% probability of success

would require at least 104 individual operations and the elimination of 1300 Bell states and 620

other ancillary states [118].

This problem is partially addressed by the introduction of so-called fusion gates by Browne

and Rudolph [45], depicted in the polarisation basis by Figure 2.13. In a fusion gate, the role

of heralded ancilla is played by one or both of the input qubit states, and hence one or both

are consumed by the gate, known as Type-I or Type-II fusion gates respectively. This allows a

standard fusion gate to operate with fusion success rate of pf = 1
2 at the cost of consuming some

number of input qubits. On success, entanglement is created between any other qubits entangled

with the input qubits, whereas on failure one or both qubit is consumed and no entanglement

is generated; hence both fusion gates represent a type of a destructive entanglement swap

operation. A further motivation for the use of fusion gates is that their action can also be

simply described within the graph-state picture.

However, note that the existence of such a gate only provides half of the solution to growing

large-scale entangled states. To complete the scheme, an initial source of small entangled states

must also be known as well as an efficient protocol to fuse them together which succeeds despite

the probabilistic success of fusion gates. As such, we shall now describe the abstract action of

fusion gates and defer descriptions of the states on which they act and the larger construction

scheme to Sections 2.3.4 and 2.4.1 respectively.
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Figure 2.14: Constructing cluster states using Type-I fusion.

In a successful Type-I fusion only one of the two input qubits is measured, and entanglement

is created between the remaining qubit and those neighbouring the other. Intuitively, the Type-I

fusion operation can be seen as transferring all pair-wise entanglement from two input qubits to

the one output qubit. However, on failure, neither the detected nor output photonic state are

in qubit form which is represented as having performed a Z-measurement on both qubits. For

example, Type-I fusion can be used to join linear cluster states in both 1- and 2-dimensions, as

depicted in Figure 2.14.

In a successful Type-II fusion both input qubits are measured and entanglement is created

between their neighbourhoods. As with the action of X-measurements, a complete description of

the Type-II fusion is more involved than need be presented here (for which the reader is referred

to Refs. [16, 119]), however one simple case is observed when applied to 2-qubit redundantly

encoded logical qubits3. In the case of two input qubits with one part of a redundantly encoded

qubit pair, both qubits are consumed and entanglement between neighbours of all input qubits

are transferred onto the remaining qubit in the redundantly encoded pair. However, on failure

both input qubits are effectively measured in the X-basis. This provides a significant advantage

over Type-I fusion as it prevents the gate from destroying entanglement in the remaining graph

state at the cost of an additional qubit consumed on success. For example, Type-II fusion

provides an improved method of joining linear cluster states to produce 2-dimensional cluster

states, depicted in Figure 2.15. A second advantage of Type-II fusion is that it can herald

any loss of input photons as both success and failure outcomes occur on the detection of two

photons. Hence, if less than two photons are found across both detectors, loss is heralded and

3 An n-redundantly-encoded logical qubit
∣∣ψ̄〉 = α |0̄〉+ β |1̄〉 is a state in which the logical computational

basis states are defined over n repetitions of the same basis on a set of physical qubits, such that |̄i〉 = |i〉⊗n. For
example, in the above fusion case, we consider the two-qubit redundantly encoded state

∣∣ψ̄〉 = α |00〉+ β |11〉.
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Figure 2.15: Constructing cluster states using Type-II fusion. Dashed qubits within a single
solid qubit represent redundantly encoded qubits.

can thereby accommodated within the architecture.

Another advantage of fusion gates is that they can be rotated to produce alternative

entangling operations on both success and failure. For example, it can be shown that by simply

applying rotated wave-plates prior to the fusion gate, Type-II failure outcomes can instead

apply a useful entanglement swap operation rather than the described X-measurement [16].

Lastly, the success probably of Type-II fusion may also be arbitrarily boosted at the cost of

additional input ancillae [120, 121]. For example, the probability of successful fusion pf can

be boosted to pf = 75% at the cost of consuming one 2-photon entangled Bell pair (the Grice

scheme) or four single photons (the Ewert-van-Loock scheme), as depicted in Figures 2.16a and

2.16b respectively. From here the fusion probability can be arbitrarily increased at the cost of

increasingly large ancillae states that become increasingly difficult to build. Defining p
[N ]
f as

the fusion probability at boosting level N , where p
[0]
f = 50%, p

[1]
f = 75%, it can be shown that

p
[N ]
f = 1− 1

2N+1
, (2.34)

from a gate that demands either M = 2N+1 − 2 or 2M ancillary photons to be consumed in

the Grice and Ewert-van-Loock gates respectively.

For the Grice scheme [120], the ancilla state is of the form
⊗N

i=1 |Υi〉 where |Υi〉 is the

2i-photon state

|Υi〉 =
1√
2

( 2i+2∏
k=2i+1+1
k odd

â†k +

2i+2∏
k=2i+1+1
k even

â†k
)
|0〉

=
1√
2

(|0̄〉⊗2i + |1̄〉⊗2i) (2.35)
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Figure 2.16: Boosted fusion gate schemes. The success probability of fusion may be arbitrarily
increased by use of boosted fusion gates that consume additional ancillary photons. Here
we depict two known approaches to boosting that can be generalised to boosting level N ,
differentiated by their input ancillae states. This is achieved by the consumption of: a) an
ancillary two-photon Bell pair in the Grice scheme [120], and b) four single photons in the
Ewert-van-Loock scheme [121].

where |0〉 is the vacuum state, and so requires a series of increasingly large entangled GHZ

states. For the Ewert-van-Loock scheme [121], the ancilla state is of the form (
⊗N

i=1 |Λi〉)⊗2

where |Λi〉 is the 2i-photon state

|Λi〉 =
1

22i−2
√

2

( 2i+1∏
k=2i+1
k odd

(â†k)
2 +

2i+1∏
k=2i+1
k even

(â†k)
2
)
|0〉

=
1√
2

(|02〉⊗2i−1

+ |20〉⊗2i−1

) (2.36)

and so similarly requires a series of increasingly large entangled states. We shall later see that

whilst a high degree of boosting is unlikely to be beneficial in terms of an architecture’s resource

efficiency, some degree of boosting will be necessary to the architecture. It is not yet known

whether a similar boosting scheme exists for Type-I fusion.

Lastly, we consider the requirements of detectors in the above circuits. Unlike the detectors

required for measurement of single photonic qubits, an additional consideration in the above

entanglement generation circuits and fusion gates is that they require photon number-resolving

detectors (PNRDs) to distinguish different photon coincidence patterns. For example, a p
[1]
f =

75% Ewert-van-Loock fusion gate demands PNRDs that can distinguish up to 4-fold photon

coincidences—certainly a non-trivial experimental task (see Section 1.3.4). Also, in the case of
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Figure 2.17: Boosted fusion success probabilities with detector inefficiency in the Ewert-van-
Loock scheme. This plot shows that the advantage of increased gate success probabilities in
boosted fusion schemes is strongly contingent on high detector efficiencies, as described by
Equation (2.37). Notably, if detector inefficiencies are high (e.g. > 15%), then it is actually
worse to implement a scheme with boosting than none at all.

boosted fusion, the numbers of detectors per gate increases with increased fusion probability.

However, in the case of imperfect detectors, the increase in detectors needed for an additional

level of boosted fusion may ultimately lead to a decrease in overall gate performance. For

example, in the Ewert-van-Loock scheme with imperfect detectors, the probability of success for

N = 1 fusion is 1
2η

4 + 1
4η

6 compared to η2 for the N = 0 case, where η is the detector efficiency

(and we have otherwise assumed perfect single-photon source) [121]. It therefore follows that

the boosted gate only provides a real-terms increase in success probability over the standard

fusion gate if η ≥
√√

3− 1 ≈ 86%.

Extending this analysis to the coincidence patterns required for arbitrarily boosted Ewert-

van-Loock fusion gates, it can be shown that the probability of success for boosting level N is

given by

Psucc =
1

4

(
η2N+2−2 +

(
3− 1

2N−1

)
η2N+1

)
. (2.37)

It is easy to confirm that for N = 0 and N = 1 we find the known success probabilities of 1
2η

2

and 1
2η

4 + 1
4η

6 respectively, and similarly find Psucc = 1− 1
2N+1 for η = 1. Depicted in Figure

2.17, we see that increasing the boosting level N has a serious effect on the gates’ ability to

tolerate any detector inefficiencies. Notably, we find that N = 2 boosted fusion is only ever

advantageous for detector efficiencies above η ≈ 97% and N = 3 for above η ≈ 99%. For N > 3,

the decrease in Psucc with any associated fall below near-unit efficiency is so severe that such

gates are unlikely to be practical unless detector fabrication inaccuracies can be effectively
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removed. Clearly, such analyses are crucial for the development of sophisticated realistic models

of an LOQC architecture. For further analysis of fusion gates’ performance under realistic

detector models and their errors, see Ref. [122].

2.3.4 Producing universal resource states

Having shown how photons can be encoded as qubits, arbitrarily rotated and probabilistically

entangled, we are now ready to present the main blueprint for an LOQC architecture. The

outline of the low-level architecture is to take a collection of small entangled resource states and

through the application of fusion gates and measurements, produce a universal cluster state.

There are a number of universal cluster states one can choose from for such an architecture [15,

105, 123, 124], however for simplicity here we shall consider the task of constructing the cluster

state of simple cubic lattice structure.

Firstly, we consider the task of initial resource state generation, namely of 2-photon Bell pairs

and 3-photon Greenberger-Horne-Zeilinger (GHZ) states. Specifically, Bell pairs are required for

the boosted fusion gates used to grow a cluster state from 3-GHZ states. Note that an initial

entangled state of three photons is necessary given that each Type-II fusion consumes a pair of

qubits, and hence cannot increase the number of entangled qubits when applied only to Bell

pairs. Figure 2.18 depicts a scheme proposed by Zhang et. al. [125] that produce event-ready

Bell pairs from four single photons with probability pBell = 3
16 , which can be further increased

by procrustean distillation to pBell = 1
4 at the cost of an additional switch for correction [126].

Note that this circuit leverages Type-II fusion as a sub-circuit and so can also herald photon

loss.

This approach can be similarly extended to the production of 3-GHZ states by a scheme

proposed by Varnava, et. al. [127]. In this circuit, depicted in Figure 2.19, six single photons

are input to produce a 3-photon GHZ state with probability pGHZ = 1
32 = 3.125%. A key

feature of this circuit is that it is robust to photon loss, where loss of photons during the

circuit is heralded by an incorrect detection pattern, allowing the final state to be discarded

[119]. Furthermore, any loss on input photons that is not heralded results in iid loss on the

output state. While this second feature may seem innocuous, it is crucial that any form of

correlated errors be suppressed in all architectures due to their catastrophic effect on high-level

architectural processes [89].

However, to be of use in current LOQC architectures both Bell pairs and GHZ states need

to be produced on-demand, and hence cannot be directly produce by probabilistic circuits.

Following the same MUX methods used for single photons in Section 2.3.2, both resource state

generators will need to be multiplexed to produce near-deterministic versions. As before, an

RMUX scheme allows for a further reduction in state waste as well as switch depth and loss

tolerance [51]. The following architecture therefore describes the operation of a device after

(R)MUX has been successfully applied at both the single photon and the following resource state
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Figure 2.18: Optical circuit for generating photonic Bell states. The circuit takes four input
photons and outputs the entangled 2-photon Bell state in modes 1 and 2; success is heralded
upon detection of a two photons of opposite polarisation in the fusion gate. The success
probability of the circuit is p = 3

16 = 18.75%.

Figure 2.19: Optical circuit for generating photonic GHZ states. The circuit takes six input
photons and on detection of a single photon in each detector outputs an entangled 3-photon
GHZ state; the success probability of the circuit is p = 1

32 = 3.125%.
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generation levels. However, because such a scheme would require the concatenation of a Bell or

GHZ state MUX circuit on top of an already-costly single-photon MUX circuit, at present this

represents a significant—perhaps even prohibitive—resource cost to the architecture.

Assuming 3-GHZ states can be produced on demand using MUX or otherwise, it is then

straightforward to arrange a fusion scheme to construct the desired percolated lattice. For

example, Figure 2.20a depicts the attempted fusion of five 3-GHZ states into a 7-GHZ state

and Figure 2.20c the various microclusters produced by each configuration of fusion success

and failures. From this it is easy to see that an n-GHZ state can be constructed using n− 2

many 3-GHZ states, which are entangled by n− 3 fusions gates. We note that this is not an

optimal strategy for generating n-GHZ states from single photons. In general, an n-GHZ state

may be produced from 2n single photons with probability 1/(22n − 1) [16]. However, on failure

such circuits do not produce entangled qubit states and so must be multiplexed if used; this is

contrasted to the fusion of 3-GHZ, where failed fusions do not require the resultant state to

be discarded. From such GHZ states it is straightforward to construct the desired percolated

lattice. For example, Figure 2.20b depicts the fusion of nearest-neighbour microclusters to

produce a percolated cubic lattice.

Once small states can be produced on-demand and entangled to create a percolated

universal resource state, all that remains to consider is measurement, feed-forward and classical

co-processing. Compared to the optical circuits needed for generating GHZ states and performing

fusions, the measurement-based processing of a percolated cluster state is relatively simple and

physically consists of delay-lines, single-qubit MZI’s, detectors and classical control circuitry.

For our purposes, the challenge of processing resource states can therefore be straightforwardly

abstracted to some set of time-ordered measurements on a large percolated cluster state, which

can be represented by the graph operations of node and edge addition and deletion. Importantly,

this abstraction allows all experimental errors to be conveniently visualised and parameterised

for inclusion in higher-level abstractions. For example, photon loss, probabilistic entanglement

and distinguishability are respectively represented as qubit node loss rates, edge probabilities

and distribution functions for qubit Pauli errors. This division between the optical circuits of

resource state generation and the classical control of subsequent state processing marks the key

boundary between the low- and high-level architecture.

An overview of LOQC’s low-level physical architecture is shown in Figure 2.21.

2.4 High-level architecture

We now consider enacting error-corrected quantum computation on a percolated resource state.

This process can be split into three substages: i) building a cluster state lattice; ii) applying

quantum error correction; and iii) enacting logical quantum circuits, as summarised by Figure

2.22. Specifically, this will be achieved by the renormalization of a percolated cluster state to a
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Figure 2.20: Microcluster production and fusion. a) The generation of 5- and 7-GHZ states from
three and five 3-GHZ states using two and four fusions (depicted in red) respectively. It is easy to
see how such an approach can be generalised to the production n-GHZ states using n−2 3-GHZ
states entangled with n−3 fusions gates. b) An array of 7-GHZ states which are fused to produce
the unit cell of a percolated cubic lattice. From the construction of arbitrarily-sized GHZ states,
it is easy to see that any percolated lattice may be similarly constructed, including semi-regular,
anisotropic and higher-dimensional lattices. c) Different 7-qubit microcluster configurations
produced by different combinations of fusion gate successes and failures. Bracketed numbers
refer to the indices of successful and failing fusion operations respectively. Given that a single
unit cell is constructed from the fusion of eight such microclusters, this highlights the incredible
diversity of structures possible in the final state produced.
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Figure 2.21: Overview of the low-level LOQC architecture. Here we depict the main physical
stages of a modern LOQC architecture. a) Heralded single photons are probabilistically gen-
erated by non-linear sources excited by some pulsed pump laser (which may or may not be
integrated on-chip). Significant filtering and source tuning is also likely required at this stage
to ensure maximally indistinguishable photons. Photons are then delayed, providing time for
configuration of the MUX switch network. b) Photon herald signals are fed-forward to a spatial
and/or temporal MUX switch network, producing a near-deterministic source of single photons.
Although photons are depicted in regular array to represent their determinism, in practise only
photons engaged in the same entanglement generation circuits need be synchronised. c) Small
entangled resource states are probabilistically generated. At the very least, current architectures
require both 2-photon Bell states and 3-photon GHZ states to be produced, although future
schemes may require the generation of more complex entangled states. States are again delayed
prior to the subsequent resource state MUX. d) Heralding signals from detectors in resource state
generation are fed-forward to a second MUX switch network, producing a near-deterministic
source of entangled states. As in b) photons in ancillae states and non-data qubits need only be
synchronised with the other photons they will interact with in fusion gates. e) Ancillae fusion
produces some known percolated 3D cluster state. Qubits in each time-like layer are delayed
prior to a round of reconfigurable measurements that enact the desired measurement-based
quantum computation. Stages a)–e) depict the architecture’s low-level stages, with all high-level
stages implemented through changes in data qubit’s measurement bases as chosen by the
classical co-processor.

58



2.4. HIGH-LEVEL ARCHITECTURE

Figure 2.22: Overview of the high-level LOQC architecture. While depicted here as the three
distinct steps of renormalization, quantum error correction and logical quantum computation,
physically all three stages are compiled to some machine-level sequence of detector measurement
settings and occur simultaneously in practise.

near-deterministic lattice state on which topological quantum error correction and computation

is applied.

2.4.1 Renormalization

The idea of applying percolation theory to the creation of universal resource states was first

introduced by Kieling, et. al. [47]. Their design overcomes the need for lossy dynamic switching

after MUX proposed by repeat until success architectures [52, 118, 128], in which large snowflake

resource states are initially constructed in order to support multiple attempts per probabilistic

fusion gate. Such schemes have been proposed, however, they describe architectures of incredible

complexity, which ultimately demand a prohibitively large number switches and detectors to be

experimentally realised [52]. In Kieling, et. al.’s proposal, such switching networks are avoided

by the creation of a regular lattice array of small microcluster graph states. Each microcluster

consists of a central qubit connected to a small number of dangling neighbours, as depicted by

the GHZ states of Figure 2.20. that are fused with the dangling nodes of adjacent microclusters

according to the edges of the underlying lattice. By repeating this process on each nodes of the

lattice, a final cluster state lattice is produced where each edge between the remaining central

nodes exists with probability pf . This process is described by the mathematics of percolation

theory, which describes the dependence of macroscopic phenomena that emerge from some

underlying probabilistic process occurring at the microscopic level.

To overcome nondeterministic entangling gates, renormalization is used to produce an

idealised lattice L∗ from a coarse-graining of some percolated lattice L. Once L is constructed,

a single central qubit is identified on each renormalization block that is path-connected to
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Figure 2.23: Cluster state fusion and renormalization. A visual depiction of how the percolated
lattice formed by the fusion of nearest-neighbour microclusters can be renormalized to produce
a desired lattice. Square coloured boxes depict regions of cluster state where a path from some
central qubit to each boundary must be found and oblong boxes depict regions where two
adjacent regions must overlap (the central region may be appended to one of the connective
regions as needed). In this case a percolated square lattice is renormalized to a near-perfect
square lattice, although in general the physical and renormalized lattice need not have the same
structure.

central qubits of adjacent blocks by sets of path qubits4. As in other MBQC protocols [103,

129], all other qubits in the lattice are then removed by adaptive single-qubit measurements,

thereby producing L∗. An example of this is depicted in Figure 2.23, where a 2D percolated

square lattice is renormalized to a perfect 2D square lattice.

More generally, schemes for generating L correspond to the bond-percolation of some lattice,

where successful fusions correspond to open edges. On percolated lattices with bond probability

p, the existence of an infinite open cluster exhibits threshold behaviour. In the limit of an infinite

lattice L∞, the probability P∞(p,L∞) that there exists an infinite open cluster C∞ undergoes

a phase transition (from 0 to 1) at p = pc. This threshold represents the division between

two distinct percolation regimes for p < pc and p > pc, known respectively as the sub- and

super-critical regimes. The degree of connectivity within the lattice is fundamentally different

between these regimes; for example, the scaling in size of the largest connected component

transitions from sub-linear to linear across the threshold, as depicted in Figure 2.24a. For a

finite lattice L, the finite-sized analogue to P∞ is the probability Pi(p,L) that a spanning

cluster C exists along the i direction, thereby containing a path connecting opposite faces of the

lattice block along axis i. Thresholds for Pi(p,L) correspond to continuous functions, becoming

sharper for larger lattices, converging to P∞(p,L∞) as L → L∗, as depicted by Figure 2.24 b).

In practise, percolation thresholds can be found by identifying the crossing point of functions

Pi(p,L) for various sizes of L [130], or numerically using the Newman-Ziff algorithm [131].

The size of blocks on L required for renormalization to a fixed L∗ depends only on difference

4 For the renormalization of 2D lattices, a more efficient method based on the identification of topological
minors is also known [49], however this has yet to be extended to higher-dimensional lattices.
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Figure 2.24: Characteristic plots for percolation phenomena. These plots depict percolation
phenomena in the sub- and super-critical regime for p < pc and p > pc respectively, here
produced by simulation of percolation on L×L square lattices with edge probability p. a) The
size of the largest connected component

√
|C| as a function of percolated lattice size L (where

|C| is the number of nodes in the connected component C). For sub-critical percolation when
p < pc, the size of the largest connected component scales sub-linearly

√
|C| ∼ o(L), whereas

for super-critical percolation when p > pc, the size of the largest component is proportional to
the lattice size

√
|C| ∝ L. b) The probability of percolation P as a function of edge probability

p depicted for small, medium and large lattices (L = 10, 20 and 100 respectively), depicting
the phase transition between sub- and super-critical percolation at the percolation threshold pc.
For more details on percolation theory, see Refs. [130, 133].

between pf and the percolation threshold pc of L, as produced by the lattice’s structure,

with greater pf − pc allowing a greater renormalization efficiency |L∗|/|L| to be achieved.

Reducing the overall resource requirements for a LOQC device (with fixed pf ) therefore relies

on producing a lattice with low pc without the need for high-degree (and therefore costly)

microcluster resource states. Initial work on renormalization identified cubic, diamond and

pyrochlore lattices as potential candidates, requiring 7-, 5- and 4-qubit microcluster resources

respectively [47]. By extending a percolation approach to the generation of resource states,

it was shown by Gimeno-Segovia, et. al. that both microcluster creation and fusion could be

achieved from the boosted fusion [120, 121] of 3-photon GHZ states to produce a ‘brickwork’

diamond lattice with pc < pf [15] and pyrochlore [123]. Recently, this scheme was further

generalised for higher-dimensional lattices and n-qubit microclusters [124]. After L has been

constructed, renormalization can be abstracted to the graph-theoretical problem of finding

crossing clusters on percolated lattices, which can be solved efficiently [132].

How well does renormalization perform? To quantify the gains made by renormalization

we can compare the original lattice’s edge probability p with that of the post-renormalization

lattice p∗. Figure 2.25a depicts the p and p∗ for the renormalization of a 12×12×12 cubic lattice

with block sizes B = 2, 3, 4, and 6. As one would expect, p well above pc ≈ 24.8% is required

for p∗/p > 1, achieved at p ≈ 44% for B = 6, and p ≈ 50% for B = 2. We find that in general

61



CHAPTER 2. A MODERN LOQC ARCHITECTURE

Figure 2.25: Renormalization on cubic lattices. Simulation results for the renormalization of a
L×L×L cubic lattice for a) L = 12 and b) L = 24. Each line depicts the post-renormalization
(cubic) lattice edge probability p∗ as function of the original lattice’s edge probability p for a
range of renormalization block sizes with side length B. The vertical dashed line depicts the
cubic lattice’s percolation threshold at pc ≈ 24.8. For each block’s central qubit the qubit with
greatest betweenness centrality5 was chosen, from which paths between the central nodes of
adjacent blocks could be found to provide the required cubic structure. Error bars depict a
single standard deviation taken over 103 and 104 Monte Carlo simulation instances for L = 12
and 24 respectively.

p∗ has threshold-like behaviour such that p∗ ≈ 100% can be achieved for surprisingly small

block size and low p, such as at p ≈ 60% for B = 4. A similar result is found for renormalization

of a 24×24×24 lattice, where while there are small deviations in found in the points at which

p∗/p = 1, the values of p at which p∗ ≈ 100% coincide for equal B. Furthermore, similar results

are found for non-cubic lattice configurations, such as renormalization of percolated Raussendorf

to Raussendorf [50]. These results suggest that near-perfect renormalization may be achieved

with boosted fusion and only modest block sizes.

2.4.2 Quantum error correction

Historically, the development of quantum error correcting codes (QECC’s) assumed solid-state-

like qubits which can be entangled and non-destructively measured at will. As such, the first

stabilizer codes were described by (usually 2D) arrays of stationary qubits that are pair-wise

entangled to produce logical qubits with encoded logical operations represented by local Pauli

operations on collections of qubits. This formalism was later developed to describe a class of

QECC’s known as topological quantum codes [134], with the first being Kitaev’s toric code

[135]. As the name indicates, topological qubits and logical operations can then be represented
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by defects in some 2D surface of entangled qubits which are topologically braided in space

and/or time [136].

Similarly to the implementation of quantum circuits in MBQC, both stabilizer and topologi-

cal codes can be reproduced as foliated codes in the cluster state picture by a technique known

as clusterization [137]. In a foliated code, each physical qubit in the original QECC is mapped

to a linear cluster state, thereby turning temporal sequences of operations on a single qubit to

equivalent sequences on sequences of spatially separated qubits. The resulting cluster state is

represented by some lattice with alternating layers of primal and dual structure representing

staggered parity check measurements. This allows the task of quantum error correction to be

abstracted to the construction of a specific cluster state lattice. The most commonly considered

of these is the foliated version of the surface code, known as the Raussendorf lattice [136, 138–

140]. To understand how 3D topological quantum computation is achieved using a Raussendorf

lattice, it is therefore useful to first consider the simpler 2D toric code.

The toric code

We now provide an introductory overview of the toric code. For a more in-depth description,

especially with respect to the associated homographic theory, see Ref. [141].

An L×L toric code is defined by an array of 2L2 data qubits arranged on the edges of a

square lattice, as depicted in Figure 2.26. A plane enclosed by a loop of four adjacent edges

is a face, as depicted by red and blue loops Figure 2.26. The state’s L2 − 1 Z-like stabilizer

generators are four-party Z parity operators associated with each face of the lattice. The L2− 1

X-like generators are similarly associated the faces of the dual lattice, formed by swapping the

lattice’s vertices and faces. For a given primal (dual) face F (F ∗), we introduce the boundary

map6 ∂, such that the edges enclosing a face are given by ∂(F ) (∂(F ∗)) and thus the Z- and

X-like generators by

KZ
F =

⊗
i∈∂(F )

Zi and KX
F ∗ =

⊗
j∈∂(F ∗)

Xj , (2.38)

which are often referred to as plaquette and star operators respectively, in reference to their

shape on the primal lattice. We now observe that set of all Z- and X-like stabilizers, SZl and

SXl∗ , are represented by the set of topologically trivial7 loops {l} and {l∗} on the primal and

dual lattice respectively. It is straightforward to see that any two trivial primal and dual loops

must therefore intersect on an even number of qubits such that[
SZl , S

X
l∗
]

= 0 ∀ l, l∗ (2.39)

(and two Z- and X-like stabilizer trivially commute).

6 For further details on this operation and its use in homology with respect to the surface code, see Ref. [141].
7 A topological object is defined as trivial if it can be deformed to a point by continuous deformation of its

boundary.
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Figure 2.26: A 5×5 toric code. The primal and dual lattices are depicted in solid and dashed
grey and depict the represent the possible loops of Z- (in blue) and X-like (in red) operators
respectively. As shown, stabilizer generators in Z (X) are represented as topologically trivial
loops that enclose a face on the primal (dual) lattice. Products of stabilizer generators will
operators represented by larger loops on their respective lattice. Similarly, the first qubit’s
logical operators, Z̄1 and X̄1, are represented by non-trivial horizontal and vertical loops on the
primal and dual lattice respectively, and vice versa for the second. Equivalent logical operators
are formed by products of logical Z (X) operators and Z-like (X-like) stabilizers, represented
by deformed non-trivial loops on the primal (dual) lattice. The bottom- and right-most dashed
qubits represent the qubits on the top- and left-most of the lattice, thereby producing the
lattice’s toroidal structure. The red-blue divided qubit highlights the qubit on which the logical
operators necessarily anti-commute.

The Hilbert space stabilized by the 2L2 − 2 generators on 2L2 qubits is four-dimensional,

thereby allowing two logical qubits to be defined. A state’s logical operators are those which

commute with the all stabilizers but aren’t themselves stabilizers. Hence on the surface code the

logical operators are the Z- and X-like Pauli operators represented by non-trivial loops on the

primal and dual lattice respectively. As depicted in Figure 2.26, X̄1 and Z̄1 can be associated

with a non-trivial horizontal primal loop and a non-trivial vertical dual loop respectively,

and vice versa for X̄2 and Z̄2. Just as products of stabilizer generators are represented as

topologically deformed trivial loops, products of stabilizers and logical operators are deformed

non-trivial loops, and hence two logical operators are equivalent if one can be deformed into

the other by a continuous deformation. All pairs of non-trivial horizontal primal and vertical

dual loops must intersect on an odd number of qubits, whereas any other operator pairing does
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Figure 2.27: The two types of parity check measurements implemented in the toric code and
their associated circuit diagrams.

not overlap on any qubit; this ensures that the desired two-qubit logical commutation relations

are obeyed, with{
X̄1, Z̄1

}
=
{
X̄2, Z̄2

}
= 0 and

[
Ā1, B̄2

]
= 0 ∀ Ā, B̄ ∈ {X̄, Z̄}. (2.40)

As with non-topological stabilizer codes, local Pauli errors are detected by performing the

parity check measurements associated with each stabilizer generator. Practically, this is achieved

by the entanglement of four face qubits with a single ancilla qubit which is then measured,

as depicted in Figure 2.27. For each primal (dual) face F (F ∗) associated with the operator

KZ
F (KX

F ∗), measurement results of +1 (success) and −1 (failure) are found for even and odd

numbers of X (Z) errors on face qubits respectively. The set of all parity check results from

primal (dual) lattice faces, known as the error syndrome, is represented by a set of vertices

on the dual (primal) lattice. An example of an error syndrome is depicted in 2.28a. It follows

that strings of adjacent X (Z) errors can be represented as paths (i.e. an open sequence of

edges) on the primal (dual) lattice. In the +1 case, zero, two and four X (Z) errors correspond

to zero, one, and two primal (dual) paths passing through the primal (dual) face respectively.

Similarly, in the −1 case, three or one X (Z) errors indicate a primal (dual) path’s endpoint

with or without a passing path respectively. For example, if an X error occurs on a single

qubit (and no others elsewhere) as in Figure 2.28b, both adjacent parity checks will return a

−1 eigenvalue, indicating that an error path ends in either face. However, the exact error path

is not known and may not have the lowest possible weight, such as in Figure 2.28c. It is this

ambiguity between possible error paths that can cause error correction to fail.

The process of converting an error syndrome to some correction operation that aims to

remove errors from the quantum code is known as decoding. For the toric code, this is can

be achieved by mapping the error syndrome to the completely connected syndrome graph

where each vertex represents an error path’s endpoint and edge weights the path length

between them, as depicted in a) and b) of Figure 2.29. For an iid error model (where qubits

experience uncorrelated errors occurring with equal probability), finding the most probable error

is equivalent to finding the syndrome graph’s minimum weight perfect matching (MWPM). A

perfect matching of a graph is a set of non-adjacent edges that include all vertices of the graph;
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Figure 2.28: Basic error syndrome examples. a) an error syndrome from primal (Z-like) parity
check measurements; importantly, this is the only information on the errors known to the
decoder. b) & c) two possible real-world errors that could have caused the error syndrome
in a). Note that any possible errors lines with endpoints in the bottom two faces could have
also caused the same syndrome, (albeit with lower probability in an uncorrelated error model).
Also note that the top two parity checks in c) succeed even though errors had occurred on
the measured qubits and importantly that this is indistinguishable from in b) where no errors
occurred on said qubits.

a MWPM is a perfect matching where the sum over a matching’s edge weights is minimised.

Note that there may be multiple solutions to the MWPM problem, as depicted in c) and d)

of Figure 2.29. Since each edge weight represents the number of errors required to create the

associated error path, a solution to the graph’s MWPM represents the lowest number of errors

that could have caused the syndrome, and hence the most (or equal most) likely error to have

caused the syndrome8.

Up until this point we have assumed that errors only occur on the physical qubits and that

all other operations are errorless. In reality, almost all operations will have some associated

error probability. An important additional error to consider is measurement error, or noisy

measurement, whereby a parity check incorrectly fails, returning a −1 eigenvalue. In a single

round of parity checks, such an error is indistinguishable from a true physical error. However,

8 N.B.: correcting the error which is most (or equal most) likely to have caused a given syndrome is not
necessarily the same as finding a correction operator that corrects the syndrome with maximum probability,
which is found by a maximum-likelihood decoder (MLD) [142]. In an MLD, all error configurations that may
have caused the observed syndrome are considered and weighted by their probability; the correction operator
that is chosen is then that which maximises the probability of correction across all possible configurations.
However, MLD is computationally equivalent to minimising the free energy of a particular spin-glass model
[138, 142], for which no efficient algorithm known (although some efficient cases do exist [143]). In practise, an
MLD is approximated by finding a single error with maximum likelihood, such as via Kolmogorov Blossom
V’s implementation of Edmond’s algorithm for solving the MWPM problem [144, 145], which allows for fast
decoding with a threshold only 0.6% below that of an MLD [143].
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this error can be distinguished after multiple rounds, in which the syndrome from a physical

error will persist, whereas that of a measurement error will not. This changes the decoding

from a 2D to 3D problem in which vertices representing error path end points are mapped to

lines in syndrome spacetime. A full circuit-level error model where all gates are subject to noise

(which includes noisy measurement) is known as a circuit-level noise model [146].

Once a correction operator for the syndrome has been found, it is applied to the qubits of

the code; in the topological picture, a correction is a set of open paths that connect pairs of

error path endpoints. When these paths are combined, a set of loops are created with the actual

error paths and one of two case occur: either all loops are topologically trivial, or a non-trivial

topological loop exits. In the former case, all trivial loops correspond to stabilizers on the state

and hence do not change it, such as in Figure 2.29c, whereas in the latter case a non-trivial loop

is produced and a logical operator is applied to at least one of the encoded qubits9, such as in

Figure 2.29d. Note that in practise, correction operators need not be physically applied, but—as

with those in MBQC—can be applied offline during classical processing of measurement results.

This is known as updating the logical qubit’s Pauli frame.

Because a non-trivial loop must circumnavigate the entire torus vertically or horizontally,

the probability of a correction operator producing a non-trivial loop will depend on the code’s

size L. For low error probabilities producing shorter error paths, increasing L will decrease the

probability of correction producing a non-trivial loop. For high error probabilities producing

larger error paths, the probability of a correction producing a non-trivial or trivial loop becomes

equal, and so the encoded qubit experiences some probabilistic logical error. The error probability

below which logical errors can be increasingly suppressed by increasing L is known as the

threshold error rate pth. As in percolation theory, pth is found from the crossing point in a

decoder’s success rate on codes across a range of different L. Theoretically, if p < pth, then

errors on logical qubits can be arbitrarily suppressed by taking L→∞; practically, for p� pth

a negligible error rate can be achieved for even moderate L. For MWPM on the toric code,

thresholds of pth ≈ 10%, 2.9%, and 1% are found for perfect measurements, noisy measurements,

and circuit-level noise respectively, and are the highest known thresholds of any code [140,

147–150].

Other surface codes

While the toric code provides an elegant example of a topological code, it is not necessarily the

most preferable surface code to implement in practise. For example, encoding qubits requires

increasing the code’s topological genus g (loosely equal to the number of topological holes in

the object, such that the g = 1 for the torus, g = 2 for the double torus, etc.), making the

arbitrary creation of new qubits and the architecture’s physical embedding highly non-trivial.

9 Note that an even number of non-trivial loops of the same type will enact a logical identity, e.g. two disjoint
X-like vertical loops enact the logical operation X̄2

1 = Ī2.
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Figure 2.29: Decoding an error syndrome on the toric code. a) An example set of six X errors
and their respective error paths. b) The syndrome’s distance graph where edge weights denote
the minimum error path size needed to connect them (given by the Manhattan distance).
Note that edges of weight ≥ 4 have not been depicted. To find the highest-probability error
configuration the minimum weight perfect matching algorithm is used to find the lowest-weight
error path that could have produced the syndrome. In this case there are two possible solutions,
depicted by c) and d). c) A solution that corrects the original error by either correctly undoing
the original error or completing a trivial loop to enact a trivial stabilizer. Note a correction
operator that links multiple error paths into a single loop is also a valid correction. d) A solution
that fails to correct the original error by producing a non-trivial loop, representing a logical
operation on the encoded qubit. In this case, because the X-like loop is non-trivial along both
the vertical and horizontal axes, the two-qubit correlated logical error X̄1X̄2 is applied.
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Figure 2.30: Variants of the surface code.

However, alternative surface codes exist that allow for more practical implementation. We shall

describe three common variants here, namely the planar, hole qubit, and twin hole qubit codes,

as depicted in Figure 2.30 and described in Refs. [142, 151, 152]. Note that in the following

description, logical qubits are defined by their primal version, but equivalent versions can be

defined on the dual lattice.

In the planar code, depicted in Figure 2.30a, X̄ and Z̄ logical operators terminate on the

plane’s smooth (primal) and rough (dual) boundary qubits respectively. Generators on the

boundaries are reduced to three-body operators; topologically, paths that begin and end on

the same boundary are now trivial, as depicted. Because endpoints of X (Z) error paths that

terminate on a smooth primal (rough dual) boundary will not be detected by any Z-like (X-like)

parity check, the decoding problem must be updated; see Ref. [150] for further details. As with

the toric code, below pth errors can be arbitrarily suppressed by increasing the plane’s size.

In a hole qubit surface code, depicted in Figure 2.30b, the surface’s external boundary

is entirely smooth but some internal parity checks are not enforced, producing a smooth

boundary hole in the code. Logical X̄ and Z̄ are then produced by non-trivial paths connecting

the external boundary to the internal hole boundary and loops around the hole respectively.

Two-body X-like parity checks are enforced on the boundary’s corners, as depicted, and so

X-like paths connecting external-to-external or internal-to-internal are trivial, as depicted in b)

and c) respectively. A hole can be grown by turning off an adjacent parity check, and therefore

also moved by re-enforcing the original one. Below pth, logical X errors are suppressed by

increasing the minimum distance between a hole and boundary and logical Z by increasing the

hole’s perimeter.

In a twin hole qubit, depicted in Figure 2.30c, two different smooth boundaries are created

internally in the code, with logical X̄ and Z̄ produced by a path connecting hole boundaries

and a loop around one (or the other) respectively. This can be seen as two hole qubits that
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have been redundantly encoded to form a single qubit who’s logical operators are independent

of any external boundary, which can be arbitrarily far away (as indicated by the dashed qubits).

Below pth, logical X errors are suppressed by increasing hole separation and logical Z by both

hole’s perimeters.

Because twin hole qubits are independent from any boundary, they are an ideal candidate

for use in a large-scale quantum computer. We shall later see how two-qubit logical operations

can be performed between two twin hole qubits by their topological braiding. This allows us

to envisage a large-scale architecture consisting of some blank canvas of continuous surface

code in which holes can be created, moved and destroyed at will to enact a given quantum

computation.

A logical Z̄ measurement of a twin hole qubit can be straightforwardly achieved by reinforcing

both hole’s parity checks, thereby measuring the non-trivial Z-like operator. However, direct

measurement of logical X̄ would require performing a very high-weight X-like parity check (as

a string of local X measurements would anticommute with adjacent parity checks). Instead,

this is achieved by fusing the two holes into a single hole that fully encompasses the qubits

supporting X̄, such that they can be individually measured in the X-basis to recover the parity

check’s eigenvalue.

Finally, we note that other many other topological surface codes exist which have not

been discussed here. These include (but are not limited to) the rotated-picture surface code

[153–155], colour codes [134, 156–159], higher-dimensional surface codes [142, 160, 161] and

colour codes [162–164]. While we shall only focus on the original surface code, we note that

from an architectural standpoint, creating different quantum error correction code lattices is

just a matter of altering the renormalization process’ particular cellulation and therefore does

not directly affect processes any lower in the architecture.

Error correction on the Raussendorf lattice

To adapt the surface code for implementation in an LOQC architecture, the surface code can be

clusterized into a foliated cluster state lattice known as the Raussendorf lattice [138], as shown

by Figure 2.31. In this picture, alternating rounds of parity checks are mapped to adjacent

2D layers in a 3D lattice. To perform a single round of parity checks, all qubits in a layer

are destructively measured in the X-basis; for ancilla qubits, this performs the desired parity

check on the four adjacent data qubits, whereas for a data qubit, this teleports the data qubit

onto that of the next layer. As such, the foliated surface code can be intuitively derived as

the projection of the 2D surface code onto a 3D state that replicates the surface’s state in

spacetime. Furthermore, as shown in Section 2.2.1, because a Hadamard gate is implemented

after each teleportation in a linear cluster, the CNOT gates required for X-like parity checks

can be implemented as a CZ applied between two instances of teleportation.

Although the derivation of the Raussendorf lattice from the surface code provides an
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Figure 2.31: Foliation of the surface code. a) Layers of consecutive parity checks on a single
layer of the surface code. In each layer data qubits are entangled to the ancillae qubits of two
adjacent faces that are measured for the face’s parity check. b) A unit cell of the 3D foliated
lattice created by clusterization of the surface code depicted in a), known as the Raussendorf
lattice. This is produced by producing a separate layer for each round of parity checks in a)
and entangling time-adjacent data qubits as linear cluster states. Given their adjacency, white
and coloured qubits are referred to as time- and space-like qubits in this picture respectively.

intuitive construction, we now discard the metaphor and address properties of the 3D code

directly, as originally described by Raussendorf, et al. in Refs. [136, 138–140]. As previously,

the forthcoming description will focus on the definition of primal qubits, but can equivalently

be performed in the dual case.

Firstly, we divide the qubits into two types, associated the with their placement on the faces of

a primal and dual lattice, depicted in Figure 2.32 by black and red vertices respectively. Ignoring

boundary conditions for now, we define the primal lattice L = {C,F,E, V } as a sequence of

primal cells C, faced F , edges E, and vertices V , and the dual lattice L̄ = {C̄, F̄ , Ē, V̄ }
equivalently. From the self-duality of the simple-cubic lattice, it is easy to see that

V ∗ = C̄, E∗ = F̄ , F ∗ = Ē, C∗ = V̄ , (2.41)

where (·)∗ is the dual map. Hence dual qubits associated with faces F̄ are associated with edges

E in the primal lattice and vice versa, as depicted in Figure 2.32. The state’s primal stabilizer

generators, each associated with a qubit sitting on primal face, are therefore given by

Kf = Xf

⊗
e∈∂(f)

Ze ∀ f ∈ F, (2.42)

and similarly for all dual faces f̄ ∈ F̄ . By multiplying the six generators associated with the

faces of a single primal cell ∂(C) we associate an X-like parity check with each primal cell c,

such that

Sc =
⊗
f∈∂(c)

Xf ∀ c ∈ C, (2.43)
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Figure 2.32: The Raussendorf unit cell. Unlike the unit cell depicted in Figure 2.31b, no
distinction is made between time-like and space-like qubits, but rather qubits are labelled by
their placement on faces of the primal (black) or dual (red) lattice. As such, the cell above
depicts a primal lattice parity check and detects Z-like errors on black qubits; by interchanging
black and red qubits the equivalent dual lattice parity check cell which detects Z-like errors on
red qubits.

with X-like parity check operators similarly defined for the dual lattice. In the 3D picture we

can thereby associate X-like operators on primal (dual) qubits with collections of primal (dual)

faces, i.e. surfaces, such that Sc is represented by the (topologically trivial) closed cell c.

We now consider the code’s 3D logical operators X̄ and Z̄. Consider a defectless block

of 3D Raussendorf lattice enclosed by smooth primal boundaries defined by the cell parity

checks of Equation 2.43. Now consider the creation of a twin hole qubit in the first layer, such

that the two cell parity checks associated with the defect faces are broken, creating the logical

operators depicted by Figure 2.30c. By multiplying the Z-like logical operators defined on the

defect’s boundary by the broken stabilizer, a five-face check is produced associated with a

protrusion of the lattice’s boundary. Hence, by replicating the first-layer defect in each further

layer to the opposite boundary a non-trivial defect region is produced with a logical operator

described by X operators on the defect’s boundary, represented topologically by the surface

of a tube, with Z-like operators only existing on the farthest layer. By a similar argument

the X-like open line connecting defects is projected to a surface of X operators represented

by an open plane connecting the two defect regions and terminating on the far layer such

that the desired anti-commutation relation of Figure 2.30c is recovered. These logical operator

correlation surfaces and the possible continuous deformation of their boundaries are depicted

in Figure 2.33. Measurement of the 3D Z̄ and X̄ operators is performed analogously to the

twin hole case, achieved by terminating defect tubes and merging them respectively.

Because both the primal and dual correlation surfaces of logical qubits (including during

their creation and measurement) consist only of Pauli X physical qubit operations, only Z-like

errors need be corrected. As in the 2D case, sequences of Z errors on adjacent primal qubits

(those which sit on faces sharing an edge) can be represented by paths composed of adjacent
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Figure 2.33: Logical operators on the Raussendorf lattice. Operators X̄ and Z̄ that were
previously represented by topologically non-trivial open and closed lines in the surface code are
mapped onto topologically non-trivial open and closed surfaces on the 3D foliated code respec-
tively. Shaded surfaces and solid edges of X̄ denote Pauli X operators on qubits, whereas they
represent X and Z operators (the latter highlighted by a lighter shade) on Z̄ respectively; dashed
edges are used to highlight surface boundaries with no associated operator. Anticommutation is
achieved by X̄ and Z̄’s overlap on the single qubit shared by the surface’s far boundaries. Also
depicted are the deformation of the logical operator surfaces due to stabilizer multiplication.
Note that the new axis has been labelled time in accordance with the measurement-based
implementation of the Raussendorf lattice.

dual edges, such that a cell-associated parity checks only returns a −1 eigenvalue when an

error path terminates inside it. From the state’s stabilizers, closed loops of Z-like operators

on primal qubits are equivalent to closed X-like surfaces on the dual lattice and vice versa. It

follows that if the error loops are topologically trivial, then so are the correlation surfaces and

so no logical operation applies. For example, if a correction operation produces a primal Z-like

loop that encircles a primal hole, the equivalent correlation surface is homologically equivalent

to that of the tube-like Z̄ operator, and so a logical error is applied. An equivalent argument

for X̄ can also be made in the case of error paths that span from one hole to the other. The

task of decoding is therefore to find correction operators (albeit only applied as a Pauli frame

update) that produce trivial closed loops and resembles that of decoding the surface code in

the presence of measurement errors. As before, optimal decoding is known to be a classically

hard problem, being computationally equivalent to minimising the free energy of a particular

spin-glass model [138, 142], although the same heuristic methods can be applied as for surface

codes.

A key advantage of the topological code presented by Raussendorf et. al. is its ability to

tolerate depolarising, loss and construction errors. In the lossless case with preparation, gate,

storage and measurement errors, the code achieves a threshold of 0.75%. Qubit loss during
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Figure 2.34: Error thresholds on the Raussendorf lattice. a) The shaded region depicts the
combinations of loss and computational error probabilities, ploss and pcomp, under which error
correction is possible. Specifically, pcomp is the probability of iid depolarising errors occurring
during qubit preparation, storage, and measurement, and ploss is the probability of qubit loss
occurring before or after entangling CZ operations in lattice construction. Red datapoints depict
numerical simulations of code thresholds using an adapted MWPM decoder; blue and green
datapoints shows the previously known threshold [139] and the cubic lattice site percolation
threshold respectively. Reprinted with permission from Ref. [165]. Copyright (2010) by the
American Physical Society. b) Green and blue shaded regions depict combinations of bond
failure rate pbond and measurement error pth under which error correction is possible with
adaptive and non-adaptive measurements respectively. Specifically, pbond is the probability
that any CZ operation fails (and is heralded), and pth is the probability that some error
causes a measurement outcome to be flipped. The triangular datapoints represent numerical
threshold simulations; the red datapoint depicts agreement with the threshold found in Ref.
[149]. Reprinted with permission from Ref. [166]. Copyright (2017) by the American Physical
Society.

construction and measurement may be corrected by altering the parity check structure of the

code. If a qubit is lost, the stabilizers associated with the two adjacent cells are multiplied

together to form a supercheck operators around lost qubit; for multiple adjacent losses, even

larger supercheck operators are straightforwardly formed. Using this technique, up to 25%

qubit loss can be tolerated at the cost of a reduction in tolerance to computation errors,

from which the correctable error region of Figure 2.34a is found [165]. This work was later

expanded to include dynamic loss during all stages of computation, allowing a probability of

loss of up to ≈ 2–5% per operation. Note that neither of these methods require any adaptation

from above scheme and can be implemented purely during classical co-processing of errors.

Supercheck operators may also be leveraged to correct for heralded stochastic bond loss on the

Raussendorf lattice, allowing up to 6.5% bond loss non-adaptively and up to 14.5% by adaptive

Z measurements, as depicted by Figure 2.34b.

Aside from the code’s tolerance for a variety of errors, there are a number of reasons

why it is particularly suitable for use in LOQC. Firstly, the Raussendorf lattice has a low

degree of four, thereby requiring spanning paths in both directions of only a single plane per
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renormalized block, reducing the demand on cluster state percolation. Stochastic imperfections

in the percolation and renormalization process may also be further accommodated by the code’s

bond loss tolerance. Secondly, supercheck correction for the loss of Raussendorf data qubits

heralded at the point of measurement occurs within the classical decoding algorithm and so no

additional penalty for unheralded data qubit loss is incurred. Finally, if high-accuracy MZI’s

can be realised, a reduction in computation errors may allow a significant degree of qubit loss to

be tolerated. For example, if a per-operation computational error rate of 0.1% can be achieved,

then up to 20% qubit loss (in lattice creation and measurement) is tolerable. In combination

with bond loss tolerance, this opens the door to an architecture where the Raussendorf is

directly constructed (i.e. without renormalization) through the use of highly-boosted fusion

gates.

However, regardless of the specific implementation, the goal of the architecture’s QECC is

ultimately to produce fault-tolerant and error-corrected logical qubits. Finally, we now consider

how universal quantum computation is achieved with topological qubits.

2.4.3 Topological quantum computation

Given an error-corrected logical qubit, it remains to show that universal quantum computation

is possible. As described in Chapter 1, universal quantum computation can be achieved via the

universal gate set {H,T,CZ} (where we have replaced CNOT with CZ). We shall now show

how two-qubit CZ entangling gates may be implemented in the code natively via topological

braiding of twin hole qubits, and single-qubit H, S and T gates through use of magic state

injection.

The two-qubit CZ gate can be implemented by the topological braiding, or monodromy,

of two primal twin hole qubits, as depicted in Figure 2.35. Take two primal twin hole qubits,

with logical operators X̄1, Z̄1 and X̄2, Z̄2 respectively. As shown in Figure 2.35, it is easy to

see that by passing a hole of one qubit through the centre of another changes the topology of

lines connecting both holes. Specifically, the operator X̄1 (X̄2) after braiding is topologically

equivalent to that of X̄1Z̄2 (Z̄1X̄2) before braiding (with Z̄1 (Z̄2) left unchanged), and therefore

the action of a CZ gate is produced. The same braiding operation between a primal and dual

twin hole qubit can alternatively be used to produce a CNOT operation; for more details on

entanglement generation via topological qubit braiding, see Ref. [136].

Magic state injection and distillation

As introduced in Chapter 1, no single code can support a transversal and universal gate set [24],

and so missing gates must be supplemented using other methods in all QECC’s. In our case,

the foliated surface code does not allow H, S or S gates to be implemented transversally10 and

10 Technically, the Hadamard gate may be implemented by some combination of a transversal H and lattice
deformation [141], such as the scheme presented in Ref. [168]. However, in practise this is a cumbersome process
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Figure 2.35: A topological CZ. Braiding one hole of a primal twin hole qubit around that of
another enacts a CZ between both logical qubits. This can be seen by noting that the middle
panel’s red-shaded loop is a stabilizer of the surface code, such that X̄1 → X̄1 ⊗ Z̄2 (and
X̄2 → Z̄1 ⊗ X̄2). When this process is replicated on the foliated code, or equivalently visualised
as the surface code evolving through time, the braiding operation on the right is produced with
logical operators depicted. The left and right diagrams’ concepts are taken from Refs. [141] and
[136, 167] respectively.

so must also be included. Such gates may be implemented in a measurement-based fashion

using ancillary magic states [91]. Firstly, consider the task implementing H, S and T via magic

state injection in the circuit model. To achieve this consider the two magic states

|Y 〉 = SH |0〉 =
1√
2

(|0〉+ i |1〉) and |A〉 = TH |0〉 =
1√
2

(|0〉+ ei
π
4 |1〉), (2.44)

used to implement measurement-based T and S using the circuits depicted in Figures 2.36a

and 2.36b respectively. Note that in the case of T , the correction SX requires the injection

of a further |Y 〉 state. In addition to the S gate, |Y 〉 may also be used to implement SHS, as

shown in Figure 2.36c and hence the Hadamard gate via the further injection of two additional

|Y 〉 gates.

However, such injection circuits cannot be implemented within the code in an error-corrected

manner. Instead, multiple copies are noisily injected and consumed to produce a single low-noise

copy in a process known as magic state distillation (MSD) [25]. Suppression of errors is achieved

by concatenation of the Reed-Muller code [169] on top the base code. Because the [[15, 1, 3]]

requiring SWAP gates and so is not appropriate for a cluster-state architecture.
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Figure 2.36: Magic state injection circuits.

Figure 2.37: Magic state injection on the foliated surface code. a) A depiction of initialising
a twin hole qubit in as a magic state within the foliated surface code. b) & c) Topologically
encoded implementations (up to corrections) of the magic state injection circuits depicted in
Figures 2.36a, 2.36b and 2.36c respectively. These circuits have been simplified using the a
selection of equivalence relations originally described in Ref. [136], from which the figure is
adapted.

Reed-Muller code supports transversal T̄ operations [170], distillation follows by performing a

noisy T̄ (using magic state injection) followed by a single round of the code’s parity checks.

Below some threshold error rate, a T̄ is applied with noise below that of the constituent T

gates when the trivial syndrome is returned. By concatenation of the Reed-Muller code, an

arbitrarily noiseless T̄ gate is achieved which may then be unencoded for use on the base code.

To distill magic states in the surface code (foliated or otherwise), they must first be injected

onto qubits in the code. In a twin hole surface code, this is achieved by shrinking and moving

the logical qubit’s holes together so that their boundaries overlap on a single qubit q supporting

X̄ = Xq. As TZT † = Z, T̄ is then implemented by applying Tq such that X̄ → T̄ X̄T̄ †. After

T̄ is applied, the holes may be grown and separated back to their required size and distance,

however, in the intermediate stages the logical state is more susceptible to uncorrectable errors,

causing noise during implementation. The above process is similarly performed for S gate

injection.

In the foliated code, magic state twin hole qubits are created using the above process, as

depicted in Figure 2.37a, which are then topologically injected to produce the desired gate.

Figures 2.37b and 2.37c depict the topological implementation of the circuits depicted in

Figures 2.36a, 2.36b and 2.36c respectively (up to correction operators). For a description of

the associated magic state distillation using a concatenated Reed-Muller code on the foliated

surface code, see Appendix A of Ref. [136].

Finally, we note that concatenated codes which do not require magic states can be used to

achieve universal fault-tolerant quantum computation [26]. In this approach, two codes that
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individually support two different transversal gates sets are concatenated such that the non-

transversal gates on one code can be implemented transversally on the other and vice versa. For

example, the 7-qubit Steane code [171] and 15-qubit Reed-Muller code [170] support transversal

{S,H,CNOT} and {T,CNOT} respectively, and so can be concatenated to form a [[105, 1, 9]]

code. However, recent analyses have shown that in their current form such codes have both lower

thresholds and higher resource costs than an equivalent surface code implementing magic state

distillation [172]. Furthermore, such codes have yet to be extended to their foliated versions,

which would be expected to further increase resource costs and decrease error thresholds. As

such, concatenated code schemes have yet to be suggested for use within the context of an

LOQC architecture.

We have thus shown that as long as an error rates can be reduced below the distillation

threshold, then magic state injection—and hence universal quantum computation—can be

theoretically achieved. In practise however, bringing down resource overheads associated with

the high-level architecture is crucial to experimental implementation. For example, independent

of a specific implementation and using state-of-the-art MSD and QEC methods, from Table 1.1

we can see that performing the supra-classical 1000-bit Shor’s algorithm with a gate error rate

and speed of 10−4 and 100kHZ would require over a surface code of ≈ 13 million qubits [27]

(and would take ≈ 11 hours to complete). Furthermore, resource reductions must be achieved

within the context of complex implementation-specific constraints as well as non-trivial error

models. For example, so far we have assumed a practically limitless capacity for simultaneous

qubit storage and retrieval, whilst ignoring the potentially catastrophic effect of correlated

Pauli errors (such as from multi-photon contamination). As such, we conclude this chapter

with a discussion of the open questions remaining for an LOQC architecture that may further

reduce both errors and resource costs.

2.5 Open problems for LOQC architecture design

There are a number of open questions in the study of LOQC architectures that must be

addressed before such a device is realised. Here we shall focus on those questions related to

fundamental changes in the architectural model itself, rather than specific engineering challenges

of building and optimising the physical device. The following sections present a selection of

the main possible improvements and optimisations of an LOQC architecture and the reader is

directed to Ref. [17] for a more detailed exposition.

2.5.1 Physical device size

In most architectures, scaling up qubits counts demands devices with increased numbers of

space-like separated qubits. However, as we have seen, an LOQC device must produce and store

large 3D cluster states of space-like and time-like separated qubits. Specifically, in LOQC’s
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current architecture the device’s classical co-processor must know the exact structure of large

volumes of percolated cluster state for pathfinding algorithms required by renormalization.

While in our previous description such states are abstractly considered to exist in their entirety

at a single point in time (after which they are operated on and consumed), practically this

would require photons to be stored in delay lines for an unfeasibly long time. An LOQC device

is therefore expected to avoid this problem by using a windowed architecture.

In the windowed LOQC model, only a small window of the state is ever alive at any one

time. The window of alive cluster state is then translated by the continual creation of cluster

state at one end of the device and measurement at the other, thereby producing the entire state

over time. Because of this restriction, theoretical models of high-level architectural processes,

such as renormalization, must be adapted to operate on a cluster state with only a limited

lookahead. To address the limitation of physical device size, we consider such a restriction within

the context of renormalization in Chapter 3.

2.5.2 Photon loss

Perhaps the foremost challenge facing an LOQC architecture is unheralded photon loss. The

two major sources of loss within the current architecture are due to active photon switches and

delay lines. Because of this, perhaps the most significant advance in modern LOQC architecture

design was the development of a ballistic architecture in which each photon only passes through

some constant number of switches. Although this represented a significant reduction in photon

loss rates, a recent model [16] requires a per switch loss rate of < 0.013 dB ≈ 0.3%, which

is currently orders of magnitude below current state-of-the-art photonic switches, especially

those with necessary operation speeds within the MHz to GHz range. For example, a “low-

loss” thermo-optical switch with a loss rate of 0.23 dB ≈ 5.2% operates at around 100kHz [74],

whereas a GHz-speed non-linear optical loop mirror has a loss rate of 0.6 dB ≈ 13% [76]. Further,

such a model assumes lossless delay lines (current state-of-the-art integrated waveguides suffer

from loss rates of 0.3 dB/cm ≈ 7%/cm [60, 173]), a push-button single-photon source, as well

as a heralded loss model.

Although future advances in optical switches and delay lines may reduce photon loss rates to

below those stated above, one significant challenge is tolerance to unheralded loss, where photon

loss is not heralded until measurement. While we have seen in Section 2.4.2 that unheralded loss

events may be tolerated by error correction on the Raussendorf lattice, renormalization crucially

relies on the successful measurement of tens, if not hundreds, of non-error-corrected qubits, and

so cannot tolerate almost any degree of unheralded loss. In its current instantiation, an LOQC

architecture would therefore require per-photon loss rates of a hundredth to a thousandth of

the maximum allowed rate on Raussendorf qubits, i.e. per-qubit loss rates at least as low as

4× 10−3 dB ≈ 0.01% to 4× 10−4 dB ≈ 0.001%, thereby requiring per-switch loss rates at least

another order of magnitude below these. Clearly such rates are out of reach of any scalable
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implementation in the foreseeable future, and so other approaches must be sought. To address

this problem, we present a novel approach to loss-tolerant teleportation known as stabilizer

pathfinding in Chapter 4.

If such methods are still not sufficient, loss-tolerance could alternatively be addressed

through loss-tolerant qubit encodings such as tree cluster states [127, 174, 175] or so-called crazy

graph encodings [17]. Although both schemes offer significant increases in loss tolerance, neither

has been shown to be loss-tolerantly constructible within a percolated LOQC architecture.

Whether such construction schemes exist therefore remains a significant open question within

LOQC architecture design, as any reduction in qubit loss rates prior to error correction will

significantly lower high-level resource costs.

2.5.3 State generation

From Section 2.3 it is clear that the multiplexing of probabilistic single-photon sources and

entanglement generation circuits represent a significant resource cost in the LOQC architecture.

Advances in deterministic single-photon sources or entanglement generation are therefore crucial

in reducing resource overheads.

One promising avenue for development is through the use of integrated light-matter sources

such as integrated quantum dots, nitrogen-vacancy (NV) centres in diamond or other solid-state

single-photon emitters [176–181]. While most current demonstrations remain experimental,

rapid progress has been made over the past decade, and so the prospect of future integration

within an otherwise all-optical device looms large on the horizon. If current engineering and

fabrication challenges can be addressed, the most immediate application of such sources would

be the provision of push-button single-photon sources. Even if such sources cannot achieve near-

deterministic operation, any significant improvement above the 10− 25% maximum emission

probability of non-linear optics sources would provide significant MUX resource reductions.

Another exciting application of such solid-state sources is in the deterministic generation of

small entangled states. Originally proposed by Lindner and Rudolph, the so-called cluster state

machine gun presents a theoretical mechanism for the production of linear cluster states of

unbounded length from the radiative emissions of processing spin states in an idealised quantum

dot system [182]. Although such proposals have only recently begun to be realised experimentally

[183], the prospect of on-demand generation of even small scale entangled photonic is promising

to a future LOQC architecture. If, for example, photonic 3-GHZ states could be generated

with even 10% probability, this would represent at least a three-fold improvement on the best

linear-optical alternative, even assuming a push-button single-photon source. More speculatively,

if cluster state machine guns outputting linear cluster states with probabilistic length could be

realised, perhaps entirely new ballistic architectures could be designed based on the percolation

of both resource states and their subsequent fusion.
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2.5.4 Renormalization

Finally, from the discussion of Sections 2.5.1 and 2.5.2 it is clear that successful renormalization

is a significant challenge given finite device size or even a low degree of unheralded loss.

Furthermore, even if such challenges can be addressed, renormalization presents an substantial

additional resource cost to the LOQC architecture. For example, the renormalization of a cubic

lattice with edge probability of p = 50% ≈ 2pc requires at least 63 = 216 physical qubits per

renormalized qubit (see Figure 2.25). (Note that this model does not account for heralded qubit

loss, the inclusion of which could easily increase counts above 1000 qubits per block, if not

more.)

Because of these challenges, an important open question to LOQC architecture design is

whether there exists an alternative to renormalization or at the very least an optimised variant.

For example, if a 3D variant of the 2D alternative to block renormalization [49] could be found

this would provide significant resource savings. On the other hand, if the costs associated

with entangled resource state generation could be sufficiently reduced (such as by use of a

cluster-state machine gun), and near-unit detector efficiencies achieved then the Raussendorf

lattice’s natural tolerance to bond loss may be sufficient for it to be percolated directly from

highly-boosted fusion of 5-GHZ states. Such an improvement would represent a significant

advance in the architecture as it would not only reduce the number of physical qubits per

logical qubit, but also allow low-level physical errors (such as loss) to be directly addressed by

error correction.
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3
Renormalization within a finite-sized physical device

In this chapter, we address a vital question that must be addressed for any high-level LOQC

architecture based on percolation: Can successful percolation be sustained using a physical

device of fixed finite size, and what size (cross-section and depth) of percolating cluster state

must be kept online at any point in time to do so? The methods we use to answer this question

differ from conventional treatments of percolation, and are based on pathfinding algorithms

which must exploit information in real-time about the outcomes of recent fusion operations.

We assume that photons making up the percolating cluster state can only be kept online

for modest periods using optical delays, which provide limited lookahead capability before

measurements must be performed on the photons. Our analysis can have implications for all

aspects of LOQC architecture by impacting hardware specifications at the component level.

Specifically, this work presents three key results: i) spanning paths can exist on extremely

elongated blocks of edge-percolated cluster state lattice, but only when the cross-sectional side

length exceeds some minimum length set by the lattice edge probability; ii) an LOQC device

with a physical-depth of only 10-20 layers is sufficient to produce MBQC qubit channels (within

a loss- and error-less LOQC architecture model); iii) long-range limited-lookahead pathfinding

can be achieved with algorithms of minimal complexity, thereby reducing associated classical

co-processing requirements for LOQC.

The chapter is structured as follows. In Section 3.1 we consider the minimum resource

requirements of percolated cluster state lattices for producing long-range single-qubit channels.

In Section 3.2 we present the main results of this chapter, where we define the random-node

pathfinding process, conjecture a condition of pathfinding success and present results from

numerical pathfinding simulations. Section 3.3 considers implications of the results presented

for LOQC architectures, identifying key architectural trade-offs and specifications. Finally, a

selection of open questions for future work are presented in Section 3.4.
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Figure 3.1: The minimum side length L = Lmin required for successful long-range block
percolation (Pt(p,Lt) ≥ 0.95 for Lt = 1000) as a function edge probability p for cubic lattice.
For a given edge probability, Lmin represents not only the smallest L required for pathfinding,
but also the smallest renormalization block size achievable. Inset: An illustrative example of a
block of percolated cubic lattice with a valid percolated path highlighted in red.

Supporting Python code for this chapter can be found at and cited using the DOI https:

//doi.org/10.5523/bris.2wmj58va0tejt23ojmkxlkf4nu.

3.1 Long-range percolation for single-qubit channels

Our first set of new results extends the study of lattice percolation for single-qubit channels

presented in Ref. [15], which was limited to the generation of the partially-amorphous1 and

anisotropic brickwork diamond lattice, built specifically with pf = 0.75 fusion gates. To do

so, we present a generalised model of percolation on elongated bond-percolated cubic lattices

and establish a relationship between the minimum side-length Lmin required for consistent

long-range percolation and edge probability p.

The model we use is as follows: consider a block of percolated Lt×L×L cubic lattice Lt
with edge probability p, where Lt � L, depicted inset in Figure 3.1. On Lt, we examine the

existence of an end-to-end spanning cluster, occurring with probability Pt(p,Lt). To produce a

reliable single-qubit channel, we specifically consider probabilities of percolation near unity,

Pt(p,Lt) ≈ 1. We therefore generally consider successful outcomes (for percolation and, in

later sections, pathfinding) as having probability of at least 0.95, and long-range as referring

to Lt ≥ 1000. These definitions are chosen such that if the above conditions are satisfied, a

renormalized qubit loss rate below 10−3 can be achieved (given reasonable assumptions of

1 Here partially-amorphous describes a lattice that may contain bonds other than those defined by the lattice
structure, such as diagonal edges or edges between nodes in non-adjacent layers. When constructing a brickwork
diamond lattice by the scheme presented in Ref. [15], this occurs for certain choices of fusion gate bases.
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renormalisation blocks with side-length O(10) in the scheme of Kieling, et. al. [47])2. Given

the known trade-off between correctability of qubit error and qubit loss for topological codes

[184], minimising loss rates is essential for maximising tolerance for unavoidable computational

errors. Such a low rate is also expected be a negligible contribution to renormalized qubit loss

in the face of other potential sources of error within the architecture (such as photonic qubit

loss, detector inefficiencies, distinguishability, etc.).

However, within this model, percolation phenomena are less-well studied than in the standard

regime. When considering finite-sized, elongated lattices such as Lt, it is challenging to make

analytic statements about the existence of spanning clusters, as can often be done for the

limit of infinite lattices. For example, while for a lattice Lt, one can find some p < 1 such that

Pt(p,Lt) ≈ 1, it is necessarily true3 that as Lt →∞, Pt(p,Lt)→ 0. As such, we highlight that

all results presented in this work are expected to have some minor functional dependence on

our specific definition of successful and long-range given above. Therefore, we apply a more

phenomenological and empirical approach to the relevant percolation effects, and within the

context of LOQC such results provide important information for designing an architecture.

We now consider the following question: What is the minimum side length Lmin required to

successfully produce a long-range spanning cluster C on Lt as a function of edge probability p?

To answer this question numerically, we have generated instances of 1000×L×L sized Lt for

a given p, and identified the minimum value L = Lmin for which Pt(p,Lt) ≥ 0.95. In Figure

3.1 we show values of Lmin over a range of p > pc. We observe that for edge probabilities

well above pc = 0.248 (the percolation threshold for a simple cubic lattice [185]), small Lmin

can be achieved (such as Lmin = 5 for p = 0.5), with small increases in Lmin providing large

reductions in p. However, as p approaches pc, the scaling in Lmin is less favourable, requiring

progressively greater increases in Lmin for incremental reductions in p. This scaling region

suffers from particularly punitive resource costs if used for MBQC, as the number of qubits in

Lt = 1000L2 scales quadratically in L. We also note that such a relationship for Lmin(p) can be

inverted to define pmin(L), such that for a given L, long-range percolation can only be achieved

for some p ≥ pmin.

Furthermore, we can consider the implications of these results for a renormalization-based

LOQC scheme. In this context, Lmin provides a lower bound on the side length for renormal-

ization blocks. Whether or not this bound can be reached depends on finding intersections

between spanning clusters connecting pairs of opposing faces within a single block as well as

between adjacent blocks. This is especially problematic for p close to pc as inter- and intra-block

2 This can be seen by noting that if the probability of creating 100 renormalized qubits is greater than 0.95,
then the probability of a creating a single renormalized qubit is (to a reasonable approximation) greater than

0.95
1

100 ≈ 0.9995, and thus the loss rate for said qubit is less than 10−3.
3 This can be seen by considering that the probability of no open edges occurring between two layers spanning

the cross-section of the block is (1 − p)L
2

, and hence the probability that this never occurs over Lt layers is

Γ = (1− (1− p)L
2

)Lt ≤ 1. Since a spanning cluster is contingent on this never occurring then Pt(L) < Γ, but for
p < 1, Lt →∞⇒ Γ→ 0, and therefore in the limit of infinite length, percolation never occurs.
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Figure 3.2: The renormalization process applied to a 2D lattice (existing in one time and one
spatial dimension) with limited-lookahead to create a MBQC single-qubit channel. The lattice
block can be divided into three regions in time: past, active and future. Past qubits exist in
the past, before time t, having already been created and destructively measured by the device.
Active qubits exist in the present between time t and t+W , having been created by the device,
but not yet measured. Future qubits exist in the future, after time t + W , and are yet to
be created. Here the red, dashed lines and highlighted edges correspond to the allocation of
renormalization blocks and renormalization paths respectively.

connectivity is sparse; however for p well above pc, the increased connectivity also increases the

likelihood such intersections occur.

3.2 Limited-lookahead pathfinding

In a physical LOQC device, L exists in one time and two spatial dimensions with Z3 node

coordinates (t, y, z) and size Lt×Ly×Lz. To construct L, at each time t from t = 0 to t = Lt,

a Ly×Lz layer of L is created and entangled to the previous layer at t− 1, where Ly and Lz

are fixed by the renormalization protocol. However, all-optical storage of Lt lattice layers in

time would require lengthy delay lines, producing a physical qubit loss rate that scales with

computation length (for some applications Lt is effectively unbounded); under these conditions,

it is highly unlikely such a scheme could succeed.

It is therefore expected that an LOQC device will have a finite fixed depth, storing only

a finite-depth window W of the lattice at any time t. In this model, depicted in Figure 3.2,

any classical co-processing algorithms applied to L suffer from a limited-lookahead, preventing

analysis of a complete L (as previously assumed by algorithms for MBQC and renormalization).

Under this limitation, previously-considered algorithms no longer apply, or their optimality

proofs and scaling efficiencies are no longer guaranteed. To address this, new non-trivial dynamic

algorithms must be designed.

However, finding optimality proofs for graph algorithms that only ever have partial knowledge
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Figure 3.3: A single iteration of the random-node LLP strategy with window length W applied
to a percolated 2D cubic lattice.

of a problem is highly non-trivial, and different input scenarios may require different algorithm

strategies for optimal performance. To study the limitations of the necessary dynamic algorithms,

we consider the aforementioned task of identifying single-qubit channels on percolated lattices.

Specifically, we extend the task of finding a spanning cluster presented in Section 3.1 to the

identification of a single end-to-end path, given a limited-lookahead. To do so, we next construct

a basic limited lookahead pathfinding (LLP) algorithm.

3.2.1 Random-node pathfinding

We now introduce some notation needed for describing the LLP algorithm. Consider again

the lattice Lt as defined in Section 3.1, with nodes labelled by their coordinates (t, y, z). We

define a layer lt as the subgraph of Lt induced by the 2D L×L layer of nodes at time t, that is

lt = L[{v = (t, y, z), ∀ y, z = 1, . . . , L}], where G′ = G[V ] denotes the induced subgraph G′ of G

by the node set V . We define a block Ba,b as the subgraph of Lt induced by the 3D block of nodes

within layers a to b (inclusive), that is Ba,b = L[{v = (t, y, z), ∀ t = a, . . . , b , y, z = 1, . . . , L}].
Note that under this definition Lt = B0,Lt . The nodes within Ba,b that are also part of spanning

cluster C of Lt are denoted Ca,b = C ∩ Ba,b and represent nodes that are potentially usable for

pathfinding. Similarly, Ct = C ∩ lt. In some Ba,b, Ca,b may contain more than one connected

component. Therefore, we also define Ca,b(v) = L[{v′ ∈ Ca,b : 〈v ↔ v′〉}] as the connected

component of Ca,b containing node v, where 〈v ↔ v′〉 indicates that there exists an open path
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connecting v and v′. Hence, if two nodes u and v are not path-wise connected within Ca,b,
then they must exist in disjoint connected components and Ca,b(u) ∩ Ca,b(v) = ∅. Lastly, the

superscript E-E denotes components that extend end-to-end across the layers indicated, e.g.

CE-Ea,b are the components in Ca,b that have nodes in both la and lb with the number of separate

end-to-end components given by n(CE-Ea,b ).

To represent a limited lookahead, we consider the restriction that at a given time t, we can

only have knowledge of the lattice structure within the finite block Bt,t+W of fixed window-length

W . This ‘visible’ block of lattice is known as the active block. At the end of every time-step,

the next far layer of lattice lt+1+W is revealed and nearest layer lt is removed, the active block

now becoming Bt+1,t+W+1 for time t+ 1.

This limitation requires us to consider an iterative approach to finding spanning paths,

which we shall call limited-lookahead pathfinding, where each time-step the algorithm must

choose a path inside the lattice based on only partial information of the lattice. Specifically, we

shall consider a low-complexity instance of pathfinding, which we call random-node pathfinding.

We consider a naive algorithm such as this to both identify a lower bound on the success rates

of general pathfinding strategies as well as their computational complexities. To find a path

P the following pathfinding algorithm is applied (depicted visually in Figure 3.3), starting at

t = 0, (with P = v0 for some v0 ∈ C0) and is repeated until success or failure occurs:

Random-node pathfinding:

1) Find far nodes. From the current path node vt in the nearest layer lt, find the set of

all nodes Ft = {v ∈ lt+W : vt ↔ v} in the farthest active block layer lt+W to which

a path exists (only considering nodes and edges within the active block). If F = ∅,
pathfinding fails.

2) Find path to far node. Randomly pick a far node ft from Ft, and find the shortest

path Pt = (vt, . . . , ft) within the window to it.

3) Find next layer node. Find the node in layer lt+1 that occurs furthest along Pt and

assign it to the next time-step path node vt+1. Append the (vt, . . . , vt+1) section of Pt,
to P. If the final node ft in P is a member of lLt , pathfinding succeeds.

4) Advance one layer. Remove layer lt and reveal layer lt+1+W .

The first thing to note about this algorithm is that it is far from optimal, and in fact is

almost the worst strategy one could apply (other than making deliberately bad path choices).

The only non-trivial analysis of structure occurs at step 3, where the action of finding the

furthest lt layer node allows the inclusion of paths that double-back on themselves, advancing

forwards and then back to layer lt before eventually reaching the final layer, an example of
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which is shown in step 3 of Figure 3.3. The most computationally expensive operation in the

algorithm occurs in step 1, when finding Ft. This operation consists of running Dijkstra’s

algorithm (for finding shortest paths on arbitrary graphs) from vt, thus providing random-node

pathfinding with an overall worst-case performance of O(|E|+ |V | log |V |) [186].

Finding optimal pathfinding strategies which demand only minimal values for W is very

challenging in general and the random-node strategy can be used to explore the worst-case

scenario, from which improvement may be made. Inevitably, more complex strategies that

require detailed analysis of the active block’s configuration are computationally expensive,

which is a major concern for real-time implementation in hardware devices. A secondary aim of

our work is therefore also to minimise the computational overhead required for pathfinding,

and the random-node strategy also adheres to this goal.

3.2.2 Successful long-range pathfinding

We now consider the conditions required for successful long-range LLP and show that these

can be framed in terms of standard block percolation. This aims to reduce the complexity of

analysing a dynamic pathfinding algorithm to the simpler problem of calculating percolation

statistics on small lattices.

First and foremost, pathfinding fails if no spanning cluster exists. To ensure that a path

does exist (with probability Pt ≥ 0.95 for a given pathfinding distance Lt), we immediately

require two conditions: p > pc and L ≥ Lmin(p). Having satisfied these, we then seek to identify

the conditions such that pathfinding almost certainly succeeds. In this section, we prove that

pathfinding always succeeds if the number of end-to-end components in each active block never

exceeds one, and subsequently conjecture that successful pathfinding is only achieved if the

probability of this number exceeding one is less than some small ε.

Before outlining our argument we assert two key assumptions made. Firstly, we assume

a unique spanning cluster always exists across L (where unique specifies that only one ever

exists), and hence exclude any cases where long-range block percolation does not exist (e.g. by

assuming L > Lmin(p)). The validity of this assumption is provided by recalling that for p > pc

the mean size of a finite cluster decreases exponentially in p [133], thereby preventing more

than one cluster from spanning the lattice. Given this assumption, failure therefore only occurs

from incorrect choices made during pathfinding. Secondly, we assume that at any given time,

the pathfinding algorithm may only have access to information of the lattice’s structure within

the active block, i.e. it cannot store in memory any information about past lattice structure,

nor gain preemptive knowledge of any future lattice structure. This allows us to consider each

individual active block as a single instance of block percolation on a small lattice, and hence

percolation statistics are constant across all active blocks.

Under these assumptions, the probability Ppf(Lt,W ) of pathfinding across Lt with window

length W , is given by the product of the probabilities P tpf(Bt,t+W ) that, at each time-step t, a
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path node vt+1 in Bt,t+W is chosen that still allows for successful pathfinding to distance Lt,

that is

Ppf(Lt,W ) =

Lt−W∏
t=0

P tpf(Bt,t+W , vt), (3.1)

such that for W = Lt, Ppf(p,W ) = P 0
pf(B0,Lt) = 1 (from our first assumption). However, for

W < Lt, the values of P tpf are less easily computed.

We can easily see that the probability of successful pathfinding given next node choice vt+1

depends on the probability that vt+1 exists in a component extending to the farthest layer,

that is P tpf(Bt,t+W | vt+1) = P (vt+1 ∈ CE-Et+1,Lt
) (where we recall that CE-Et+1,Lt

are the end-to-end

connected components contained within Bt+1,Lt that have one or more nodes in both lt+1 and

lLt). However, at any given time step, we cannot know whether vt+1 ∈ CE-Et+1,Lt
or not when

t ≤ Lt −W (by our second assumption). Instead, we desire some active block proxy condition

for P (vt+1 ∈ CE-Et+1,Lt
) based only on block percolation statistics.

Specifically, we are interested here in the case of Ppf(Lt,W ) ≈ 1 and hence P tpf(Bt,t+W ) ≥
1 − ε (where ε � 1) for all t. Ideally, we therefore desire some feature function of active

blocks F : Bt,t+W 7→ {0, 1}, such that if F (Bt,t+W ) = 1, then P tpf(Bt,t+W ) = 1 surely, but if

F (Bt,t+W ) = 0 then P tpf(Bt,t+W ) < 1. From this, we then conjecture that if lattice parameters

can be found such that P (F (Bt,t+W ) = 1)) ≥ 1 − ε ∀ t, successful long-range pathfinding

will be achieved. We now prove one such feature function to be the number of end-to-end

connected components within an active block, and thereby define a condition for W such that

P (F (Bt,t+W ) = 1)) ≥ 1− ε.
We find that one such feature function can be defined from the uniqueness of end-to-end

connected components, such that

F (Bt,t+W ) =

 1 if n(CE-Et,t+W ) = 1

0 if n(CE-Et,t+W ) > 1
. (3.2)

To see that this satisfies our feature function requirements, consider two possible structures

of Bt,t+W , either n(CE-Et,t+W ) = 1, or n(CE-Et,t+W ) > 1. In the case of n(CE-Et,t+W ) = 1, the previous

choice of path node was essentially irrelevant, since all connected nodes in the far layer Ct+W
can be reached from any vt ∈ Ct. If this condition is satisfied for every active block, then at each

time-step all choices of path node (using our pathfinding process) are practically equivalent,

and thus Ppf(Lt,W ) = 1. Alternatively, one can understand this by saying that if n(CE-Et,t+W ) = 1,

the current connected component CE-Et,t+W (vt) must be part of the spanning component Ct,Lt
extending to the final layer, or

CE-Et,t+W (vt) ∩ CE-Et,Lt 6= ∅, (3.3)

assuming that n(CE-Et+W,Lt
) = 1 (which holds for t+W � Lt, from the uniqueness of C0,Lt).
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Figure 3.4: A comparison between P (n(CE-E0,W ) = 1) on instances of W×20×20 edge percolated
cubic lattice and the success probability of pathfinding across a lattice of size 1000×20×20
with window-length W (with p = 0.3 in both cases). Note that the large cross-section (L = 20)
is necessary due to p close to pc ≈ 0.248, such that L > Lmin(p) (see Figure 3.1). This supports
the conjecture that P (n(CE-E0,W ) = 1) ≥ 1− ε is a necessary and sufficient condition for successful
pathfinding, achieved for some minimum window length. Here we find that successful pathfinding
Ppf ≥ 95% occurs for Wmin ≥ 16 and is achieved for ε ≤ 0.01, with both thresholds respectively
depicted by coloured lines.

Conversely, if n(CE-Et,t+W ) > 1, no choice of vt ∈ Ct can possibly allow for all nodes in Ct+W to

be reached, and hence presents a possibility that vt is not in a component that extends forward

to the final layer, vt /∈ CE-Et,Lt
. In such a scenario, two possibilities exist: either, equation (3.3) is

ultimately satisfied, indicating that a path passing through Ct,t+W (vt) can reach layer Lt, and

therefore allows successful pathfinding, or

CE-Et,t+W (vt) ∩ CE-Et,Lt = ∅, (3.4)

indicating that structure within Ct,t+W (vt) cannot contribute to pathfinding, and therefore

represents a dead-end, which causes pathfinding to fail. Note, due to the effect of finite block

side lengths L, there is always some non-zero probability that equation (3.4) is satisfied (such

as no open edges existing between nodes in Ct+W (vt) and Ct+W+1) and thus Ppf(Lt,W ) < 1.

This proves that the condition n(CE-Et,t+W ) = 1 satisfies our desired feature function requirements.

We now consider the lattice requirements such that P (n(CE-Et,t+W ) = 1) ≥ 1− ε ∀ t. To satisfy

this requirement, we define (for a given p and L) the minimum window length Wmin(L, p)

as the smallest W such that P (n(CE-Et,t+W ) = 1) ≥ 1 − ε ∀ t. Note that for L ≥ Lmin such a

minimum window length must exist; for any Lt, clearly P (n(CE-E0,W ) = 1) = 1 when W = Lt

(from the uniqueness of CE-E0,W ), but as W is decreased from Lt, either Wmin is found when
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Figure 3.5: Limited-lookahead pathfinding success probability Ppf(p,W ) for 1000×7×7 cubic
lattices found over a range of window sizes W and edge probabilities p. These results clearly
depict the combination of both long-range block percolation phenomena and the effect of a
limited lookahead on pathfinding. Firstly, a clear percolation threshold is observed at pmin ≈ 0.4,
as predicted (by numeric simulations for Lmin in Figure 3.1). Secondly, the detrimental effect
of a limited lookahead on pathfinding for window sizes W < 10 is also observed. This shows
that for p = pmin, a maximum window length Wmax(L, pmin) exists, below which pathfinding
can only be achieved by a complementary increase in p. The region of successful long-range
pathfinding (Ppf(p,W ) ≥ 0.95) is found above the highlighted blue contour.

P (n(CE-Et,t+W ) = 1) < 1− ε occurs, or else no lookahead is required (and Wmin = 2). We further

define Wmax(L, pmin) as the maximum window length required by LLP occurring for a given L

at pmin, above which any further increase in W provides no advantage.

We have shown that for a given Lt with lattice parameters p and L, n(CE-Et,t+W ) = 1 is a

sufficient feature function. We hence conjecture that P (n(CE-E0,W ) = 1) ≥ 1− ε is a necessary and

sufficient condition for successful long-range LLP. That is, if this condition is not satisfied then

no strategy (regardless of complexity) can ever produce successful long-range LLP, and that

this condition is always satisfied for W ≥Wmin as ε→ 0.

3.2.3 Numerical simulation

We now consider numerical simulation of LLP applying a random-node strategy.

Firstly, we address the conjecture that P (n(CE-E0,W ) = 1) ≥ 1− ε is a necessary and sufficient

condition for successful pathfinding. Figure 3.4 depicts simulation of both LLP and B0,W block

percolation over a range of W for a cubic lattice. We observe that successful pathfinding occurs
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for minimum window length Wmin(20, 0.3) = 16, where Ppf(p,W ) = 0.983 and P (n(CE-E0,W ) = 1) =

0.991, such that ε = 10−2. We also note that Ppf(p,W ) drops significantly as P (n(CE-E0,W ) = 1)

decreases below 1− ε, further validating our choice of feature function. In conjunction with the

proofs of our feature function presented in Section 3.2.2, these results support our conjecture

that P (n(CE-E0,W ) = 1) ≥ 1− ε is a necessary and sufficient condition for successful pathfinding.

We now consider the interdependence of pathfinding parameter Wmin and lattice parameters

L and p. To do so, we consider the probability of successful pathfinding Ppf(p,W ) on instances

of cubic lattice Lt with dimensions 1000×L×L over a range of p and W . Figure 3.5 depicts

such a simulation for L = 7.

The first and most striking feature of these results is the sharp threshold at p ≈ 0.4 for large

W . This clearly identifies the minimum edge probability pmin(L = 7) below which no long-range

percolation occurs, and agrees with numerical Lmin results depicted in Figure 3.1, showing

that pmin(L = 7) ≈ 0.4. From the argument made in Section 3.2.2, we expect this pathfinding

threshold to recreate the standard block percolation threshold of a 1000×L×L cubic lattice. We

confirm this numerically with Figure 3.6, which depicts LLP and block percolation thresholds

found over a range of L, showing LLP reproducing long-range block percolation statistics.

Furthermore, we find that percolation statistics found for active blocks can be used to estimate

pathfinding performance over long distances. In this simplified stacked-block heuristic, we model

long-range LLP as 1000/W consecutive instances of block percolation, as if adjacently stacked

face-to-face in t to form the full block Lt (without requiring two adjacent blocks’ percolation

paths are connected at adjacent faces), such that Ppf(p,W ) ≈ Pt(p,B0,W )
1000
W . Figure 3.6 shows

that even for large L, this heuristic provides a good estimate for Ppf(p,W ) and Pt(p) (when

W ≥Wmax).

The second feature we observe is the effect of small window lengths upon pathfinding.

For p = pmin, we observe a maximum window length Wmax(7, pmin) ≈ 10. As conjectured,

W > Wmax provides no additional benefit to pathfinding, whereas for W < Wmax, the probability

of successful LLP is significantly reduced (for fixed p). While it is possible to realise successful

pathfinding for W < Wmax(7, pmin), this can only be achieved by a complementary increase in

p.

To fully understand the parameter space for successful pathfinding, we consider contours of

Ppf = 0.95 in p and W for L = 2, 3, 4, 5, 10 and 15, depicted in Figure 3.7. From these results

we can also incorporate the effects of L into our previous analysis. As identified by the results

of Figure 3.1, an increase in L reduces the minimum edge probability pmin at which long-range

percolation occurs, and hence the value of pmin which LLP can succeed. However, whilst an

increase in L (for a fixed W ) always decreases the required p for successful pathfinding, these

gains are most significant when W is also increased, allowing the new pmin(L) to be achieved.

Such insights provide us with far greater clarity into the inherent resource trade-offs in a LOQC

device.
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Figure 3.6: Comparison between the thresholds in LLP success rates Ppf and block percolation
Pt on instances 1000×L×L cubic lattices over a range of L. For pathfinding, depicted by solids
lines, a large window size (of W = 15 ≥Wmax(L)) was chosen to ensure the thresholds found
were due to percolation effects, rather than pathfinding’s limited lookahead. By comparison with
long-range block percolation, depicted by dashed lines, we can see that Ppf ≈ Pt, confirming
that for sufficiently large window lengths, LLP is equivalent to long-range block percolation.
Furthermore, we find that within this regime both long-range block percolation and LLP can
be approximated as multiple stacked instances of (15×L×L) active block percolation, such

that Ppf(p,Lt, 15) ≈ Pt(p,Lt) ≈ Pt(p,B0,15)
1000
15 , as depicted by the dotted lines. Given that

simulating LLP is computationally expensive, this stacked-block heuristic provides a quick and
inexpensive approximation for investigating the performance of LLP on other percolated lattices
for LOQC.

Finally, we note that even for the largest active blocks considered, pmin(L = W = 15)

had yet to approach pc. This indicates that successful pathfinding is likely to require a lattice

with edge probability greater than pc by some non-insignificant amount. Furthermore, when

more sophisticated and computationally expensive pathfinding strategies were simulated, they

did not reduce Wmax(L, pmin), only improving pathfinding in the region of p > pmin and

W < Wmax(L, pmin).

3.2.4 Other pathfinding strategies

By considering other strategies for LLP, we now present further evidence to support the

conjecture of Section 3.2.2, which states that: “if [P (n(CE-E0,W ) = 1) ≥ 1− ε] is not satisfied then

no strategy (regardless of complexity) can ever produce successful long-range LLP”. Addressing

the validity of such a statement is equivalent to the answering the question: “does an algorithm

exist that can achieve successful long-range LLP on active blocks that contain more than one
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Figure 3.7: Contours of successful pathfinding (Ppf(p,W ) = 0.95 for Lt with dimension 1000×L×L)
for a range of side lengths L. From this, we can fully understand the various resource trade-offs
one can make in order to achieve successful pathfinding.

end-to-end connected component (with some probability greater than ε)?”. We provide the

following results to suggest that the answer this question is “No.”.

All results previously presented utilised the random-node strategy, where the choice of node

in the active block’s farthest layer (to find a path to) was made at random. We now introduce

three variants of the random-node strategy, all providing a different metric for far-layer node

choice:

• Shortest-path: pick the node in the farthest layer to which the shortest path exists.

• Most-connected: pick the node in the farthest layer with the highest degree.

• Centre-first: pick the node in the farthest layer that is most central in the y–z plane.

In all strategies, if multiple nodes are found as equal best choice, one is selected at random.

Also as before, once a far node has been selected the shortest path to it is always found.

We additionally present a pathfinding algorithm of increased complexity, named the “Most-

paths” strategy. In this algorithm, the next node is found by identifying which node in the

next-nearest layer has paths to the greatest number of nodes in the far layer. Such a strategy

thereby requires O(L2) applications of Dijkstra’s algorithm per time step, as opposed to the

single use demanded by random-node pathfinding (and its variants).
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Figure 3.8: The performance of LLP strategies on p = 0.35 instances of 1000×10×10 cubic
lattice over a range of window lengths W . We find that no strategy achieves LLP for ε > 0.025
which is tightened to ε > 0.006 for low-complexity strategies. These results also suggest that a
realistic LOQC device will not require complex LLP strategies to achieve near-perfect LLP,
thereby reducing loss-rates inflicted by photon delay lines.

The performances of the all five strategies for LLP are shown in Figure 3.8 depicted for

p = 0.35 instances of a 1000×10×10 cubic lattice over a range of W . We find that no strategy

achieves successful long-range LLP for ε > 0.026, with best performance achieved by the

Most-paths strategy with W = 8. For the lower-complexity random-node variants, no strategy

succeeds for ε > 0.006, with the best performance achieved by a Centre-first strategy with

W = 10. Such low bounds on ε clearly support our conjecture. Interestingly, we note that the

original random-node strategy does not provide the lowest performance, outperforming Shortest-

path. This counter-intuitive result highlights the difficulty in designing effective pathfinding

algorithms as well as analysing the causes of their success/failure.

These results highlight an additional trade-off within the LOQC architecture between the

device’s physical depth W and the length of delay-line needed for any classical co-processing

time. While the performance of the Most-paths strategy suggests that successful pathfinding

can be achieved for greater values of ε than expected, such an improvement only allows the

reduction of W by 2 or 3 layers. Given that this reduction comes at a cost of O(L2) ≈ 100

times more classical co-processing per pathfinding time-step, it is unlikely that such a trade-off

would be desired. This can be seen by noting that the total delay-time τdelay demanded for

current LOQC architectures can be approximately given by τdelay = WτLLP where τLLP is
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the worst-case time taken for the classical co-processing of LLP. Given that photon loss is

exponential in τdelay, clearly, any reduction in W must not be offset by any subsequent increase

in τLLP. We therefore expect that an LOQC architecture is likely to utilise a low-complexity

LLP algorithm, such as the random-node variants considered here.

3.2.5 Further numeric analysis

Here we present numerical results comparing percolation and pathfinding statistics to further

explore their explicit dependance. Ideally, it would be desirable to have a quantitative relationship

between rates of successful LLP and percolation statistics, such that Ppf ≈ f(P (n(CE-E0,W ) = 1))

for some percolation to pathfinding rate conversion function f . If a suitable f can be found,

this would significantly improve our theoretical understanding of LLP dynamics as well as

providing more robust heuristic methods for analysing novel architectures.

In Section 3.2.3 we showed that standard block percolation rates Pt could be used to

approximate LLP and long-range percolation in the region of W ≥Wmax by use of a stacked

block percolation model. To extend this heuristic to our conjectured condition for successful

LLP, we consider the approximation

Ppf ≈ P (n(CE-E0,W ) = 1)
Lt
W . (3.5)

This approximation allows us to consider the contours of P (n(CE-E0,W ) = 1)
Lt
W ≥ 0.95 that can be

compared with those previously found for LLP. To assess the validity of such an approximation

both contours are depicted in Figure 3.9. We find that this heuristic shows good agreement for

small side lengths L = 2, 3, 4, 5 across all W , but underestimates pathfinding performance for

larger side lengths L = 10, 15 within the same region (although this is recovered for W ≥Wmax).

In an attempt to understand the discrepancy observed for large L and small W , we consider

two candidate explanations.

Firstly, it may be the case for thin but wide (low W , large L) active blocks that approximating

LLP as stacked instances of block percolation is simply not a good model. This may be due

the main simplification of this model: the lack of requirement for overlapping paths between

blocks, an inaccuracy that becomes more pertinent as W is deceased below Wmax. However,

one would expect such a simplification to over-estimate LLP performance, as observed for low

L and W . Equally, it is also possible that our chosen feature function F (Bt,t+W ) based on

n(CE-Et,t+W ) cannot be equally applied across all LLP regimes, or that it is not valid to extend

such statistics using a simple stacked-block approximation.

Secondly, this discrepancy could also be a result of perturbations from expected percolation

statistics because of boundary effects. This is potentially due to a subtlety in the definition

of our LLP feature function and how it is approximated from instances of block percolation.

Within our LLP model, we strictly consider CE-Et,t+W = Bt,t+W ∩ CE-E0,Lt
, which excludes end-to-end

components in Bt,t+W that aren’t part of the full (and unique) spanning cluster. However, to
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Figure 3.9: Contours for P (n(CE-E0,W ) = 1)
Lt
W ≥ 0.95 with Lt = 1000 (solid lines). Depicted in

dashed lines are the contours depicted previously for successful LLP (Ppf ≥ 0.95) in Figure 3.7.

numerically simulate n(CE-Et,t+W ), instances of W×L×L cubic lattice B0,W were generated and the

number of connected end-to-end components n(CE-E0,W ) found. The statistics we find are hence

only strictly equivalent to LLP for Lt = W ; an exact simulation would require a simulation

that: generates the full Lt×L×L lattice, then extracts the unique end-to-end component, and

then finds n(CE-Et,t+W ) for all times 0 ≥ t ≥ Lt −W (or a random selection thereof). When

simulated, the likelihood of finding n(CE-E0,W ) > 1 is therefore increased for blocks with both small

W < Wmax and large L = 10, 15 as additional structure is considered that would have otherwise

been ignored in LLP (representing end-to-end components in Bt,t+W that are disjoint from

CE-E0,Lt
). If such structures are present, this would work to explain the underestimation of LLP

performance, as well as highlighting the limitations simulating LLP with block percolation for

W < Wmax. This discrepancy emphasises the importance of considering unexpected boundary

effects when modelling percolation statistics, especially for small lattices with high surface to

volume ratio.

3.3 Implications for LOQC architectures

Using the results presented in Section 3.2.3 additional clarity can now be given to the resource

trade-offs inherent to a realistic LOQC device.

Firstly, generating a lattice with p > pc is necessary for the reduction of active block size.
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For p close to pc, small increases in p will lead to significant resource savings in block size. The

success rate of LOQC’s boosted fusion gates4 pf can be increased from 50% to 75% through the

consumption of either a Bell state or four single photons per gate [120, 121]. However, above

this first level of boosting, gains in pf become more marginal at the expense of increasingly

costly resource states (which cannot be produced deterministically using linear optics without

significant resource overheads). This leads us to believe that it is likely that LOQC will utilise

boosted fusion of at least pf = 75%, from which a choice of active block dimensions, W and L,

can be made accordingly. We note that in Ref. [15], it was shown that pf = 75% produces a

diamond lattice with an edge rate that greatly exceeds the percolation threshold of pc = 62.5%.

In practise, experimental fusion gate success rates will be reduced by error mechanisms, such

as photon loss. However, if this reduction can be sufficiently minimised, our results indicate

that small active block sizes can be achieved, thereby reducing overall resource requirements

for LOQC.

Secondly, the probability of successful pathfinding affects the accommodation of bond/qubit5

loss for a renormalized lattice. From the perspective of the lattice renormalization, a failure in

pathfinding simply represents a missing bond/qubit along the time axis. Thus the quantum

error correction (QEC) protocol’s ability to deal with bond/qubit loss on the renormalized

lattice explicitly determines the required Ppf (which adds to all other loss mechanisms). For

example, consider the pathfinding requirements for a linear cluster of 100 renormalized qubits,

with each renormalized block being 10 layers long, such that the dimensions of Lt are 1000×L×L.

If less that one bond/qubit must be lost per string of 100 renormalized qubits, then we require

Ppf(Lt,W ) > 0.99. However, if more bond/qubit loss can be accommodated, this reduces the

required pathfinding probability, thus allowing for a further reduction in L or W .

Finally, we expect the identified resource costs and trade-offs to be somewhat sensitive

to our chosen value of Ppf, and would expect a reduction in size of the successful long-range

pathfinding parameter space (L, W , p) if it were increased (say to 0.99). However, we further

expect that the effect of such a difference would be very small and furthermore would decrease6

as Ppf → 1, and therefore our presented results provide an accurate description of the relevant

limited-lookahead phenomenon.

4 Note p 6= pf , as in current proposals multiple fusion operations must succeed for a given edge to be created
in the target lattice. Furthermore, failure modes of boosted fusion gates can also maintain connectivity, producing
additional connectivity outside the standard percolation model.

5 If a block lacks connectivity to be successfully renormalized, one can choose to represent this either as the
loss of individual bonds or an entire qubit.

6 This can be understood by consideration of Figure 6. Here we can observe that an increase of Ppf from 0.95
to 0.99 only provides a small contraction of the space outlined by the highlighted contour, a difference which
clearly decreases as Ppf → 1.
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3.4 Open questions

There are other architectural necessities that must be incorporated to produce a complete

model. In this work pathfinding is only considered within the context of producing a single-qubit

channel, but in order to produce a renormalized lattice for QEC percolated paths must also

be found in y and z. While an renormalization algorithm with optimal scaling is known for

2D [49], none are known for higher-dimension lattices. Additionally, for a realistic device, local

pathfinding algorithms must also be designed to reduce the associated computational overheads

for finding percolated paths in both y and z (for example, similar to recently proposed cellular

automata decoders for QEC [187]).

Also, we do not consider the effects of experimental errors on our pathfinding strategy. It is

known that one of the most significant challenges for LOQC is photon loss. The teleportation

of quantum information via MBQC in our model assumes that each photon is measured

successfully. However, in a physical device some degree of both heralded and unheralded photon

loss will undoubtably occur from active components and memory delay lines. For heralded qubit

loss occurring in the lattice generation stage, it is known that the affected qubit’s neighbours

can be removed from the lattice. With this approach, it was shown in Ref. [15] that a loss

rate up to 1.5% could be tolerated by the diamond brickwork lattice (with pf = 75%). Given

that for W ≥ Wmax(L, p) we recover standard percolation statistics, we therefore expect a

similar loss tolerance for our pathfinding model. But for an unheralded qubit loss it is not yet

known whether it is possible to perform MBQC without an explicit loss-tolerant encoding (such

as presented in Ref. [174]), especially under the realistic restriction of a fixed order of qubit

measurement.

We additionally note that in the context of a LOQC architecture, our approach here is

far from optimal. For example, our pathfinding algorithm only considers a single path per

qubit channel at anyone time. However, for p� pc the number of percolation paths spanning

one axis of a L×L×L block scales as O(L), compared to O(1) for p > pc close to pc [188].

It may therefore be possible to utilise these extra paths as backup paths to insure against

both unheralded photon loss and unforeseen dead ends. This may have the combined effect

of both reducing Wmin(L, p) and providing loss tolerance, without resulting in an increased

susceptibility to accrued Pauli errors (from increased MBQC measurements per single-qubit

channel).

Lastly, it remains to extend such pathfinding simulations to candidate lattices for percolated

LOQC cluster states. Due to the amorphism, anisotropy, and correlations of bond percolation

applied to the brickwork diamond lattice presented in Ref. [15], a direct mapping of resource

costs cannot be made from our results. However, additional simulations have shown comparable

effects as presented here, suggesting that the presented LLP phenomenon is general to many

lattice configurations. Figure 3.10 depicts LLP applied to the brickwork diamond lattice along

both axes of anisotropy. Interestingly, although originally introduced to increase percolation in
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Figure 3.10: Contours for successful LLP on the brickwork diamond lattice. a) Successful LLP
along the Z-axis of the brickwork diamond lattice (as defined in Ref. [15]) where pc ≈ 62.5%. The
introduction of bonds spanning multiple layers produces a detrimental effect on LLP performance
by effectively reducing the lookahead distance of any pathfinding algorithm. Peculiar effects are
also observed, such as an increase in side length providing worse performance. However, we
conjecture that such effects are due to boundary perturbations of smaller window lengths and
that simulation of longer windows would yield the plateaus observed in the cubic case. Clearly,
more study is needed to fully understand such a model. b) Successful LLP on the brickwork
diamond lattice along the X-Y axes, where the exact value for pc > 62.5% is unknown. Without
bonds spanning multiple layers, standard LLP dynamics are restored, and resemble that of the
cubic lattice depicted in Figure 3.7, albeit for a larger pc. The improved performance of LLP
when compared to a) highlights that optimisations to reduce pc cannot be considered solely
on near-infinite lattices, but rather also within a LLP context. As would be expected by the
higher threshold, LLP contours plateau at a fusion probability above those in a), however, such
plateaus are reached for smaller window lengths without extended bonds.

a specific direction, rotations of the fusion measurement basis that produce bonds spanning

many layers have a detrimental effect on LLP. This is thought to be due to the fact that paths

including such bonds effectively reduce the lookahead after they have been taken. On the other

hand, when LLP is performed along the axes without such bonds, higher LLP performance is

found. Further work is therefore needed to fully understand such dynamics and it remains to

identify the specific impact of deviations from the standard percolation model as these lattice

must also permit resource-efficient LLP in order to be utilised within an LOQC architecture.

3.5 Conclusions and Outlook

Realistic architectures for LOQC must consider the physical constraints of a large-scale device,

such as a finite and fixed depth. As such, this work has considered the effect of a finite fixed

depth on the creation of a single-qubit channel from a percolated cluster state lattice. We have

shown that within this model, a limited-lookahead pathfinding algorithm can be applied to

successfully create such a channel and identified resources requirements for successful pathfinding.

This suggests that an LOQC architecture with a computational window of O(10) layers (i.e.
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clock-cycles of photon production) is sufficient to produce the almost indefinitely large states

required for universal quantum computation. However, we also find that these constraints may

require percolation-based LOQC architectures to operate above previously-identified minimum

resource estimates. Notably, we find that resource requirements become significant as the cluster

state lattice’s edge probability approaches its critical threshold. However, this equally implies

that even small increases in edge probability (close above the percolation threshold) can provide

significant resource savings and allow an LOQC device to operate with surprisingly low fixed

depth.

An additional key result of this work is a significant step towards bridging the gap between

high- and low-level architectural requirements. When applied to a specific LOQC architectural

schema, the model presented here allows direct mapping of high-level architectural resource

requirements (such as a qubit channel loss rates) onto low-level device requirements (such as

device depth and ancillae resource counts). Once identified, this mapping allows the device’s

fixed finite depth to be effectively ignored allowing the high-level abstractions required for

studying the high-level architecture, such as QEC protocols. Furthermore, by identifying LLP

simulation heuristics, the performance of novel candidate lattices for LOQC can be quickly and

easily analysed without extensive LLP simulations—a key advantage as architectural models

become increasingly sophisticated.
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Loss-tolerant teleportation using stabilizer pathfinding

Many new quantum technologies demand the teleportation of quantum states across large,

multiparty entangled states [15, 189–193]. As seen in Chapter 2, teleportation steps are used

extensively in MBQC, whether following the original proposal [129] or generalisations using

alternative entangled resource states [194]. In practise, any protocol for quantum computation

(or related applications such as in quantum communications [195]) must also tolerate qubit

dephasing and loss. While the primary source of error for many quantum computing platforms

is qubit dephasing, loss errors are known to dominate in architectures such as linear optical

quantum computation (LOQC) [15, 28, 40, 52]. Currently, the main approach to mitigating

significant degrees of loss are quantum error correcting codes (QECC) [184], loss-tolerant qubit

encodings [127, 174, 175], or some other process imposing additional resource costs, such as the

proposal of [196] which enables photon loss to be converted into a linear time cost, providing

successful quantum gates within a modular light-matter based architecture. Specifically, loss is

particularly problematic in an LOQC architecture based on renormalization, where successful

long-range entanglement must be established. Furthermore, while it has been shown that a

rate of ≈ 1% heralded qubit loss may be tolerated [15] on a percolated cluster state, currently

there is no known method to tolerate unheralded loss within an LOQC architecture based on

renormalization.

In this chapter we present a new method for teleportation that exploits the correlations

of large, entangled stabilizer states using only single-qubit measurements, known as stabilizer

pathfinding (SPF). For heralded loss, we show that SPF provides optimally loss-tolerant

measurement patterns for all stabilizer states, as well as tolerance of unheralded qubit loss.

To implement SPF in a realistic setting, we also provide an algorithm that can generate SPF

measurement patterns with low computational overhead based on applying minimal updates

during states generation and measurement.
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When compared to previous heuristics for teleportation on quantum graph states, SPF

provides significant gains in loss tolerance for both the heralded and unheralded case. For

example, when applied to the square-lattice graph states (i.e. cluster states) commonly used for

MBQC, we find that SPF achieves a teleportation rate T of ≈ 98% for 10% heralded qubit loss,

compared to T ≈ 40% using previous teleportation techniques based on localisable entanglement

[129, 197]. When the loss is unheralded on the same state, SPF measurement strategies also

achieve at least T ≈ 84%—where there was no previously-known method for achieving loss

tolerant teleportation.

We also provide evidence of critical loss-tolerant thresholds on a variety of graph state

lattices. These would show that loss-tolerant teleportation can be achieved in the limit of

infinite lattice size, with existence of loss-tolerant measurement patterns guaranteed below some

threshold loss rate. Our results provide an optimistic outlook on the reduction of loss rates

in quantum computation and communication architectures as well as ensuring optimal use of

intermediately-sized states generated by near-term devices.

This chapter is structured as follows. Section 4.1 begins with an introduction to the stabilizer

formalism and to stabilizer states. Section 4.2 motivates our work by considering the task of

teleportation on stabilizer states and presents previous approaches to achieving loss tolerance.

The stabilizer pathfinding approach to teleportation is then presented in Section 4.3 which

outlines an algorithm for its computation. Our main results are given in Section 4.5 which

provides numerical simulations to highlight SPF’s improved loss tolerance in the case of both

heralded and unheralded loss. Section 4.6 then discusses SPF’s algorithmic efficiency and its

implications for LOQC and other quantum technology platforms. Finally, Section 4.7 summarises

the work and suggests a selection of avenues for further research.

Supporting Python code for this chapter can be found at https://github.com/sammorley-short/

spf and cited by the DOI https://doi.org/10.5281/zenodo.2582618.

4.1 Stabilizer states

Below we review the necessary theoretical results on which our work relies, namely the stabilizer

formalism, graph states, and a generalised theory of teleportation.

In the stabilizer formalism [198], for any given state |Ψ〉 there exists an associated stabilizer

group SΨ, consisting of the set of all operators that leave |Ψ〉 unchanged, such that

SΨ = {Si : Si |Ψ〉 = |Ψ〉}. (4.1)

A state’s stabilizer group is closed under multiplication, i.e. the product of any two stabilizers

Si and Sj is itself a stabilizer. Furthermore, any state can be defined by a set of stabilizer

generators GΨ, which generates the group under multiplication, which we write as SΨ = 〈GΨ〉.

104

https://github.com/sammorley-short/spf
https://github.com/sammorley-short/spf
https://doi.org/10.5281/zenodo.2582618


4.1. STABILIZER STATES

Stabilizer states are further defined as a subset of the n-qubit states that can be efficiently

described by a set of n stabilizer generators

GΨS = {Ki : Ki |ΨS〉 = |ΨS〉 ,Ki ∈ Pn, i = 1, . . . , n} (4.2)

where Pn is the group of n-fold tensor products of Pauli operators I, X, Y and Z up to

multiplicative phase factors ±1 and ±i and hence SΨ ⊂ Pn. Specifically, stabilizer states

are those produced by any stabilizer circuit which consists of only: i) preparation of qubits

in computational basis states {|0〉 , |1〉}; ii) quantum gates from the Clifford group1 C =

{H, S, CZ}; and iii) measurements in the computational basis. The Gottesman-Knill theorem

states that any such circuit can be simulated efficiently on a classical computer [198].

Stabilizer circuits include many that exhibit rich and canonically “quantum” phenomena

such as superposition and entanglement, including the generation of large multipartite entangled

states. For such states, many correlations between measurement outcomes exist across the

whole state, a fact that allows them to be used as quantum error correction codes [198]. Just as

all correlations present in a state are represented in its state vector, they are equally present in

a state’s stabilizers.

One can intuitively interpret the set of stabilizer generators GΨ as the minimal representation

of the quantum correlations for |Ψ〉. For example, consider the Bell state∣∣Φ+
〉

=
1√
2

(|00〉+ |11〉) =
1√
2

(|++〉+ |−−〉) =
1√
2

(|+i− i〉+ |−i+ i〉), (4.3)

where |±〉 = 1√
2
(|0〉± |1〉) and |±i〉 = 1√

2
(|0〉± i |1〉). By noting that |Φ+〉 = H1CZ1,2H1H2 |00〉

it is easy to show that SΦ+ = {X1X2, Z1Z2,−Y1Y2} = 〈GΦ+〉 = 〈X1X2, Z1Z2〉, where Ai

represents the operator that enacts unitary A on qubit i and I everywhere else and similarly

Ai,j for two-qubit gates. In this example it is clear that the stabilizers have provided the set of

all correlations between single-qubit Pauli measurements on |Φ+〉, namely that the possible

eigenvalues returned from measurements of both qubits in the X and Z basis are correlated

(λX1λX2 = λZ1λZ2 = 1), whereas the possible eigenvalues found for Y measurements are

anti-correlated (λY1λY2 = −1).

Just as the action of unitary operators evolve a state’s quantum state vector in the

Schrödinger picture, a state’s stabilizers are equivalently evolved within the Heisenberg picture

[198]. The action of any Clifford gate unitary U on a state |Ψ〉 therefore transforms SΨ as

follows:

|Ψ〉 U−→
∣∣Ψ′〉 ⇔ SΨ

U−→ SΨ′ = {S′i = USiU
† : Si ∈ SΨ} =

〈
K ′i = UKiU

† : Ki ∈ GΨ

〉
.

(4.4)

1 Here we have used an alternative form of the Clifford group, replacing the conventional CNOT with the
CZ gate, as they are equivalent up to H. This choice is in accordance with the graph state focus of this work
and also provides a symmetric entangling operation that produces simpler update rules.
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The effect of Pauli measurement operator M ∈ Pn on a state |Ψ〉 can also be represented

by updating the stabilizer generators GΨ. For any M there are two cases: either M commutes

with all of the state’s stabilizers, or M anti-commutes with one or more of them. In the first

case it is easy to show that either M or −M ∈ SΨ, and hence |Ψ〉 is an eigenstate of M and so

unaffected by the measurement. However, in the latter case, the measurement M will change

the state. In the case that the measurement M returns an eigenvalue of +1, the stabilizers are

updated as follows:

1. Pick a Ka ∈ GΨ such that {M,Ka} = 0. Replace Ka with M .

2. For all other Ki ∈ GΨ\{M}:

a) If [M,Ki] = 0, leave Ki unchanged

b) If {M,Ki} = 0, replace Ki with KaKi.

In the case that M returns eigenvalue −1, the same process is applied, except M 7→ −M [198].

If the number of stabilizer generators on an n-qubit state |Ψ〉 is reduced from n, GΨ no

longer defines a single state, but rather a subspace of states. A set of logical basis states can

be defined on this subspace together with logical operators that satisfy Pauli relations, thus

creating an encoded logical qubit. While such constructions are commonly applied to design

quantum error correcting codes, their application can be applied to other quantum information

protocols, such as quantum teleportation.

In our case, we are specifically interested in the complete set of logical operators for a

qubit input into some Clifford circuit U (with some set of input ancillae qubits). For example,

consider an unknown state |ψ〉I of a single input qubit I with logical operators X̄ψ = XI and

Z̄ψ = ZI , which is then encoded via |Ψ〉 = U(|ψ〉I ⊗ |0〉⊗n), such that

X̄Ψ = UXIU
†, Z̄Ψ = UZIU

† and GΨ = {UZiU †}ni=1 (4.5)

However, after encoding there are many other valid logical operators, as the product of a logical

operator and stabilizer is also a valid logical operator. Hence, the set of all logical operators for

our encoded qubit is given by

LΨ = ik × {SL̄Ψ : S ∈ SΨ, L̄Ψ ∈ {X̄Ψ, Z̄Ψ, ȲΨ}} (4.6)

where ik = {1,−1, i,−i} and ȲΨ = iX̄ΨZ̄Ψ. Formally, LΨ is the centralizer subgroup of operators

in Pn which commute with the stabilizers of |Ψ〉. Just as with stabilizers, the logical operators

are similarly updated after a measurement M . If
[
L̄,M

]
= 0 for L̄ ∈ LΨ, then L̄ is unchanged,

otherwise the logical operators are transformed by L̄ 7→ L̄′ = KaL̄.
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4.2 Background and motivation

We now present a short introduction to teleportation on stabilizer states followed by an example

to motivate the need for a general approach for finding teleportation measurement patterns. In

what follows we will assume familiarity with the standard definitions on the stabilizer formalism,

graph states and MBQC and refer the reader to [94, 103, 198] for more details. Also given the

equivalence between stabilizer and graph states [97, 199], we shall only consider graph states

here but note that the following applies to stabilizer states.

4.2.1 Teleportation on stabilizer states

Consider an arbitrary quantum state |ψ〉 on input qubit I with logical operators X̄ψ = XI , Z̄ψ =

ZI . Now consider the entangling of |ψ〉 with n other qubits in some graph state such that

the resultant state |Ψ〉 is now defined by a pair of logical operators X̄Ψ, Z̄Ψ and stabilizer

generators GΨ = {Ki}ni=1 that form the closed group SΨ = 〈GΨ〉 of all stabilizers of |Ψ〉 under

multiplication. Teleportation on |Ψ〉 aims to find some set of single-qubit measurements or

measurement pattern M that recovers |ψ〉 on some output qubit O, or equivalently, that produce

two anti-commuting logical operators acting only on O. Qubits not measured by any element

of M can then be lost without impeding teleportation, such that maximal loss tolerance is

achieved by minimising |M |. Hence, the set of all teleportation protocols which can tolerate

some amount of loss can be known by finding all M that omit at least one qubit. Note that

unlike the standard description of teleportation made in the Schrödinger picture, because this

process describes the teleportation of state’s logical operators it can be seen as teleportation as

described in the Heisenberg-picture.

We now present a general method for finding valid M on |Ψ〉. First, recall that any product

of the logical operator and stabilizer is also a logical operator on |Ψ〉, thereby defining the set

of all logical operators LΨ =
〈
X̄Ψ, Z̄Ψ

〉
× SΨ. Given a pair of logical operators X̄, Z̄ ∈ LΨ such

that {
X̄ [O], Z̄ [O]

}
= 0, and

[
X̄ [a], Z̄ [a]

]
= 0 ∀ a 6= O, (4.7)

where A[i] denotes the Pauli operator of A acting on qubit i, then it is easy to see that the

single-qubit measurement of all X̄ [a], Z̄ [a] 6= I will achieve teleportation onto O. Specifically,

the measurement pattern produced by the pair of logical operators X̄ and Z̄ is given by

MX̄,Z̄ = {X̄ [i] : X̄ [i] 6= I, ∀ i 6= O} ∪ {Z̄ [i] : Z̄ [i] 6= I, ∀ i 6= O}, (4.8)

which has weight w =
∣∣MX̄,Z̄

∣∣. The set of all valid measurement patterns M = {MX̄,Z̄} is then

given by finding all logical operator pairings satisfying equation (4.7). Given the equivalence

between states’ logical operators and stabilizers, we refer to this method for teleportation as

stabilizer pathfinding (SPF). From the above requirements we define the stabilizer pathfinding

conditions, which are summarised in box 1.
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STABILIZER PATHFINDING CONDITIONS:

Consider the state |Ψ〉 defined by logical operators LΨ that encodes a single logical qubit
state |ψ〉. A valid measurement pattern that recovers |ψ〉 on qubit O of |Ψ〉 can be found
from any pair of logical operators X̄, Z̄ ∈ LΨ that:

a) anticommute on qubit O, and

b) commute on each qubit which is not O.

Given these conditions are satisfied, teleportation is achieved by performing the set of
single-qubit measurements represented by each non-identity Pauli operator of X̄, Z̄ on all
qubits other than O.

Box 1: Conditions any pair of logical operators must satisfy to provide a teleportation measure-
ment pattern.

Given the significant number of X̄, Z̄ pairs for large states, measurement patterns are often

found from heuristic methods. The most common heuristic for finding a subset of M on graph

states is a technique we shall refer to as graph pathfinding (GPF), originally proposed for

teleportation in MBQC and producing localisable entanglement [129, 197]. As used by MBQC

on graph states, this approach requires finding a path P = {I, . . . , O} between qubits I and O

and P ’s graph neighbourhood Π (all qubits that neighbour a qubit in P that are not themselves

in P ), on which single-qubit X and Z measurements are performed respectively. Finding M

for loss-tolerant teleportation is thus achieved by minimising |P ∪Π|. The graph pathfinding

heuristic is usually understood by observing that teleportation occurs from X measurements

along a linear graph state between I and O produced from the Z measurements.

Equally, by recalling that graph state’s generators are given by Ki = Xi
⊗

j∈NG(i) Zj ∀ i =

1, . . . , n (where NG(i) is the neighbourhood of i on graph G), it is easy to see why such a

technique works through the lens of stabilizer pathfinding. Specifically, given P there are two

always logical operators X̄, Z̄ with X operators at odd and even positions along P respectively,

either terminating with ZO for X̄ when |P | is odd or for Z̄ when |P | is even, with Z operators

on qubits in Π. When paired such logical operators then give the usual M for graph pathfinding.

4.2.2 Limitations of graph pathfinding

We now present a motivating example for the relevance of stabilizer pathfinding to loss-tolerant

teleportation. Consider the state |Ψ〉, depicted below:
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X̄Ψ = ZI
Z̄Ψ = XIZ1Z2Z3

GΨ = {K1 = ZIX1Z4, K2 = ZIX2Z5, K3 = ZIX3Z6,
K4 = Z1X4Z7, K5 = Z2X5Z8, K6 = Z3X6Z9,
K7 = Z4X7ZO, K8 = Z5X8ZO, K9 = Z6X9ZO,
KO = Z7Z8Z9XO}

Figure 4.1: An example graph state on which teleportation is to be performed from input qubit
I to output qubit O, defined by logical operators X̄Ψ, Z̄Ψ and stabilizer generators GΨ.

On the above example, graph pathfinding clearly provides only three measurement patterns,

such as P = {I, 2, 5, 8, O}, and thus provides tolerance to the loss of at most (but not any) two

qubits, such as {4, 6}, with the associated M depicted in Figure 4.2a. Furthermore, since each

M associated with a path contains anticommuting measurements on at least one qubit, there is

little-to-no ability to switch between them in the case of unheralded loss.

Now consider an alternative set of three measurement patterns provided by stabilizer

pathfinding:

X̄ = K1K7X̄Ψ = X1X7ZO, Z̄ = K4K5K6KOZ̄Ψ = XIX4X5X6XO

⇒ M1 = {XI , X4, X5, X6, X1, X7}
X̄ = K2K8X̄Ψ = X2X8ZO, Z̄ = K4K5K6KOZ̄Ψ = XIX4X5X6XO

⇒ M2 = {XI , X4, X5, X6, X2, X8}
X̄ = K3K9X̄Ψ = X3X9ZO, Z̄ = K4K5K6KOZ̄Ψ = XIX4X5X6XO

⇒ M3 = {XI , X4, X5, X6, X3, X9}

as depicted in Figure 4.2b. There are two key differences between these M and those provided

by graph pathfinding. Firstly, each M can tolerate twice the amount of lost qubits, equating to

a four-fold increase in the number qubit loss configurations tolerable. Secondly, since no two

patterns require contradictory measurements on any qubit, the attempt of one pattern does not

preclude the later attempt of another. Although the latter difference is irrelevant in the case of

heralded qubit loss, this fact crucially allows tolerance of unheralded loss events. For example,

consider we begin a teleportation protocol by the successful measurement of XI , X4, X5, and

X6, leaving three possible sets of measurements: {X1, X7}, {X2, X8}, and {X3, X9}. Since only

one pair must succeed, any loss on up to two pairs can be tolerated as long as one is completed2.

This can also be seen by noting that if any pair is successfully measured, any remaining (and

potentially lost) qubits are disentangled from the final state on qubit O.

From the above it is clear the measurement patterns provided by graph pathfinding represent

only a small fraction of all M ∈M. For example, when stabilizer pathfinding is applied on the

2 In the case that there is no additional cost to extraneous measurements, each pair can be measured
simultaneously.
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previous state we find |M| = 2657, allowing 60 different combinations of lost qubits, with at

most four qubits left unmeasured. However, finding the set M through an exhaustive search is

impractical for large states in general. Furthermore, many, if not the majority of M ∈M will

not tolerate any qubit loss. In order to overcome this challenge, we shall now present algorithm

that finds all maximally loss-tolerant3 measurement patterns without any exhaustive searches.

4.3 Stabilizer pathfinding

Given that O(22n) possible pairs of logical operators exist for a state with n generators,

computing M by brute force is clearly impractical for even modestly sized states4. The most

practical aspect of our work is an algorithm that implements stabilizer pathfinding to find

loss-tolerant measurement patterns without the need for exhaustive searches.

Functionally, our algorithm is divided into two distinct subroutines: i) finding all stabilizers

of the state that are relevant for teleportation, and ii) finding all pairs of logical operators that

produce maximally loss-tolerant measurement patterns. In this Section we provide an outline

of each routine’s challenges and our solutions, with full technical details found in Section 4.4,

including a full pseudocode description in algorithm 4.1. Readers primarily concerned with the

degree of loss tolerance afforded by stabilizer pathfinding are directed to Section 4.5.

4.3.1 Which stabilizers are relevant for teleportation?

To prevent the need to store and update all 2n stabilizers, we now consider which of a state’s

stabilizers are relevant to teleportation. This will allow the identification of the subset of

stabilizers that must be tracked for stabilizer pathfinding.

Logical operators as combinations of stabilizer generators

Consider an arbitrary state |Ψ〉 with stabilizers SΨ = 〈GΨ〉, where GΨ = {Ki}ni=1. Given that

SΨ form a closed group under multiplication, we can label each stabilizer Sc ∈ SΨ by the set of

generator indices c from which it is produced, such that

Sc =
∏
i∈c

Ki . (4.9)

We shall refer to c as the stabilizer’s generator combination, by which it is uniquely defined

(given a fixed GΨ).

3 Here maximally loss-tolerant refers to the fact that our algorithm will return measurement patterns in
descending loss tolerance, finding those measurement patterns that are tolerant to the greatest number of qubits
first.

4 There are similarly O(4n) possible Pauli measurement patterns on n qubits, providing an equally impractical
computation.
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Figure 4.2: Possible measurement patterns for teleportation between qubits I and O provided
by a) the graph pathfinding heuristic and b) our generalised stabilizer pathfinding (where
measurement XI is also needed in both cases). In a), all measurements must be successfully
completed for teleportation, providing a loss tolerance to the two unlabelled qubits (with the
associated path and neighbourhood highlighted in red and blue respectively). In b), if the centre
column of qubits are successfully measured then teleportation is completed by the successful
measurement of both qubits in any of the three pairs of the same colour. We note that stabilizer
pathfinding also returns all graph pathfinding measurement patterns and so may still achieve
teleportation even if at most two out of three central column (red) qubits are lost. Not only
does the latter case provide additional qubit loss tolerance, but also tolerance to loss events
that are only heralded at the point of measurement (i.e. unheralded loss).

However, not all stabilizers are equally useful for the task of producing teleportation

measurement patterns. To see this, consider applying stabilizer pathfinding for teleportation

from I to O on linear graph state |Ψ〉 depicted below:

X̄Ψ = ZI

Z̄Ψ = XI Z1

GΨ ={ZI X1Z2 , (K1)

Z1 X2Z3 , (K2)

Z2 X3ZO , (K3)

Z3 XO } (KO)

Firstly consider the stabilizer S{1,3} = K1K3 = ZIX1X3ZO, used to define the logical

operator X̄{1,3} = S{1,3}X̄Ψ = X1X3ZO. This choice of stabilizer allows X̄{1,3} to be paired

with some Z̄ that obeys the stabilizer pathfinding conditions for output qubit O. Specifically,

Z̄{2,O} = S{2,O}Z̄Ψ = XIX2XO satisfies equation (4.7) with M = {XI , X1, X2, X3}, in this case

reproducing the measurement pattern provided by graph-pathfinding.

Now consider the stabilizer S{1,O} = K1KO = ZIX1Z2Z3XO, used to define the logical

operator X̄{1,O} = S{1,O}X̄Ψ = X1Z2Z3XO. In this case X̄{1,O} cannot be paired with any Z̄

to satisfy equation (4.7) to yield a valid measurement pattern. This can be seen by observing

that X̄{1} = X1Z2 is also a valid X̄ operator. Hence, any measurement pattern constructed

from X̄{1,O} and some Z̄ must contain measurements X1 and Z2 returning eigenvalues λX1 and

λZ2 respectively. However, 〈XΨ〉 =
〈
X̄{1}

〉
= λX1λZ2 , showing that after such measurements X̄

has been measured and thus teleportation has failed.
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In this last example it is easy to see why S{1,O} cannot be used to generate an X̄ satisfying

equation (4.7) by noting that I ∈ Q(K1), O ∈ Q(KO) but Q(K1) ∩Q(KO) = ∅, where Q(A) is

the set of qubits on which A non-trivially acts. However it is not always the case that if some

set of generators in a stabilizer combination share support then their combination is useful for

stabilizer pathfinding For example, consider applying stabilizer pathfinding to teleportation

from I to O on star graph state |Ψ〉 depicted below:

X̄Ψ = ZI

Z̄Ψ = XI Z1

GΨ ={ZI X1Z2 Z3 ZO , (K1)

Z1 X2 , (K2)

Z1 X3 , (K3)

Z1 XO } (KO)

Consider the valid logical operator Z̄{2,3,O} = S{2,3,O}Z̄Ψ = XIX2X3XO on |Ψ〉. Here

we observe that Q(Z̄{O}) ∩ Q(K2K3) = ∅ and therefore Z̄{2,3,O} represents the same logical

operation as Z̄{O} = XIXO with I,O ∈ Q(Z̄{O}). Even though in this case the inclusion of K2

and K3 does not prevent Z̄{O} from acting on I and O, Z̄{2,3,O} still cannot be paired with any

X̄ that satisfies the stabilizer pathfinding condition. This is seen by observing that any X̄ must

be produced using K1 to ensure
{
X̄ [O], Z̄ [O]

}
= 0, and so qubits 2 and 3 must be measured in

either the Z or Y basis. On the other hand, a valid pair of logical operators satisfying equation

(4.7) would be Z̄{O} = XIXO with X̄{1} = X1Z2Z3ZO such that M = {XI , X1, Z2, Z3}, also

reproducing the measurement pattern provided by graph-pathfinding.

From the above examples we have illustrated that while many possible logical operators

exist, only a subset can be used to produce valid measurement patterns. Specifically, we have

seen that teleportation can be prevented by logical operators which are decomposable into

another logical operator (of reduced weight) and a non-overlapping stabilizer. We now introduce

definitions to generalise this concept and explicitly specify which stabilizers are useful for

teleportation.

Trivial and non-trivial stabilizers

Given the correspondence between logical operators and stabilizers, we shall define general

conditions on the latter. To distinguish generator combinations that are and aren’t useful for

teleportation, we define the concepts of non-trivial and trivial combinations, respectively. A

trivial stabilizer (produced by a trivial combination) is defined as a stabilizer Sc where there

exists some bipartition (α, β) of c such that the bipartition’s stabilizers do not share support, or

Sc = SαSβ where Q(Sα) ∩Q(Sβ) = ∅. (4.10)
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If, as in the examples above, a logical operator L̄ ∈ LΨ decomposes in a similar way5 i.e.

Q(L̄′Sα) ∩ Q(Sβ) = ∅ or Q(L̄′Sβ) ∩ Q(Sα) = ∅ for L̄′ ∈ LΨ, then qubits I and O must either

both be in the support of just one of the partitions or split across both. In such cases, L̄ either

has unnecessary measurements that can prevent teleportation, or measurements which simply

do not help teleport the input state onto O. The definitions of trivial and non-trivial logical

operators are summarised in box 2.

A non-trivial stabilizer (produced by a non-trivial combination) is conversely defined as a

stabilizer Sc for which no such bipartition of c exists, or equivalently Q(Sα) ∩ Q(Sβ) 6= ∅ for

all possible bipartitions (α, β) of c. Non-trivial stabilizers produce logical operators that can

be used to teleport from I to O and do not contain unnecessary measurements. For a given

stabilizer state |Ψ〉 we denote the subsets of trivial and non-trivial stabilizers as ST
Ψ and SNT

Ψ

respectively, such that SΨ = ST
Ψ ∪ SNT

Ψ .

The task of stabilizer pathfinding is therefore to track all of SNT
Ψ without explicit tracking of

STΨ as |Ψ〉 is subject to gates, measurements and the addition of new qubits. For each operation

|Ψ〉 7→ |Ψ′〉, stabilizer pathfinding must therefore be able to add the set of stabilizers that are

newly non-trivial SNT
Ψ′ \ SNT

Ψ , remove the set of newly trivial stabilizers ST
Ψ′ \ ST

Ψ, and apply an

update to any non-trivial stabilizers that remain so.

4.3.2 Tracking non-trivial stabilizers

To simulate the preparation of a quantum state using some Clifford circuit, our algorithm must

simulate four operations: i) preparation of qubits in computational basis states {|0〉 , |1〉}; ii) the

single-qubit Clifford gates H, and S; iii) the two-qubit Clifford CZ gate; and iv) measurements

in the computational basis. We also require the algorithm to be described by some small

set of update rules, whereby each successive operation is simulated by updating an internal

representation of the state (as opposed to rerunning a complete simulation for each new state).

A simulation based on update rules is preferred not only for speed but also for practical purposes

as it may be implemented in real-time.

Adding qubits and acting gates

For appending a single qubit |Ψ′〉 = |Ψ〉 ⊗ |0〉n+1, the state generators acquire one additional

non-trivial stabilizer GΨ′ = GΨ ∪ {Zn+1} and so SNT
Ψ′ = SNT

Ψ ∪ {Zn+1} is updated accordingly.

For the case of applying the single-qubit Clifford gate U

SΨ′ = {UScU † ∀ Sc ∈ SΨ} (4.11)

In Remark 4.4.1 we show later that the action U cannot affect the non-triviality of any stabilizer.

5 Technically, valid logical operators can also be made from trivial stabilizers, however these are generally
unhelpful for teleportation and can easily be allowed for when they arise. For further discussion, see Section 4.4.3.
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TRIVIAL AND NON-TRIVIAL LOGICAL OPERATORS:

Consider the task finding pairs of logical operators LΨ that satisfy the stabilizer pathfinding
conditions defined in box 1 for teleportation from qubit I to O on |Ψ〉. A logical operator L̄ ∈
LΨ is known as trivial if it can be decomposed into some other lower-weight logical operator
L̄′ ∈ LΨ and stabilizer S ∈ SΨ with non-overlapping qubit supports Q(L̄′) ∩Q(S) = ∅. For
trivial L̄, either

a) O ∈ Q(S) and L̄ cannot be used for teleportation, or

b) O /∈ Q(S), and L̄ contains operators S unnecessary for teleportation.

Therefore trivial logical operators should not be considered for teleportation. By contrast,
non-trivial logical operators are those for which no such decomposition exists and so
represent measurements that can produce teleportation.

Box 2: Definitions for trivial and non-trivial logical operators.

For the two-qubit CZ gate, finding S′c ∈ SNT
Ψ′ is more involved as new non-trivial and trivial

stabilizers may be generated. We provide an example here with the update rule’s full description

found in Section 4.4.2. Consider the following graph state produced by applying CZ6,8 to the

state depicted in Figure 4.1:

X̄ = ZI
Z̄ = XIZ1Z2Z3

Gψ = {ZIX1Z4, ZIX2Z5, ZIX3Z6,
Z1X4Z7, Z2X5Z8, Z3X6Z8Z9,
Z4X7ZO, Z5Z6X8ZO, Z6X9ZO,
Z7Z8Z9XO}

Figure 4.3: The graph state produced by applying CZ6,8 to the state depicted in Figure 4.1.

where the action of CZ6,8 has been highlighted and the generators are indexed as before (by

the qubit on which the Pauli X operator acts).

From inspection, it is seen that many stabilizers’ triviality are unchanged, for example

S′{5,9} = Z2X5Z6Z8X9ZO and S′{6,O} = Z3X6Z7XO, remain trivial and non-trivial respec-

tively. On the other hand, we see that S′{6,8} = Z3Z5Y6Y8Z9ZO ∈ SNT
Ψ′ , whereas S{6,8} =

Z3Z5X6X8Z9ZO ∈ ST
Ψ under bipartition ({6}, {8}). We can also find examples of newly trivial

stabilizers, for example S′{5,6,O} = Z2Z3X5X6Z7Z8X0 ∈ ST
Ψ′ under bipartition ({5}, {6, O}),

whereas S{5,6,O} = Z2Z3X5X6Z7X0 ∈ SNT
Ψ .

Although small, low-connectivity graph states are easy to analyse, larger graph states or

non-graphical stabilizer states become increasingly difficult with a rapidly growing number of

combinations available. Our approach identifies new trivial and non-trivial stabilizers using

only information of the stabilizers in SNT
Ψ . Since there are 2|c| possible bipartitions of any given
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Sc, when a test of triviality is needed, our method avoids an exhaustive search by identifying

a reduced set of bipartitions to be tested. Once all stabilizers with differing triviality have

been found, the remaining non-trivial stabilizers can then be simply updated as described by

equation (4.11).

Single-qubit measurements

Finally, we consider performing single-qubit Pauli measurements on the state. As with the

CZ gate, Pauli measurements may also affect the triviality of a given stabilizer. For example,

consider the state produced by measurement of Y9 (followed by applying corrective gates S3 on

qubits 6 and O) on the previous state, as depicted below:

X̄ = ZI
Z̄ = XIZ1Z2Z3

Gψ = {ZIX1Z4, ZIX2Z5, ZIX3Z6,
Z1X4Z7, Z2X5Z8, Z3X6Z8ZO,
Z4X7ZO, Z5Z6X8ZO, Y9,
Z6Z7Z8XO}

Figure 4.4: The graph state produced by measurement of Y9 on the state depicted in Figure 4.3.

where the measurement’s action has been highlighted and we have assumed qubit 9 is found in

the +1 Y eigenstate.

Again we see that many stabilizers’ triviality are unchanged, such as S′{5,9} = Z2X5Z8Y9

and S′{6,O} = −Z3X6Z7X8XO as before. Similarly, new non-trivial stabilizers can be found,

for example S′{3,O} = ZIX3Z7Z8XO ∈ SNT
Ψ′ , whereas before S{3,O} = ZIX3Z6Z7Z8Z9XO ∈

ST
Ψ under bipartition ({3}, {O}). Lastly, we also find new trivial stabilizers, for example

S′{6,7,8} = Z3Z4Z5Y6X7Y8ZO ∈ ST
Ψ′ under bipartition ({6, 8}, {7}), whereas prior to measure-

ment S{6,7,8} = Z3Z4Z5Y6X7Y8Z9 ∈ SNT
Ψ . As before, identifying the full set of stabilizers with

triviality changed by measurement is somewhat involved, however our algorithm does achieves

this with knowledge of only SNT
Ψ and without the need for exhaustive triviality testing.

It must be noted that while we could not find an analytic expression for the worst-case

efficiency of our algorithm, it will be highly state-specific and more crucially depend on

intermediate states produced during the state’s construction. These rules are therefore most

efficient for states at or close to their minimal edge representation (or equivalent for non-

graph states) [94]. For example, while for a completely connected graph state of n qubits

Sc ∈ ST
Ψ ∀ |c| ≥ 4, c even, then 2n intermediate states must also be constructed and clearly such

a construction would be inefficient. In these cases alternative construction strategies should be

considered. For example, the previous state can be more efficiently created by first creating

a n + 1 star graph state (which is a minimal edge representation of the n + 1 completely-

connected graph state), followed by the measurement of the central qubit in the Y basis. While
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optimal construction strategies are beyond the scope of this work, we note that minimum edge

representation states are likely to be of interest for MBQC in many scenarios. For a further

discussion of ways to increasing the algorithm’s efficiency, see Section 4.6.2.

4.3.3 Finding loss-tolerant measurement patterns

Once SNT
Ψ are known, the set of all non-trivial logical operators LNT

Ψ and valid measurement

patterns M can be found. Our algorithm is designed to produce those M which can tolerate

the most lost first, so that only a fraction of allM need be found. This is achieved by grouping

LNT
Ψ into three6 sets defined by the Pauli operator on qubit O, namely XO, YO and ZO. Within

each group operators are then further sorted into groups of equal weight. All minimum-weight

M are then be found by considering pairings of logical operators taken from the lowest-weight

operators in groups where {AO, BO} = 0. Higher weight M can then be iteratively produced

by considering pairing between lowest-weight and second-to-lowest-weight groupings, etc. For

further details see Section 4.5.4.

Once some subset of M is known, each M provides some set of loss-tolerant qubits and

hence the set of all qubit loss configurations can be easily found. In practise we find that the

majority of loss tolerance is provided by a few low-weight M that are among the first to be

found—see numerical results provided in Section 4.5.4.

4.4 Algorithm details

Here we present a full description of the update rules applied in our algorithm to achieve

stabilizer pathfinding. First, we provide an algorithm that allows for stabilizers’ and generators’

triviality to be more efficiently tested. Secondly, we provide update rules to track a state’s

stabilizers for any Clifford circuit. Finally, we present a method for combining said stabilizers

to produce valid teleportation measurement patterns. The summary pseudocode for the above

algorithms are also presented in algorithm 4.1.

4.4.1 Triviality tests

Testing stabilizers’ triviality

As part of the algorithm we shall describe, it will be necessary to remove some unknown trivial

stabilizers, namely after applying a CZ or measurement. In the general case of deciding whether

some arbitrary stabilizer Sc is trivial or not, given only GΨ, the author could not improve on

a limited exhaustive search. In this case, the space of all bipartitions is explored by finding

Bc = {Sb : b ∈ P(c), |b| ≤ bc/2c}, where P(c) is the power set of c and {b : |b| ≤ bc/2c} being

6 Here all three Pauli operators must be considered (rather than just X and Z) because although all Ȳ
operators may be produce by a product of some X̄ and Z̄, it is possible that Ȳ acts non-trivially on fewer qubits
than both X̄ and Z̄.
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the set of all smaller halves of every possible bipartition of c. For each element of B, SbSc is

found and if Q(SbSc) ∩Q(Sb) = ∅, then (b, c \ b) describes a trivial bipartition of Sc. If no such

b is found, then Sc must be non-trivial. Clearly this method—which we refer to as single-shot

triviality testing—becomes inefficient for large |c|.
However, a significantly faster triviality test can be performed within the context of our

stabilizer pathfinding algorithm. Consider the case where you have a large set of stabilizers

S∗Ψ, some of which are trivial StΨ ⊆ STΨ, but which is otherwise guaranteed to contain all

non-trivial stabilizers, such that S∗Ψ = StΨ ∪ SNT
Ψ . The task is then to extract SNT

Ψ by removal

of StΨ without an exhaustive search. To do so, initially consider testing a single Sc ∈ S∗Ψ for

triviality. If Sc is trivial, there must exist some minimal bipartition (α, β) of c such that either

Sα and/or Sβ are non-trivial. Since SNT
Ψ ⊆ S∗Ψ, any such bipartitions can be identified by finding

B∗c = {Sβ : β ⊂ c, |β| ≤ bc/2c, Sβ ∈ S∗Ψ} and then tested using the same process as single-shot

triviality testing7. By repeating all Sc ∈ S∗Ψ and removing any that fail, SNT
Ψ can be found

with less than O(|S∗Ψ|2) tests (and far fewer in practise). We shall refer to this type of triviality

testing as batch triviality testing.

Testing generators’ triviality

In rare cases, single-qubit measurements can cause generators themselves to become trivial. As

triviality of stabilizers is assessed under the assumption of generator non-triviality, these trivial

generators must be detected and replaced, in a process known as generator detrivialisation.

Specifically, we consider the case when there exists some generator Ka and stabilizer Sb for a 6∈ b
such that Q(KaSb) ∩ Q(Sb) = ∅ (recall that Q(A) is the set of qubits on which A non-trivially

acts).

For example, consider the 5-qubit stabilizer state8 |Ψ〉 that undergoes measurement X4 as

follows:

X̄Ψ = Z0

Z̄Ψ = X0 Z3 Z4

GΨ ={ X1X2Z3 Z4 , (K1)

Z1 Z2 , (K2)

Z0 Z2 X3 , (K3)

Z0 Z1 X4 } (K4)

Measure X4−−−−−−−→

X̄Ψ = Z0

Z̄Ψ = X0X1X2

GΨ ={ X4 , (K1)

Z1 Z2 , (K2)

Z0 Z2 X3 , (K3)

Z0 Z1 } (K4)

Here we observe that after measurement K3 = Z0Z2X3, whereas S{2,3,4} = X3 and so K3 is

now trivial (or equivalently that Q(S{2,3,4}) ∩ Q(S{2,4}) 6= ∅ before the measurement whereas

Q(S{2,3,4}) ∩ Q(S{2,4}) = ∅ after). To ensure all generators are non-trivial they are updated

such that K ′3 = K2K3K4 = X3 and K ′i = Ki otherwise.

7 To further increase the efficiency of this test, β are tested in ascending cardinality. Hence, if B does contain
trivial Sβ , they are never tested, as all α ⊂ β are tested first (although they would still correctly identify a trivial
bipartition if tested).

8 Where |Ψ〉 can be produced by the Pauli X measurement of a qubit within a 6-qubit ring graph state.
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However, because each stabilizer’s combination now represents a different set of generators,

this update can change bipartitions’ support overlaps and so updating the set of non-trivial

stabilizers is more involved. Firstly, stabilizers that do not contain the updated generator are

unaffected, such that S′c = Sc for a 6∈ c and hence their triviality is also unchanged. However,

during detrivialisation previously trivial stabilizers Sc may become non-trivial S′c if a ∈ c. To

find all newly non-trivial stabilizers, all stabilizer pairs Sα, Sβ ∈ SNT
Ψ , α ∩ β = ∅ where

Q(Sα) ∩Q(Sβ) = ∅ but Q(S′α) ∩Q(S′β) 6= ∅. (4.12)

are found and S′α∪β added to SNT
Ψ′ . This process is then repeated on the newly non-trivial

stabilizers found to ensure all previously trivial tripartitions, etc. are found. Finally, any trivial

stabilizers are then removed by applying a batch triviality test on all stabilizers S′c ∈ SNT
Ψ′ with

a ∈ c.
We lastly note that trivial generators are an unavoidable by-product of the multiplication

of generators performed after measurement and hence is never required after any unitary

operation.

4.4.2 SPF Part 1: Tracking all non-trivial stabilizers

Stabilizer pathfinding must track the action of the three elements of any Clifford circuit, namely:

i) preparation of qubits in computational basis states {|0〉 , |1〉};

ii) quantum gates from the Clifford group C = {H, S, CZ}; and

iii) measurements in the computational basis,

on the state’s non-trivial combinations SNT
Ψ . We shall define the action of these operations as a

series of set update rules using the convention AΨ 7→ AΨ′ .

Single-qubit gates

Firstly, consider appending qubit |0〉n+1 to |ΨS〉. The stabilizer generators are simply updated

by

GΨ 7→ GΨ′ = GΨ ∪ {Kn+1}, (4.13)

where Kn+1 = Zn+1. Since Q(Kn+1) ∩ Q(Ki) = ∅ for all Ki ∈ GΨ, there is only a single new

non-trivial combination, namely {n + 1}, and hence the non-trivial stabilizers are similarly

updated by

SNT
Ψ 7→ SNT

Ψ′ = SNT
Ψ ∪ {S{n+1}} (4.14)

Next, consider the action of quantum gates from C on an n-qubit stabilizer state. As defined

in section 4.1, when acted on by U ∈ C the stabilizer generators are simply updated as in

equation (4.4), or

GΨ 7→ GΨ′ = {K ′i}ni=1 = {UKiU
†}ni=1, (4.15)
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where Ki ∈ GΨ ∀ i. In the case of a single-qubit Clifford gate U ∈ {H, S}, it is simple to show

that all non-trivial stabilizers can be similarly updated via

SNT
Ψ 7→ SNT

Ψ′ = {S′c} = {UScU †}. (4.16)

Importantly, for the above statement to hold, it must also true that all non-trivial stabilizers

remain non-trivial after applying U and similarly for those that are trivial, which is shown by

Remark 4.4.1.

Remark 4.4.1. If before the action of a single-qubit Clifford gate U a stabilizer is trivial

(non-trivial), Sc ∈ ST
Ψ (SNT

Ψ ), then after U it remains trivial (non-trivial), S′c ∈ ST
Ψ′ (SNT

Ψ′ ).

Proof. Firstly, we consider the case of a trivial stabilizer Sc. If Sc ∈ ST
Ψ, there exists a trivial

bipartition (α, β) of c such that

Sc = SαSβ =
∏
i∈α

Ki

∏
j∈β

Kj and Q(Sα) ∩Q(Sβ) = ∅. (4.17)

Without loss of generality, assume Q(U) ⊆ Q(Sα) (since |Q(U)| = 1). From equation (4.15),

then S′α = USαU
† and S′β = USβU

† = Sβ. Finally, since Q(S′α) = Q(USαU
†) = Q(Sα), then

from equation (4.17), Q(S′α) ∩ Q(S′β) = ∅ and hence (α, β) is also a trivial bipartition of c

after U , showing that S′c ∈ ST
Ψ′ . Secondly, in the non-trivial case, the above proof can be easily

inverted to show that if after U , S′c ∈ ST
Ψ′ then Sc must also admit a trivial bipartition, and

hence Sc /∈ SNT
Ψ . �

Two-qubit gates

Now consider the CZu,v gate applied to qubits u and v. For CZu,v the stabilizer generators

are similarly updated using equation (4.15), however it is also possible that new non-trivial

stabilizers are produced and/or previously non-trivial stabilizers are made trivial. In general,

this will cause the number of non-trivial stabilizers to change, for example, SNT
Ψ = {X1, X2} for

the empty two-qubit graph state, whereas SNT
Ψ′ = {X1Z2, Z1X2, Y1Y2} after CZ1,2 is applied.

Since the effect of CZu,v on any Ki may either increase or decrease |Q(Ki)| there are two cases

that must be considered for stabilizer pathfinding: either stabilizers that go from i) non-trivial

to trivial or ii) trivial to non-trivial. A method for efficiently updating SNT
Ψ is now presented

below.

First we address i), the case of CZu,v causing previously non-trivial stabilizers to become

trivial, where for some stabilizer initially Sc ∈ SNT
Ψ but S′c ∈ ST

Ψ′ afterwards. Given CZu,v can

change the qubit support of any stabilizer Si by at most a single qubit u or v then it must be

true for Sc ∈ SNT
Ψ that there exists some bipartition (α, β) of c such that

Q(S′α) ∩Q(S′β) = ∅ (4.18)

but Q(Sα) ∩Q(Sβ) ⊆ {u, v} (4.19)
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where Sα, Sβ ∈ SNT
Ψ . Since SNT

Ψ is known, finding (α, β) requires finding Sα, Sβ ∈ SNT
Ψ where

the decrease in support of Sα and Sβ is exactly equal to the previous support overlap between

them.

Next we consider ii), the case of CZu,v causing previously trivial stabilizers to become

non-trivial, where for some stabilizer initially Sc ∈ ST
Ψ but after S′c ∈ SNT

Ψ′ . For this case, an

initial search must be performed to find some bipartition (α, β) for which

Q(Sα) ∩Q(Sβ) = ∅ (4.20)

but Q(S′α) ∩Q(S′β) ⊆ {u, v} (4.21)

where Sα, Sβ ∈ SNT
Ψ . Similarly to i), this can only be achieved if the increase in support is equal

to the new support overlap. While equation (4.21) is a necessary condition for non-triviality, it

is not sufficient as it must also hold across all possible bipartitions. In some cases it may be

simultaneously possible to find two bipartitions of c, with one (α, β) satisfying equations (4.20)

and (4.21) and another (γ, δ) that does not. Fortunately, these cases can be easily detected and

there are three possible variants:

a) Q(S′γ) ∩ {u, v} = Q(S′δ) ∩ {u, v} = ∅ (neither has support on u, v),

b) Q(S′γ) ∩ {u, v} = {u}, Q(S′δ) ∩ {u, v} = {v} (both are supported on u, v, but without

overlap),

c) Q(S′γ) ∩ {u, v} = ∅, Q(S′δ) ∩ {u, v} 6= ∅ (only one has support on u, v).

To address each case, we require the following remark be true.

Remark 4.4.2. If, before the action of CZu,v, a stabilizer Sc where u, v /∈ Q(Sc) is trivial

(non-trivial), then after CZu,v it remains trivial (non-trivial).

Proof. If u, v /∈ Q(Sc) then it must be the case that Sα
[u] = Sβ

[u] and Sα
[v] = Sβ

[v] for all

possible bipartitions (α, β). Hence after CZu,v then Sα
[u] = Sβ

[u] and Sα
[v] = Sβ

[v], and so

u, v /∈ Q(S′c). For a stabilizer to become trivial from non-trivial (or vice versa), then it must be

true that some bipartition must change from sharing support to not sharing support (or vice

versa). However, it follows immediately from the previous comments that for any bipartition

(α, β) then

Q(Sα) ∩Q(Sβ) = ∅ ⇔ Q(S′α) ∩Q(S′β) = ∅ (4.22)

and hence trivial and non-trivial stabilizers respectively remain so. �

For a), Sc = SγSδ ⇒ u, v /∈ Q(Sc) and Remark 4.4.2 can be applied to show that if such a

bipartition does exist then equations (4.20) and (4.21) cannot be simultaneously satisfied and

hence a) never occurs. For b) and c), because all Sγ , Sδ ∈ SNT
Ψ that gain support are considered
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by the initial search for all (α, β) satisfying equations (4.20) and (4.21), only Sγ , Sδ with no

support gain are relevant here. Additionally, since only one half of a trivial bipartition need be

found to prove triviality, then we can further limit our search to stabilizers with some support

on u, v, reducing the set of potentially trivial partitions of any stabilizer found by equations

(4.20) and (4.21) to

S∗Ψ′ = {S′i : Q(S′i) ∩ {u, v} 6= ∅, Si ∈ SNT
Ψ }. (4.23)

As this set is can be easily found from SNT
Ψ , a batch triviality test can be applied to S∗Ψ′

with the reduced partition batch B∗c = {Sb : b ⊂ c, |b| ≤ bc/2c, Sb ∈ S∗Ψ′}, allowing any trivial

bipartitions to be found with minimal overhead cost.

To summarise, after CZu,v, SNT
Ψ is updated by applying the following steps:

1. Update all S′c ∈ SNT
Ψ′ with non-trivial support on u and/or v, via S′c 7→ CZu,vScCZu,v.

2. Remove from SNT
Ψ′ any S′c that admits a bipartition no longer containing support overlap.

3. Add to SNT
Ψ′ any new S′c that can be produced by stabilizer pairs that now share support.

4. Apply a batch triviality test to SNT
Ψ′ with reduced partition batch B∗c to remove any trivial

stabilizers.

Qubit measurement

We shall consider the general case of performing an arbitrary single-qubit Pauli measurement

M ∈ {X,Y, Z} (returning a +1 eigenvalue). In the standard approach to updating GΨ, as

described in Section 4.1 and Ref. [198], generators for which {Ki,M} = 0 are updated as

K ′i = KaKi for some chosen {Ka,M} = 0 (with K ′a = M). However, after this update is applied,

K ′i = KaKi may now be a trivial generator with respect to M , such thatQ(MKaKi)∩Q(M) = ∅.
In these cases, rather than applying the generator detrivialisation described Section 4.4.1, we can

apply a modified update to the generators K ′i = MKaKi. Similar remarks can apply for some

cases where [Ki,M ] = 0, in which case the update rule K ′i = MKi is applied. To summarise,

after measurement M , the state’s stabilizer generators are updated GΨ 7→ GΨ′ = {K ′i} using

the five following rules:

K ′a = M for some {Ka,M} = 0

K ′i = KaKi if {Ki,M} = 0, Ki 6= Ka, Q(MKaKi) ∩Q(M) 6= ∅
K ′i = MKaKi if {Ki,M} = 0, Ki 6= Ka, Q(MKaKi) ∩Q(M) = ∅
K ′i = Ki if [Ki,M ] = 0, Q(MKi) ∩Q(M) 6= ∅
K ′i = MKi if [Ki,M ] = 0, Q(MKi) ∩Q(M) = ∅

We further define two key sets of updated generators A and B, such that A = {i : K ′i =

KaKi} ∪ {i : K ′i = MKaKi} and B = {i : K ′i = MKi} ∪ {i : K ′i = MKaKi}. From A and B
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we can derive the general update rule for arbitrary post-measurement stabilizers

S′c = M |c∩{a}|

 ∏
i∈c∩ (B\A)

MKi

 ∏
j∈c∩ (A∩B)

MKaKj

 ∏
k∈c∩ (A\B)

KaKk

 ∏
l∈c\(A∪B∪{a})

Kl

 (4.24)

= M |c∩{a}|M |c∩B|K |c∩A|a

∏
i∈c\{a}

Ki (4.25)

= M |c∩ (B∪{a})|K |c∩A|a Sc\{a} (4.26)

where |A| denotes the cardinality of the set A, A \ B the set difference of A and B, and we

have used the fact that [M,MKi] = 0 ∀ i ∈ B \A and [Ki,Kj ] = 0 ∀ i, j. From this, Sc ∈ SNT
Ψ

can be easily updated.

Firstly, all stabilizer combinations containing a become trivial, since |Q(K ′a)| = 1, and so

all S′c with a ∈ c are removed. To identify a set containing all new non-trivial stabilizer, we will

require the following lemma.

Lemma 4.4.3. After single-qubit measurement M is made on state |Ψ〉, all new non-trivial

stabilizers, are contained within the set {Sc : a /∈ c, Sc∪{a} ∈ SNT
Ψ } and where Ka is the

generator removed from GΨ and replaced with M .

Proof. Firstly, since |Q(M)| = 1 and K ′a = M , then S′c ∈ ST
Ψ′ for all c 3 a. Hence only

combinations that do not contain a need be considered.

Now consider the previously trivial combination c 3 a with bipartition (α, β) such that

Q(Sα) ∩ Q(Sβ) = ∅ for Sc = SαSβ ∈ ST
Ψ before measurement. As in equation (4.24), we can

write the updated stabilizer as

S′c = S′α · S′β =
(
M |α∩B|K |α∩A|a Sα

)
·
(
M |β∩B|K |β∩A|a Sβ

)
(4.27)

We first consider the cases in which |α ∩B| and |β ∩B| are even, for which there are three

further sub-cases:

i) |α ∩A| and |β ∩A| even ⇒ S′α = Sα and S′β = Sβ;

ii) |α ∩A| and |β ∩A| odd ⇒ S′α = KaSα and S′β = KaSβ;

iii) |α ∩A| odd and |β ∩A| even ⇒ S′α = KaSα and S′β = Sβ (and vice versa).

For i), S′α = Sα and S′β = Sβ ⇒ Q(S′α) ∩ Q(S′β) = ∅, and S′c ∈ ST
Ψ′ remains trivial. For ii), if

Sα 7→ S′α = KaSα, then {Sα,M} = 0 and hence Q(M) ⊂ Q(Sα). Since the same applies for

S′β, then Q(Sα) ∩Q(Sβ) 6= ∅ and therefore (α, β) is not a trivial bipartition of Sc, which is a

contradiction and so ii) does not occur. Finally for iii), S′c = KaSα · Sβ = Sα∪{a} · Sβ = Sc∪{a},

and therefore (α, β) is only a trivial bipartition for S′c if (α ∪ {a}, β) is for Sc∪{a}.

In the cases in which |α ∩B| and/or |β ∩B| are odd, we observe that the effect of applying

M is to remove support on Q(M). The previous three cases then also apply except with
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Q(S′α) 7→ Q(MS′α) ⊂ Q(S′α) (and similarly for β) which can only decrease the number of cases

where Q(S′α) ∩Q(S′β) = ∅.
It therefore follows that the only instances of trivial Sc and non-trivial S′c that occur are

those for which Sc∪{a} is non-trivial. Or equivalently, if Sc ∈ ST
Ψ then Sc ∈ SNT

Ψ′ iff Sc∪{a} ∈ SNT
Ψ .

�

We now proceed with the description of measurement update rules. After the single-qubit

measurement M all stabilizer combinations containing a become trivial, since |Q(K ′a)| = 1,

and so all S′c with a ∈ c are removed. Next, using Lemma 4.4.3 we show that for any single-

qubit Pauli measurement M then all new non-trivial stabilizers are contained within the set

Γ = {Sc : a 6∈ c, Sc∪{a} ∈ SNT
Ψ }. Since all previously non-trivial Sc∪{a} ∈ SNT

Ψ stabilizers are

known, Γ is easily found. However, not all stabilizers in Γ, nor the remaining updated stabilizers

∆ = {S′c : Sc ∈ SNT
Ψ } \ {S′c : a ∈ c}, are necessarily still non-trivial. But since SNT

Ψ′ ⊆ Γ ∪∆, all

trivial stabilizers can identified and removed using the batch triviality test described in Section

4.4.1.

Finally, we note that in some cases measurement M can cause the updated generators to be

trivial in a manner not captured above. For example, in the simplest case, this can occur when

performing M also performs the indirect single-qubit measurement M ′. However, this can be

easily identified as a non-trivial replacement for the trivial generator will always be contained

within SNT
Ψ . Once any trivial generators are identified, the process described in Section 4.4.1

can then be applied to return GΨ to its proper form.

To summarise, SNT
Ψ′ is updated by applying the following steps:

1. Remove from SNT
Ψ′ any Sc with a ∈ c, but keeping them in memory.

2. Using the discarded stabilizers, find and add the set of potential new non-trivial stabilizers

{Sc : Sc∪{a} ∈ SNT
Ψ , Sc /∈ SNT

Ψ }.

3. Apply a batch triviality test to SNT
Ψ′ to remove any trivial stabilizers.

4. Test generators for triviality and update if required.

4.4.3 SPF Part 2: Finding loss-tolerant measurement patterns

We now consider the task of using the set of non-trivial stabilizers to identify a set of measurement

patterns that teleport from I to O, as outlined in Section 4.3.3. In this case, each non-trivial

stabilizer Sa ∈ SNT
Ψ represents three possible anti-commuting logical operators, namely ScX̄,

ScȲ and ScZ̄. For each valid teleportation measurement pattern, this logical operator must

then be combined with another represented by a second stabilizer Sd to satisfy equation

(4.7). For states of significant size and complexity, this presents a large number of possible

measurement patterns, which are prohibitively expensive to calculate and validate. However,
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due to requirement for achieving maximal loss tolerance, our algorithm is specifically concerned

with measurement patterns that have minimal qubit weight, and only needs to consider a

restricted subset of all patterns. We shall now present an algorithm that finds all measurement

patterns below a certain qubit weight given SNT
Ψ , and hence the set of maximally loss-tolerant

measurement patterns9.

Following equation (4.7), the set of all measurement patterns M that achieve the desired

teleportation is

M = {ML̄i,L̄j
:
{
L̄

[O]
i , L̄

[O]
j

}
= 0,

[
L̄

[a]
i , L̄

[a]
j

]
= 0, ∀ a 6= O} (4.29)

Given that
∣∣∣ML̄i,L̄j

∣∣∣ ≥ max(
∣∣Q(L̄i)

∣∣, ∣∣Q(L̄j)
∣∣)− 1, the set Mw of measurement patterns with

weight w is a subset of all ML̄i,L̄j
produced by logical operators with at most weight w + 1,

such that

Mw ⊂ {ML̄i,L̄j
:
∣∣Q(L̄i)

∣∣, ∣∣Q(L̄j)
∣∣ ≤ w + 1}. (4.30)

Note that it is necessarily true that Mv ⊆ Mw for v < w, and also that any measurement

pattern that does not contain (i.e. is loss-tolerant to) a certain set of qubits, is also loss-tolerant

to any subset of those qubits. Hence, many loss-tolerant configurations on an n-qubit state

can be found from combining logical operators with weight w � n. In practise, w can be

increased until no additional loss tolerance is found, thereby providing all possible loss-tolerant

configurations without the need for an exhaustive search10.

4.5 Loss tolerance

To assess the loss tolerance of stabilizer pathfinding we compare the performance of GPF and

SPF on a selection of graph state channels. Specifically, we consider the five channels depicted

in Figure 4.5: the square lattice, hexagonal lattice, triangular lattice, linear crazy graph [17],

and a tree-to-tree graph. The choice of three lattice channels is motivated by their relevance to

MBQC architectures; the so-called crazy graph is considered due its use as a loss-tolerant qubit

channel [17] and a tree-to-tree channel because it supports a high number of disjoint paths.

9 Strictly speaking, in certain cases logical operators can also be produced by combining multiple non-trivial
stabilizers, for example if ScX̄ is a logical operator with support on O, but some other stabilizer exists where

Q(Sα) ∩Q(X̄) 6= ∅ but Q(Sα) ∩Q(Sc) = ∅. (4.28)

In this case, while ScSαX̄ does represent a valid logical operator, it is less loss-tolerant that ScX̄ since in almost
all reasonable cases

∣∣Q(ScSαX̄)
∣∣ > ∣∣Q(ScX̄)

∣∣. However, for the states in where these combinations do improve
loss tolerance, they can be straightforwardly included. Alternatively, if a virtual qubit I is being utilised by
entangling it with some set qubits I, it can be assumed that only those qubits within I ∩ Q(Sc) are initially
entangled with I so as to minimise any unnecessary measurements by removing any of the above cases. For these
reasons we can safely omit these logical operators from our consideration.

10 This is specifically true for heralded loss. For unheralded loss, increasing w may be beneficial in order to
identify a greater variety of measurement patterns with the same degree of loss tolerance, thereby increasing the
number of measurement patterns available after a given qubit measurement should it fail.
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Algorithm 4.1: The StabilizerState object used to implement stabilizer pathfinding.

Object StabilizerState

Method InitialiseState
Q = {I} // Creates qubit register Q
X̄ ← XI , Z̄ ← ZI // Creates logical operators

G ← ∅, S ← ∅ // Creates generators G and stabilizer combos S

Method AddQubit(q)
Q← Q ∪ {q} // Appends qubit to register

X̄ ← X̄ ⊗ Iq, Z̄ ← Z̄ ⊗ Iq // Extends logical ops.

G ← {Ki ⊗ Iq : Ki ∈ G}, S ← {Sc ⊗ Iq : Sc ∈ S} // Extends gens. and combo stabs.

Method ApplyQubitUnitary(q, U)

X̄ ← UX̄U†, Z̄ ← UZ̄U† // Updates logical operators

G ← {UKiU
† : Ki ∈ G}, S ← {UScU† : Sc ∈ S} // Updates gens. and combo stabs.

Method ApplyCZ(u, v)

X̄ ← CZuvX̄CZ†uv, Z̄ ← CZuvZ̄CZ†uv // Updates logical operators

G ← {CZuvKiCZ†uv : Ki ∈ G} // Updates gens.

S ′ ← {CZuvScCZ†uv : Sc ∈ S, S[u]
c ⊗ S[v]

c 6= Iu ⊗ Iv} // Finds post-CZ combo stabs.

for S′c in S ′ do
if IsTrivial(S′c) then
S ′ ← S ′ \ {S′c} // Removes trivial combo stabs.

for S′c, S
′
d in S ′ do

if Q(Sc) ∩Q(Sd) = ∅
∧
Q(S′c) ∩Q(S′d) ⊆ {u, v} then

S ′ ← S ′ ∪ {S′c · S′d} // Adds newly non-trivial combo stabs.

S∗ ← {S′c : Sc ∈ S,Q(S′c) ∩ {u, v} 6= ∅}
S ← S ′ \ FindTrivStabs(S∗) // Removes triv. stabs. found in batch triv. test

Method MeasureQubit(q,M)
Ka ← FirstAntiCommGen(G,M) // Picks anti-comm. gen. to remove

G′ ← G \ {Ka} // Updates gens.

for K′i in G′ \ {M} do
if {K′i,M} = 0 then

b← Bool(Q(MKaKi) ∩Q(M) = ∅) // Bool(True) = 1, Bool(False) = 0

K′i ←MbKaKi

else if [K′i,M ] = 0 then
b← Bool(Q(MKi) ∩Q(M) = ∅)
K′i ←MbKi

S ′ ← S \ {Sc : Sc ∈ S, a ∈ c} // Updates combo stabs.

A← {i : K′i ∈ G,K′i = KaKi} ∪ {i : K′i ∈ G,K′i = MKaKi},
B ← {i : K′i ∈ G,K′i = MKi} ∪ {i : K′i ∈ G,K′i = MKaKi}
S ′ = {M |c∩ (B∪{a})|K

|c∩A|
a Sc\{a} : Sc ∈ S ′}

S ′ ← S ′ ∪ {Sc : Sc∪{a} ∈ S, Sc /∈ S}
S ← S ′ \ FindTrivStabs(S ′)
G ← DetrivialiseGens(G′ ∪ {M}) // Detrivs. any trivialised gens.

Method FindMeasurementPatterns(O,w)
Lw ← {ScL̄ : Sc ∈ S, L̄ ∈ {X̄, Z̄, Ȳ },

∣∣Q(L̄)
∣∣ ≤ w + 1} // Get low-weight logical ops.

Mw ← {ML̄i,L̄j
: L̄i, L̄j ∈ Lw,

{
L̄

[O]
i , L̄

[O]
j

}
= 0,

[
L̄

[a]
i , L̄

[a]
j

]
= 0 ∀ a 6= O} // Find mnt. pats.

returnMw
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We consider two kinds of loss: heralded and unheralded. Heralded refers to loss events whose

location is known, whereas unheralded to loss events on qubits whose locations are unknown

until measurement. Physically, heralded loss occurs when a qubit’s existence can be inferred

from some non-destructive measurement; for example, measurement of charge in a quantum

dot can herald the existence of a spin-encoded qubit without measuring the qubit state. On the

other hand, unheralded loss occurs in qubit systems that do not permit such measurements,

such as a dual-rail encoded qubit in linear optics where measurements are typically performed

using photon detectors which absorb the photons (such as avalanche photodiodes).

Importantly, unheralded loss presents a significant challenge to any MBQC scheme as it

necessitates either loss-tolerantly encoded qubits or an architecture that can adapt dynamically

to loss events when they occur. However, even in a system with unheralded loss, the performance

of SPF under heralded loss provides an upper bound on the loss tolerance of any given channel

or teleportation measurement strategy.

4.5.1 Heralded loss

Firstly, we consider the performance of SPF in the case of heralded loss. Figure 4.7 depicts the

proportions of heralded loss configurations tolerable by SPF and GPF for each channel. Once a

set of measurement patterns for a state is known (be they produced by GPF or SPF), the rate of

successful teleportation as a function of per-qubit loss probability can be easily found by Monte

Carlo simulation. Specifically, for a single Monte Carlo instance this is achieved by randomly

generating some set of lost qubits (at some per-qubit loss rate pl), which is cross-referenced

with the set of all measurement patterns to find any pattern that do no include said qubits to

allow successful teleportation. In Figure 4.6 we compare the performance of SPF to that of

GPF on the five aforementioned channels under heralded loss.

Firstly, it is clear that SPF provides a significant increase in the loss tolerance of teleportation

rate T . As should be expected, GPF has greatest loss tolerance on the tree-to-tree channel and

lowest on the crazy graph (where it can tolerate no loss) whereas the converse is true for SPF

respectively. For all channels considered, the SPF’s gain in loss tolerance peaks above 50%,

even for the tree-to-tree channel. Note that the SPF teleportation rate for crazy graph agrees

with the theoretical rate11 of T = (1 − pml )n, where m and n are the number of qubits per

column and channel depth respectively (with m = n = 4 in the case considered). We further

note that in the low-loss regime of pl < 10% SPF achieves T > 95% for all lattice channels and

even T ≈ 1 for the triangular lattice.

11 Specifically, teleportation succeeds if at least one qubit per column is measured in the X basis, allowing all
but one physical qubit to be lost per encoded qubit.
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Figure 4.5: The five graph state channels considered for teleportation. Nodes are coloured by
the number of measurement patterns that do not contain them (i.e. tolerant to their loss), with
darker nodes indicating their loss can be more readily accommodated.

Figure 4.6: The probability of successful teleportation across various graph state channels
as a function of heralded qubit loss. Solid lines, dashed lines and shaded regions depict the
performance of stabilizer pathfinding (SPF), the graph pathfinding (GPF) heuristic and the
difference between them respectively (i.e. SPF’s loss tolerance advantage). Each data point
depicts 104 Monte Carlo instances and uncertainties have not been plotted as ∆T < 0.5% in
all cases and so are smaller than the plotted lines. From these results it is clear that stabilizer
pathfinding produces a significant improvement in terms of the loss tolerance of teleportation
across these states. Additionally, the loss tolerance provided by SPF for the crazy graph channel
agree with the theoretical prediction of T = (1− pml )n for the case of n,m = 4 presented here.

127



CHAPTER 4. LOSS-TOLERANT TELEPORTATION USING STABILIZER

PATHFINDING

Figure 4.7: The proportion (left) and absolute number (centre) of nl-qubit loss configurations
tolerable for each considered channel (right) with both GPF (red) and SPF (blue) compared to
the total number of nl qubit configurations (grey). Note that the scales of the right-hand plots
are logarithmic. The total number of nl-qubit configurations for each nl is shown in grey, given
by
(
N
nl

)
, where N is the total number of channel qubits (excluding input and output qubits,

which are assumed to be lossless). For crazy graph, no GPF loss tolerance exists, and so such
data points are omitted.
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4.5.2 Unheralded loss

We now consider the performance of SPF in the case of unheralded loss. Any practical device

that must tolerate unheralded loss during teleportation (without a loss-tolerant encoding) must

be able to react to loss events as and when they occur. One method for achieving this is to

pre-compile a set of possible measurement patterns M, many of which will contain common

measurements. Since teleportation can be achieved as long as one valid pattern can be performed

that excludes all lost qubits, we require some measurement strategy that finds at least one such

measurement pattern with high probability. For demonstrative purposes we only consider a

single measurement strategy here, known as max tolerance. In the max tolerance measurement

strategy the measurement that occurs most in the set of maximally loss-tolerant patterns is

chosen; this process is then repeated until either a valid measurement pattern is completed

and teleportation succeeds or none remain and teleportation fails. For further details on this

strategy and other considered see Section 4.5.4.

Specifically, at each Monte Carlo simulation instance a set of lost qubits is again generated

and qubits are sequentially measured. At each measurement, if the qubit is not lost then the

measurement succeeds, and all measurement patterns not containing the measurement are

discarded. Conversely, if the measured qubit is lost, all measurement patterns that required

measurement of the qubit are discarded. Successful teleportation occurs when a successful

measurement completes a measurement pattern, whereas if no patterns remain then teleportation

fails.

Our Monte Carlo simulation results, depicted in Figure 4.8, indicates that teleportation

is surprisingly resilient to unheralded loss across the channels considered. Immediately, it is

clear that the crazy graph channel does not experience any decrease in teleportation rate in the

unheralded case. This can be understood by noting that, unlike the other channels considered,

the crazy graph is a loss-tolerant encoding of a four qubit linear graph state and is specifically

designed to tolerate unheralded loss.

For lattice channels, the disadvantage of unheralded loss decreases with increased node

degree. Most importantly, the decrease of T with unheralded loss is far more favourable for

higher degree in the regime of very low loss pl < 5%, with the triangular lattice showing

only a 2% decrease in loss tolerance. We finally note that although a fall in T is observed for

unheralded loss, this drop is not as large as might be expected. Most notably, SPF teleportation

on the triangular lattice under unheralded loss performs almost as well as SPF teleportation on

the hexagonal lattice under heralded loss (which already marks a significant improvement when

compared to teleportation using GPF). Overall, these results present an optimistic outlook on

the future of designing loss-tolerant architectures for quantum computation and other quantum

technologies based on such states.
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Figure 4.8: The probability of successful teleportation across various graph state channels as a
function of qubit loss in the heralded and unheralded case. Solid lines, dashed lines and shaded
regions depict the performance of stabilizer pathfinding with heralded loss, unheralded loss and
the difference between them respectively (i.e. the decrease in loss tolerance due to unheralded
loss). Each data point depicts 104 Monte Carlo instances and uncertainties are not depicted as
∆T < 0.5% in all cases and so are smaller than the plotted lines. From these results it is clear
that while unheralded loss does reduce the ability to teleport loss-tolerantly on MBQC resource
states, high teleportation rates can still be achieved, especially for those lattices with higher
degree. We also note that as expected the crazy graph channel does not show any decrease
in loss tolerance in the unheralded case, indicating its unique construction as a loss-tolerant
teleportation channel.

4.5.3 Loss tolerance thresholds

One interesting feature of loss tolerance provided by SPF is that T (pl) appears to exhibits

threshold behaviour on the lattice channels considered here. We conjecture that such a threshold

does exist in the infinite limit, allowing a loss-tolerant threshold p∗l to be defined on these states.

If this conjecture holds, p∗l represents a distinct division in loss tolerance in the limit of infinite

channel size (where n→∞ on an n× n lattice), where for pl < p∗l loss-tolerant teleportation

can always be achieved, whereas for pl > p∗l it cannot. It is known from percolation theory that

the probability of finding a spanning path Γ across some percolated lattice with edge/node

percolation rate p exhibits a threshold at some critical probability p = p∗, which can be found

from the stationary point in Γ(p) between finite lattices of various sizes [130].

Figure 4.9 depicts T (pl) for each lattice channel across lattice sizes 2× 2, 3× 3 and 4× 4,

with stationary points found for hexagonal and triangular lattice channels at pl ≈ 12–15% and

pl ≈ 27–30% respectively. No clear crossing is observed in the square lattice case. While these

results are not conclusive, it is surprising that any crossing points are found given the small

lattice sizes considered here as larger systems are usually needed to overcome perturbative

boundary effects. In the square lattice case, we conjecture that no crossing occurs because of
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Figure 4.9: Loss-tolerant teleportation rates T (pl) for the three lattice channels considered:
hexagonal, square and triangular over lattice sizes 2× 2, 3× 3 and 4× 4 in the case of heralded
loss. For the hexagonal and triangular lattice channels, stationary points appear at pl ≈ 12–15%
and pl ≈ 27–30% respectively, whereas with the square lattice, no single crossing point occurs.
If these points can be shown to represent a critical threshold in loss tolerance, then they define
the channels’ ultimate teleportation loss tolerance in limit of infinite channel size. However,
T (pl) at higher n are needed to verify the stationary points to prove such a conjecture.

such boundary effects, given their effect on per-node loss tolerance as depicted in Figure 4.5.

We also note that while the crazy graph lattice does also appear to show threshold behaviour

(from the sigmoidal form of its T curve in Figure 4.6) for some threshold pl < 1 for the

small sizes considered, this is not the case. This is because as n → ∞ for a n × n channel,

T = limn→∞ ((1− pnl )n) = 1 for pl < 1, in which case p∗l = 1.

Figure 4.10 depicts the comparison between heralded SPF and unheralded SPF for 2× 2,

3 × 3 and 4 × 4 lattice channels. In the unheralded case, no threshold crossing is observed

and the unheralded teleportation rate is found to decrease with increasing lattice size. Unlike

the heralded loss case, for unheralded loss no clear threshold crossing point is observed in the

teleportation rate of different sized lattices. As with the heralded case, the small size of lattice

investigated means that these results are not conclusive. However, unlike the performance of

heralded GPF, in this case the form of T (pl) remains sigmoidal, and so it is unclear whether

such results indicate no threshold exists, or whether it exists but at pl ≈ 0. Given that p∗l = 1

for unheralded loss on the crazy graph, we therefore conjecture that unheralded thresholds do

exist (even if they occur at p∗l = 0 on some lattices). If true, this suggests it may be possible to

achieve p∗l > 0 using larger lattices, improved measurement strategies or some lattice structure

not considered here.

One possible hypothesis is that all lattice channels exhibit a threshold in the heralded

SPF case, but suffer a drop in threshold when loss is unheralded, such that for all the cases

considered p∗l → 0. To assess this hypothesis it may be possible to find some lattice channel with

a high p∗l in the heralded case with p∗l > 0 when loss is unheralded. Alternatively, one could

attempt to tune between both thresholds (or between threshold and non-threshold behaviour
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Figure 4.10: Comparison between loss tolerance threshold behaviour for stabilizer pathfinding
in the unheralded and heralded regimes for each lattice channel considered (with the “max-
tolerance” measurement strategy applied for unheralded loss).

in the case of the null-hypothesis) by simulating intermediately heralded loss where only some

fraction of loss is unheralded.

Regardless of whether an unheralded threshold exists or not, it is perhaps unsurprising that

SPF under unheralded loss exhibits different behaviour than the heralded case. In analogy with

a quantum error correction protocol consisting of distinct detectability (identifying erroneous

qubits) and correctability (calculating some correction operator to apply) substages, SPF under

heralded loss has a trivial detectability stage followed by a correctability problem solved over

the global state, for which we similarly find a threshold. On the other hand, when loss is

unheralded one cannot separate detectability and correctability into different problems, but

rather SPF must solve them simultaneously and with only partial, time-ordered knowledge

of the state. In this case it is therefore not surprising if the phenomena of the heralded case

cannot be straightforwardly recovered. Further study is therefore required to fully understand

the differences and similarities of these cases.

4.5.4 Measurement strategies

We now present examples of measurement strategies that can be used in the case of unher-

alded loss and their simulated performances. A general measurement strategy algorithm for

teleportation with unheralded loss is given below:

A general measurement strategy algorithm for teleportation with unheralded loss is given in

box 3. Based on the particular choice of M̃∗, we present two possible measurement strategies

and compare their ability to tolerate unheralded loss. The most-common strategy performs

the measurement that occurs most in all available measurement patterns, such that M̃∗ = M̃,

whereas the max tolerance strategy performs the measurement that occurs most in the most

loss-tolerant available measurement patterns such that M̃∗ = {M : |M | = w, ∀ M ∈ M̃},
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Figure 4.11: a) Teleportation rates under unheralded loss for the most-common and max
tolerance strategies on the 4 × 4 triangular lattice. Each data point depicts the average
teleportation rate over 100 Monte Carlo instances and error bars are plotted at one standard
deviation. Measurement patterns were found from pairs of logical operators with at most five
weight greater than the minimum. Such results show that the prioritisation of the lowest-weight
measurement patterns is preferred for unheralded loss over a greater selection of possible
measurements. We note that the most-common strategy requires approximately 6× longer to
compute given a greater number of measurement patterns must be considered. b) Teleportation
rates for stabilizer pathfinding on the 4×4 triangular lattice with unheralded loss depicted across
various measurement pattern maximum weights. Recall that Mw found to a higher maximum
weight w will contain increasingly more measurement patterns, although with decreasing loss
tolerance. Each data point depicts the average value for 1000 Monte Carlo instances and shaded
error regions are depicted for a single standard deviation. While a small increase in loss tolerance
is achieved by an increase above the minimum logical operator weight w = 10 to w = 11, above
this any advantage is marginal at best. Such results support the conjecture that the majority
of useful loss tolerance is provided by a small selection of maximally loss-tolerant measurement
patterns produced by Mw with the minimum w.

where w is the minimum measurement pattern weight taken over all M ∈ M̃.

Figure 4.11a compares the performance of the two strategies on a 4× 4 triangular lattice.

These results show that the SPF teleportation rate in the unheralded case does depend on the

specific measurement strategy employed, and that some increase in loss-tolerance may be gained

from improved strategies. Figure 4.11b depicts the performance of the max tolerance strategy

with access to a greater number of measurement patterns as produced by pairs of logical

operators with greater maximum weight. Such results show that almost all of the loss-tolerant

measurement patterns used for teleportation in the unheralded loss case are those found by

combinations of the lowest-weight logical operators. It follows that only a small number of

measurement patterns need be generated to achieve near-maximal loss tolerance.
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UNHERALDED LOSS MEASUREMENT STRATEGY:

1) Initialise the set of performed measurements as empty M̃ = ∅ and the set of

available patterns to the set of valid measurement patterns M̃ =M.

2) Identify some subset of available measurement patterns M̃∗ ⊆ M̃.

3) Attempt the most common single-qubit measurement Pi across all M ∈ M̃∗.
In the case of multiple such Pi, pick one at random.

a) If measurement Pi succeeds (i.e. qubit i is not lost), discard all mea-
surement patterns that are no longer available. If no patterns remain,
teleportation succeeds.
Such that M̃ 7→ M̃ ∪ {Pi} and M̃ 7→ {M : Pi ∈M ∀M ∈ M̃}.

b) If measurement Pi fails (i.e. qubit i is lost), discard all measurement
patterns that contain any measurement on qubit i. If no patterns remain,
teleportation fails.
Such that M̃ 7→ {M : Xi, Yi, Zi /∈M, ∀M ∈ M̃}.

4) Repeat from 2).

Box 3: Algorithm for finding teleportation measurement patterns in case of unheralded loss. (

4.6 Discussion

We now provide a discussion of our SPF algorithm’s efficiency as well as possible optimisations

and extensions of SPF and our algorithm and a discussion on its applicability to various

quantum architectures.

4.6.1 Algorithm efficiency

Figure 4.12 depicts the average computational runtime for building |Ψ〉 and finding associated

measurement patterns M using the algorithms described in Section 4.4. For building |Ψ〉,
algorithm runtime is primarily a factor of the number of non-trivial stabilizers for the state∣∣SNT

Ψ

∣∣. From this it is easy to see that as m rises, so does the multiplicity of possible generator

combinations, with increased n further providing additional qubits to distribute support among.

However, here we observe a drop in build runtime occurs for the highest m when n ≥ 10. We

conjecture this phenomena is explained by noting that any stabilizer produced from an even

number k of generators (where Ki = Xi
⊗

i 6=j Zj) is trivial for k > 2 as KiKj = YiYj on the

completely connected graph of n vertices Kn (given the conventional choice of GΨ for graph

states). Each k-clique (i.e. k-node complete subgraph) within the graph will also have this

property. Hence, as Gn,m approaches Kn, the number of and size of cliques increases, hence

decreasing the number of non-trivial Sc for even |c| > 2.

For finding M, we conversely observe an increase in runtime for the most connected graphs.
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Figure 4.12: Average algorithm runtime for building states, i.e. finding and updating all non-
trivial stabilizers (solid lines), and the finding of associated measurement patterns from said
stabilizers (dashed line). Each data point depicts the average run-time for the given algorithm
applied to teleportation across 1000 instances of random n-qubit graph states with measurement
patterns only found from pairs of logical operators with a weight at most three greater than the
minimum. Specifically, each graph generated is an instance of an Erdős-Renyi Gn,m random
connected graph with n nodes, m edges and n − 1 ≤ m ≤ n(n − 1)/2 − 1 (also ensuring no
edge connecting input qubit I and output O). Simulations were performed with Python using
a standard PC running a 2.8 GHz Intel Core i7 CPU with 16GB of RAM and leveraging a
NVIDIA GeForce GT 750M graphics card for GPU processing.

In this case, the number of near-minimum weight logical operators is the primary factor in

the algorithm’s runtime. If the previous conjecture holds, this may also explain the observed

increase in runtime here. As connectivity increases, the number of low-weight Sc associated

with cliques also rises and so the number of low-weight logical operators would be expected to

increase and hence so to the possible pairings tested for M. For graphs with near-maximum m

it may therefore be sufficient to reduce a search of logical operator pairs to those with absolutely

minimal weight.

Finally, we note that the runtime in building |Ψ〉 depends to some extent on the construction

order of the edges. For example, on the lattices considered in Section 4.5, building edges within

a vertical layer before building edge between layers was found to be decrease runtime. While

a deep analysis of such optimal construction strategies is beyond the scope of this work, we

conjecture that construction techniques that build highly connected subgraphs first (which are

later connected) is preferred to sequentially adding edges to a single growing component.

4.6.2 Optimisations and extensions

Our SPF algorithm allows for optimisation in various situations. Because we have focused

on achieving loss tolerance across all possible states, our implementation of SPF necessarily
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tracked all non-trivial stabilizers, making simulation of over 20 qubit graph states infeasible

without significant computational power. However, a more specialised implementation might

suffice when applying SPF on a single type of channel, such as one which ignores isomorphic

stabilizers on states with high symmetry.

More generally, many non-trivial stabilizers tracked during SPF have high weight and so

typically don’t contribute to loss-tolerant measurement patterns or to later future low-weight

stabilizers as the state is grown. Because only stabilizers of up to bn2 c generators are needed for

triviality tests, all high-weight stabilizers produced from combinations of over bn2 c generators

may be disregarded. For large states this can significantly reduce computational runtime without

either causing failure of our SPF algorithm or an appreciable reduction in loss tolerance.

Another route for optimisation and/or extension of SPF is provided by pre-compilation. In a

quantum architecture with probabilistic entangling operations within a fixed network structure,

the non-trivial stabilizers for the ideal network may be pre-compiled (as an expensive but one-off

computation) so that our algorithm can build down (rather than build up) to the target state.

Alternatively, for large, regular graph state lattices, teleportation might be split up into many

smaller SPF instances that are concatenated to produce the required long-range measurement

patterns. The challenge here is to ensure consistency across the boundaries between different

SPF instances.

Finally, we observe that SPF can be extended to include parity checks for the detection

of computational measurement errors. This is seen by noting that each of a state’s stabilizers

provides a parity check for measurement on the state. Therefore, if a stabilizer can be found

whose non-trivial Pauli operators are a subset of the teleportation measurement pattern (or

which contains additional available measurements), the operator provides a parity check on

measurement outcomes. Combinations of parity checks which overlap on sets of qubits can

thus be used to detect Pauli measurement errors, as demonstrated by tolerance of up to a 50%

Pauli Z error rate on crazy-graph states argued in Ref. [17]. For example, in Figure 4.2, three

measurement patterns can be simultaneously measured to achieve teleportation, and hence the

additional measurement outcomes freely provide parity checks which detect Pauli errors during

the protocol.

4.6.3 Relevance to quantum architectures

Firstly, our results provide important progress towards addressing the problem of photon loss

within linear optical quantum computer. For example, some LOQC architecture proposals [1,

15, 47, 123] overcome probabilistic entangling gates by the renormalization of large blocks

of percolated graph state to construct 3D topological error correction states such as the

Raussendorf lattice [139]. But due their use of GPF for teleportation, these models previously

lacked any tolerance to unheralded loss. The loss tolerance thresholds conjectured in Section

4.5.3 indicate that loss tolerance can be straightforwardly achieved in these schemes by replacing
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GPF with SPF.

More generally, SPF can provide additional loss tolerance within many other quantum

architectures without modification, before or after error-correction. For example, given that flow

conditions are unaffected by Pauli X, Y and Z measurements [113], SPF is readily compatible

with teleportation in an MBQC architecture. Similarly, because SPF makes no assumptions

on the physical encoding of qubits, our work equally extends to teleportation of logical qubits

which are encoded for quantum error correction or other reasons. Hence in some systems it may

be possible to substitute the resources associated with producing asymptotically-lossless logical

qubits with the creation of a larger network of (heralded) low-loss logical qubits on which SPF

can be applied.

One further aspect we have not explicitly addressed here is the ability to perform measurement-

based qubit gates on top of an SPF teleportation scheme. Unlike GPF, because no linear cluster

is directly generated during SPF the standard MBQC gate protocol cannot be directly applied.

However, given that at least one unbroken qubit path of Y and X measurements must connect

the input and output qubits, with all others effectively applying the necessary Z measure-

ments, it is straightforward to understand how standard MBQC protocols may be similarly

implemented. We leave a full description of such a protocol open for future works.

Lastly, it is clear from the results of section 4.5 that higher-degree graph states seem to

provide a greater degree of loss tolerance in both the heralded and unheralded case. As such, it

is an open question whether this result generalises for arbitrary n-degree random graphs or

lattices. The identification of such a dependance would provide an important insight into the

design of future network architectures.

4.7 Conclusion and outlook

Qubit loss presents a substantial roadblock to the realistic implementation of teleportation within

many large-scale quantum technologies, such as LOQC and quantum communication networks.

Previously, this could only be generally addressed through costly loss-tolerant encodings,

especially so when qubit loss is unheralded. However, by applying a generalised approach to

teleportation, SPF, our work provides loss-tolerant teleportation on any stabilizer state using

only single-qubit Pauli measurements and feed-forward. We have show that SPF provides all

maximally loss-tolerant teleportation measurement patterns (when loss is heralded) without

use of an exhaustive search. Furthermore we have shown that SPF also allows for significant

degrees of unheralded qubit loss to be tolerated by dynamic and computationally-inexpensive

measurement strategies.

In addition to theoretical analysis, we have provided an algorithm that implements SPF

as well as unheralded measurement strategies which incur minimal computational cost. Based

on numerical simulations of SPF, we have further conjectured the existence of loss-tolerant
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thresholds on a variety of graph state lattices that exist in the limit of infinite lattice size. From a

practical perspective our results provide both a novel technique for tolerating loss in large-scale

quantum architectures as well as a tool for maximal use of so-called noisy intermediate-scale

quantum (NISQ) devices in the near future [200].
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5
Optimising graph-state architectures with local

complementation

Over the past decade, increasing attention has been given to the development of large-scale

architectures for quantum computation and communication. Specifically, the design, development

and analysis of large-scale quantum architectures often considers vast networks of highly-

entangled quantum states on which quantum gates and measurements are performed. One fact

that soon becomes clear to any quantum architect is that finding simple and intuitive models

for representing large entangled states is crucial for rapid progress.

The challenge of representing large, entangled quantum states in efficient and intuitive ways

dates to the dawn of quantum information science. Historically, visualisations of quantum states

have often been adapted from other fields of mathematics and physics. For example, a geometric

representation as high-dimensional complex polyhedra is commonly used to visualise mixtures

of states [201]. For large states, methods originating in condensed matter theory were leveraged

to depict many-body quantum systems with nearest-neighbour interactions as grids of pairwise

connected vertices [104, 202–204]. In fact, large families of quantum states such as matrix

product states (MPS), tree tensor networks (TTN), and projected entangled pair states (PEPS)

can be visually depicted using a unified tensor network representation [205]. In other cases,

entirely novel representations have been developed, such as the so-called ZX-calculus which is

complete for stabilizer states [206]. Going forward into the future, the need for highly-efficient

simulations of large entangled states will undoubtably continue to drive innovations in state

representation, including those that optimise for state-of-the-art classical hardware capabilities,

such as deep neural networks [207].

For many purposes the most common and convenient representation of Clifford states is

the graph state introduced in Chapter 2. This is for a number of reasons. Firstly, the graphical

139



CHAPTER 5. OPTIMISING GRAPH-STATE ARCHITECTURES WITH LOCAL

COMPLEMENTATION

representation of entangled states is inherently visual, allowing spatially and/or temporally

distributed states to be intuitively depicted. Secondly, all Clifford operations on graph states

can be represented within the graph picture, allowing their effects to be efficiently computed (by

both neural and artificial processors). Furthermore, the isomorphism between graphs and graph

states allows theoretical concepts and results to be conveniently ported from the former to the

latter, providing quantum architects with a greater array of tools in their analytic toolboxes.

As has already been show in Chapter 2, graph states provide a natural framework for

both state generation and quantum error correction in modern LOQC architectures. However,

graph states find use in many other quantum architectures—most commonly those with a

modular design based on distributed quantum computation [208–211]. For example, in a

brokered approach to generating entanglement between atom-cavity modules in a light-matter

architecture [212], graph states generated in a broker layer are transferred to the client layer

to construct a desired state under probabilistic interactions. Graph states can also be used

to represent sub-protocols within a larger quantum computation architecture, such as for

fast non-unitary evolution [213] and graph operations [99]. Similarly, graph states find use

in many quantum communication network protocols, such as quantum secret sharing (QSS)

[214] in which a secret encoded in some quantum state is shared between parties in a network,

such that only some authorised subset of the nodes can recover the secret. As also seen in

Chapters 2 and 3, a graphical representation of probabilistically generated photonic cluster

states allowed percolation theory to be leveraged in their analyses, providing the proof that

such an architecture was theoretically attainable. Without a graphical representation, reasoning

about the even moderately sized states produced by these architectures becomes needlessly

complex, stymieing otherwise straightforward analyses.

However, in many architectures, entanglement between qubits cannot be easily created on-

demand, whereas, by contrast, local operations can usually be freely applied. While probabilistic

entanglement generation is a particular challenge for LOQC architectures, entanglement remains

costly across many others. For example, in modular trapped-ion architectures, lossy optical

interconnects require multiple attempts be made per successful entangling gate, significantly

reducing the maximum clock speed of the quantum processor [210]. Furthermore, given the

high cost of the switching networks and quantum memories required for creating entanglement

between spatially and temporally separated qubits, the constraint of ballistic entangling gates

is often applied (as described for photonics in Chapter 2). Importantly, the set of graph states

which are equivalent up to local Clifford operations is represented by the set of graphs which

are equivalent up to local complementation, known as an LC-equivalence class [199]. For any

platform where entanglement cannot be freely generated, the use of local complementation is

therefore a key tool for analysing the state space available to an architecture. Given the above

constraints, this chapter is motivated by the following real-world architectural problem: given

some set of possible entangling operations acting on a predetermined set of quantum systems
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at fixed times, what is the set of accessible graph states?

In the case where local Clifford operations (including qubit measurement) are applied

after all entangling operations have completed, finding the set of accessible states becomes an

generalisation of the qubit minor problem considered by Dahlberg and Wehner [215]. Specifically,

in Ref. [215], they show that for certain graph states1 there exists an efficient algorithm to

determine whether some graph state |G′〉 can be produced from |G〉 using only local Clifford

gate and Pauli measurements. Their approach is based on the observation that producing |G′〉
from |G〉 is only possible if G′ is a subgraph of a member of G’s LC-equivalence class. Hence,

in general it follows that the set of all graph states {|G′〉} accessible via local operations from

some initial graph state |G〉 is represented by the set of all subgraphs of all graphs in G’s LC-

equivalence class. It is clear that the size of {|G′〉} will be very large for even moderately sized

graph states of O(10) qubits, soon becoming infeasible to explore by brute-force enumeration.

In the case where arbitrary local Clifford operations can be intermediately applied between

some fixed set of entangling gates, the problem is further compounded. This is seen by noting

that local operations on states do not commute with entangling gates in general, such that

including local Clifford gates between entangling operations increases the space of accessible

states. Hence the space of possible graph states that can be produced by even a small sequence

of fixed entangling operations can be incredibly large. Importantly, local operations applied

between entangling gates can be used to increase the degree of entanglement in the final state.

For example, consider the creation of the n-qubit star microcluster state where n− 1 qubits

are sequentially entangled by a sequence of CZ’s to a single central qubit n. Every n-qubit star

is LC-equivalent to the completely connected graph of n vertices and so is contained within the

same LC-equivalence class. Also, all star microclusters have Schmidt measure one and each class

of n-qubit stars has the unique minimum Schmidt measure over all n-qubit equivalence classes.

It follows that with no local complementations applied between CZ’s during construction,

the Schmidt measure only increases after the first CZ. However, any set of non-trivial local

complementations applied during the construction of a star will produce some non-star state,

thereby increasing the state’s overall entanglement.

It is clear that local complementation can provide a useful tool for the optimisation of

graph-state architectures, especially in the case of ballistic entangling gates. As such, the aim

of this chapter is two-fold. Firstly, to study the use of local complementation to optimise

current experimental architectures based on postselected linear optics. Secondly, to improve

on the set of graph state tools available to quantum architects and extend existing tools to

higher-dimensional quantum systems. These goals strive to not only motivate the use of local

complementation for optimising graph-state architectures, but also provide an array of practical

and ready-made tools for doing so.

1 Namely, those which have bounded Schmidt-rank width, an entanglement monotone defined in Ref. [106].
However, for arbitrary states the problem is NP-complete and can therefore only be efficiently solvable if P = NP.
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The chapter is structured as follows. Section 5.1 briefly introduces local complementation

on graph states the associated LC-equivalence classes. From this, Section 5.2 then explores

the use of local complementation to overcome limitations of postselected entangling gates and

presents a numeric approach to sampling the states produced by such an architecture. To

provide tools for exploring LC classes more generally, Section 5.3 reviews the current tools

available for enumerating LC-equivalence classes and presents an improved algorithm for their

exploration. In Section 5.4 these tools are expanded for use on graph states defined over prime

and prime-power dimensional qudits and novel local complementation operations are presented

for the latter. Finally, Section 5.5 concludes with a selection of possible applications for the

exploration of prime-power graph states.

Supporting Python code for this chapter can be found at https://github.com/sammorley-short/

gsc and cited by the DOI https://doi.org/10.5281/zenodo.2582616.

5.1 Introduction to local complementation on graph states

Graph states are a subset of the stabilizer states that can be represented by simple, undirected

graphs and have many interesting properties, as introduced in Chapter 2. For example, in Ref.

[94] it was shown that Pauli measurements on graph states can be efficiently represented by

graph operations. Most importantly here, in Ref. [199], Van den Nest et. al. proved that any

two n-qubit graph states |G〉 and |G′〉 are local Clifford equivalent (LC-equivalent) if and only

if there exists some finite sequence of local complementations (LCs) that takes G to G′. The

local complementation of some node v ∈ V on a graph G is defined as the operation

LCv : G = (V,E) 7→ (V,E′), E′ = E4KNG(v) (5.1)

where KNG(v) is the edgeset of the complete graph of vertices in NG(v) and A4B is the

symmetric difference of sets A and B. Equivalently, this operation can be seen as replacing

the subgraph G[NG(v)] with its complement G[NG(v)]C in G. In the graph-state picture, the

unitary (through abuse of notation) LCv such that |LCv(G)〉 = LCv |G〉 is given by

LCv =
√
−iXv

⊗
u∈NG(v)

√
iZu ∝

√
Kv (5.2)

and is a local Clifford operation.

A set of graph states that are LC-equivalent defines an LC-equivalence class or LC-class

for short. Such classes are of particular interest to quantum architectures because they define

the graph states can be produced using only local operations and classical communication

or LOCC. For example, the LC-class of the linear graph G defined by V = {1, 2, 3, 4} and

E = {(1, 2), (2, 3), (3, 4)} is depicted in Figure 5.1. Furthermore, since each stabilizer state is

local Clifford equivalent to a graph state [199], these classes more generally represent classes of

LC-equivalent stabilizer states.
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Figure 5.1: All the graph-states members in one of the LC-equivalence classes of four qubits.
Note that while the class does contain isomorphic graphs, such as graphs 1, 7, 9, and 11, it
does not contain the all isomorphisms of any graph. LCu indicates the node u on which local
complementation is applied to reach the next graph. Image concept taken from Ref. [216].

LC-classes have a number of interesting properties. Firstly, any two LC-equivalent graphs

must have equal Schmidt measure [217], an entanglement monotone defined as follows. Consider

the state vector |ψ〉 ∈ H1⊗ . . .⊗HN of some N -component quantum system, each with Hilbert

space Hi, which can be decomposed as

|ψ〉 =
R∑
i=1

ξi
∣∣ψ1
i

〉
⊗ . . .⊗

∣∣ψNi 〉 , (5.3)

for ξ ∈ C and |ψni 〉 ∈ Hn. The Schmidt measure of |ψ〉 is then defined as

ES(|ψ〉) = log2(Rmin), (5.4)

where Rmin is the minimum number of terms R taken over all possible decompositions. With

respect to graph states, the Schmidt measure has a number of useful properties as described in

Ref. [94]. One key property is that ES is non-increasing under SLOCC. Specifically,

|ψ〉 SLOCC−−−−−→
∣∣ψ′〉⇒ ES(|ψ〉) ≥ ES(

∣∣ψ′〉) and (5.5)

|ψ〉 LU←→
∣∣ψ′〉 ⇒ ES(|ψ〉) = ES(

∣∣ψ′〉). (5.6)

Note that the above inferences are strictly unidirectional, as any two isomorphic graph states

(which must have equal Schmidt measure) may not share equivalence class.

5.2 Postselection in photonic graph-state architectures

As an example of how local complementation can optimise graph-state architectures, we

consider its use in postselected photonic state generation. Due to the constraints of probabilistic

entangling gates and hardware limitations, almost all historical demonstrations of LOQC rely on
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postselection. However, while postselection has allowed experimentalists to realise increasingly

large quantum states [88, 218–221], it becomes increasingly difficult to distinguish between

success and failure detection patterns on many large states. In this section we shall show

that while local complementation cannot provide a panacea to such problems, it use allows

postselected entanglement generation to produce more states than would be naively expected.

Before considering postselected entangling gates, it is important to consider the photonic

states being input to them. The most common type of single photon source (SPS) in lin-

ear optical experiments are entangled postselected pair (EPP) sources based on spontaneous

parametric down-conversion or four-wave mixing. As introduced in Chapter 2, these sources

non-deterministically convert high-frequency input pump photons into a pair of signal and idler

photos at lower-frequencies. If the two photons have equal wavelength, the source is known as a

degenerate EPP; conversely, if the photons have differing wavelength the source is known as a

non-degenerate EPP or ND-EPP. Note that circuits taking input states from ND-EPP sources

may then only interact with same-wavelength qubits. In a heralded architecture, the signaller

photon is detected to produce a heralded idler photon, whereas in postselected architectures

both photons are input into the optical circuit as an EPP. For a 2n qubit experiment this

requires each of the n EPP sources to fire only once, else a non-qubit state is produced. Given

that the firing of each source is probabilistic, such an architecture is clearly not scalable, however

even at the small-scale these experiments provide valuable proof-of-principle demonstrations

for both an architecture’s processes and technology.

Physically, EPPs may be produced using the two-mode squeezing process introduced in

Chapter 2; for example, consider the production of a Bell state. If the original pump state |α〉
is first passed through a 50:50 beamsplitter (BS) to impinge on two pair sources producing

photons in mode pairs a and b, then an appropriate choice of parameters ξa and ξb produces

the two-mode squeezed state

|ξa〉a |ξb〉b = (|0s0i〉a − ξa |1s1i〉a)⊗ (|0s0i〉b − ξb |1s1i〉b)
= |0s0i〉a |0s0i〉b + ξb |0s0i〉a |1s1i〉b + ξa |1s1i〉a |0s0i〉b +O(ξaξb), (5.7)

where ξaξb → 0 in the weak-pump regime. Postselecting on two-photon coincidence events,

applying the two-qubit dual rail encoding

|0〉1 ≡ |0s〉a |1s〉b , |1〉1 ≡ |1s〉a |0s〉b , |0〉2 ≡ |0i〉a |1i〉b , |1〉2 ≡ |1i〉a |0i〉b , (5.8)

and setting ξa = eiφ, ξb = 1 (by appropriate tuning of optical elements2), we then find the

two-qubit output state

|ψ〉 =
1√
2

(
|00〉12 + eiφ |11〉12

)
. (5.9)

By setting φ = 0, π the maximally entangled Bell states |Φ±〉 can therefore be respectively

produced (as well as |Ψ±〉 from trivial mode swaps).
2 See the Supplementary Materials of Ref. [114] for details.
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Figure 5.2: The effect of applying a postselected CZ and fusion between two qubits with and
their neighbourhoods (depicted by blue dashed lines). Figure reproduced from Ref. [3] with
permissions; image credits to J. C. Adcock.

5.2.1 Postselected entangled gates

In general, the postselection of some n-qubit linear optical unitary ULO that maps Fock states

to Fock states refers to the discarding of any non-qubit output states given only qubit input

states, or equivalently, the projection PQ of ULO onto the space of qubit Fock states Q, such

that

UQ = PQULOPQ. (5.10)

For a single-qubit gate ULO
i implemented by an MZI, no exchange of photons between dual-rail

qubits or qubit modes occurs and therefore ULO
i has no effect on the circuit’s postselectability.

However, for two-qubit entangling gates, qubit-qubit interaction is simulated by postselecting

gate outcomes in which the desired interaction occurs. By careful interferometer design, it is

possible to construct circuits whereby the only gate outcomes in which interaction did not

occur are those that are no longer in the qubit basis, and hence are removed by postselection.

In postselected linear optics the two most common entangling operations are the controlled-

phase and fusion gates, depicted in Figure 5.2, denoted CZLO and F respectively. As in

the non-postselected case, CZLO directly links two qubit nodes but otherwise leaves qubits’

neighbourhoods unchanged. On the other hand, the postselected fusion gate causes both

qubits’ neighbourhoods to be transferred to one of the two qubits (which is chosen by a

local operation), with the other linked as a single dangling node. This fusion differs from the

familiar non-postselected case presented in Ref. [45], in which one or more photonic qubits

are consumed during the gates’ operation. Both gates (and the identity) can be implemented

using a reconfigurable postselected entangling gate (R-PEG), depicted in Figure 5.3, by tuning a

selection of phase shifters. To understand how CZLO and F produce entanglement, we consider

the Bogoliubov mode transformations that define them.
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Figure 5.3: Linear optical circuit implementations of the postselected CZ [222, 223] and fusion
gates [45, 224], and a reconfigurable postselected entangling gate which can reproduce both.
Triangles represent phase shifters and unlabelled beamsplitters have reflectivity 1/2 with a
realistic (for integrated optics) i phase on reflection; on beamsplitters depicted then a sign change
occurs upon reflection from the light side. Figure reproduced from Ref. [3] with permissions;
image credits to J. C. Adcock.

First consider the CZLO gate. From Figure 5.3, we label the four central qubit modes as 01,

11, 02, and 12, and the top and bottom ancilla modes as c1 and c2 respectively. The respective

linear transformations of Fock mode creation operators a† are

â†01

CZLO

−−−→ 1√
3

(
â†01
−
√

2â†a1

)
, â†11

CZLO

−−−→ 1√
3

(√
2â†02

− â†11

)
â†02

CZLO

−−−→ 1√
3

(
â†02
−
√

2â†11

)
, â†12

CZLO

−−−→ 1√
3

(
â†12
−
√

2â†c2

)
, (5.11)

from which it is easy to show that

CZLO |++〉q =
1

3
√

2

(√
2 |0100〉f + |0010〉f + |0001〉f

)
|10〉f

+
1

3
√

2

(√
2 |0010〉f − |0100〉f + |1000〉f

)
|01〉f +

1

3
|0000〉f |11〉f

+
1

3
√

2

(
|1100〉f − |0011〉f −

√
2 |0200〉f +

√
2 |0020〉f

)
|00〉f

+
1

6

(
|1010〉f + |1001〉f + |0110〉f − |0101〉f

)
|00〉f (5.12)

where |++〉q = 1
2(|1010〉f + |1001〉f + |0101〉f + |0110〉f ) |00〉f where mode labels have been

grouped as (01, 11, 02, 12) and (c1, c2) and for clarity we have used subscripts q and f to denote

the qubit and Fock bases respectively. If postselection is a projection into the space of qubit
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Fock states Q, the orthogonal space of junk Fock states J is also defined (with associated

projector PJ ). For a single qubit mode labelled i, these projection are given by

PQi = |01〉〈01|0i1i + |10〉〈10|0i1i and PJi = I− PQi =
∑

n+m 6=1

|nm〉〈nm|0i1i (5.13)

where n+m is the total number of photons in the optical system. Postselection over multiple

qubit modes is then straightforwardly achieved via tensor product; for example, the projector

for qubit modes i and j is

PQij = PQi ⊗ PQj and PJij = I− PQij = PQi ⊗ PJj + PJi ⊗ PQj + PJi ⊗ PJj . (5.14)

Applying PQ = PQ12 to Equation (5.12) and ignoring vacuum ancillae modes, we find

PQCZLO |++〉q =
1

6

(
|1010〉f + |1001〉f + |0110〉f − |0101〉f

)
=

1

3
CZ |++〉q , (5.15)

such that PQCZLOPQ = 1
3CZ and as expected [222, 223] the postselected CZLO implements

CZ with probability 1
9 .

Second, consider the fusion gate. From Figure 5.3, applying the same qubit mode labels as

before the Bogoliubov mode transformations are given by

â†01

F−→ 1√
2

(
â†01

+ â†11

)
, â†11

F−→ â†12

â†12

F−→ 1√
2

(
â†01
− â†11

)
, â†02

F−→ â†02
, (5.16)

from which it follows that

|1010〉f
F−→ 1√

2

(
|1010〉f + |0110〉f

)
, |1001〉f

F−→ 1

2

(
|2000〉f − |0200〉f

)
|0101〉f

F−→ 1√
2

(
|1001〉f − |0101〉f

)
, |0110〉f

F−→ |0011〉f . (5.17)

By applying PQ = PQ12, and rewriting in the qubit basis we observe that

PQFPQ = |+0〉〈00|q + |−1〉〈11|q (5.18)

which is an entangling operation that occurs with probability 1
2 . For example, in the case of

an |++〉 input we find the output state F |++〉 = 1
2 (|+0〉+ |−1〉) is also the two-qubit linear

cluster state. In this case, the gate’s action is the same as CZ |++〉, although as depicted in

Figure 5.2 in general this is not the case.

5.2.2 The limits of postselection

Now consider two consecutive CZLO gates applied to two input qubit modes, followed by qubit

postselection. (We note that while we shall only consider sequences of CZLO’s here, similar
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effects also occurs when fusions are also included.) Assuming only qubit input, we find that

PQCZLOCZLOPQ = PQCZLOPQCZLOPQ + PQCZLOPJCZLOPQ

=
1

9
Iq +

1

9

(
2 |00〉〈00|q + 8 |10〉〈10|q + 2 |11〉〈11|q

)
(5.19)

where we have used PQ + PJ = If , (PQ)2 = PQ and omitted qubit mode indices 1 and 2.

We see that the first term is the desired qubit operation, implementing CZ2 = Iq, whereas

the second performs some non-unitary operation (albeit with reduced amplitude), such that

PQCZLOCZLO |++〉q = 1
9 |++〉q + 1

9(|00〉q + |11〉q + 4 |10〉q), and hence fails to produce the

desired state.

Let us now consider the more complicated example of CZLO applied to three qubit modes.

First consider the construction of a postselected linear graph state by PQ123CZLO
12 CZLO

23 P
Q
123. By

the same logic as before we observe that

PQ123CZLO
12 CZLO

23 P
Q
123 = PQ123CZLO

12 (PQ12 + PJ12)(PQ23 + PJ23)CZLO
23 P

Q
123, where

PQ12P
J
23 = PQ12P

J
3 , P

J
12P

Q
23 = PJ1 P

Q
23, P

J
12P

J
23 = PJ1 P

Q
2 P

J
3 + PQ1 P

J
2 P

Q
3 + PJ1 P

J
2 P

J
3 . (5.20)

By commutation and PQi P
J
i = 0, it is easy to see that the terms containing PQ12P

J
3 , PJ1 P

J
23,

PJ1 P
Q
2 P

J
3 and PJ1 P

J
2 P

J
3 go to zero, leaving only two terms

PQ123CZLO
12 CZLO

23 P
Q
123 = PQ123CZLO

12 (PQ123 + PQ1 P
J
2 P

Q
3 )CZLO

23 P
Q
123. (5.21)

However, by conservation of photon number, we also observe that

PQij CZLO
ij P

Q
i P

J
j = PQi P

J
j CZLO

ij P
Q
ij = 0

⇒ PQ123CZLO
12 CZLO

23 P
Q
123 = PQ123CZLO

12 P
Q
123CZLO

23 P
Q
123 =

1

9
CZ12CZ23, (5.22)

thereby producing the desired state with probability 1/81.

Next, consider the construction of the postselected three-qubit graph-state ring by applying

an additional CZLO
13 gate. By following the same process as before, we find that

PQ123CZLO
13 CZLO

23 CZLO
12 P

Q
123 = PQ123CZLO

13 P
Q
1 P

Q
2 P

Q
3 CZLO

23 P
Q
1 P

Q
2 P

Q
3 CZLO

12 P
Q
123

+ PQ123CZLO
13 P

J
1 P

Q
2 P

J
3 CZLO

23 P
J
1 P

J
2 P

Q
3 CZLO

12 P
Q
123

=
1

27
CZ13CZ23CZ12

+
2
√

6

81

(
3 |000〉〈010|+ 6 |100〉〈110|+ 2 |110〉〈100|+ |111〉〈101|

)
,

(5.23)

and so similarly fails to perform the desired postselected operation, producing output the state

PQCZLO
13 CZLO

23 CZLO
12 |+ + +〉 =

1

108

(√
2 + 4

√
3
)
|000〉+

1

324

(
4
√

3− 3
√

2
)
|111〉

+
1

54
√

2

(
|001〉+ |010〉 − |011〉+ |100〉 − |101〉 − |110〉

)
. (5.24)
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The above state occurs with probability 0.00706, which is well above the probability 1
27 ≈ 0.00137

of creating the ideal state. Hence, the majority of the state produced is due to terms associated

with intermediate junk states than the qubit ones.

From the above, it is clear that certain configurations of postselected gates have the property

that junk states created at intermediate points in the circuit are not detected by postselection

and hence can contribute to qubit terms on the output. In the presented formalism, this equates

to intermediate junk projectors being prevented from commuting to input or output qubit

projectors in such configurations, thereby allowing the postselected circuit to enact additional

operations to the desired one. We now show that the only circuit layouts or topologies which

are always postselectable are those which do not contain cycles. Specifically, the gate topology

graph representation of a circuit is the graph produced by denoting every two-qubit gate a

graph vertex and every qubit mode that is output of one gate and input into another as an

edge. It follows that all gate topology graphs are subquartic3 graphs. This shall be referred to

as the gate cycles rule.

Lemma 5.2.1. For a circuit topology containing only one- and two-qubit postselected gates

and qubit inputs, then a tree topology is a sufficient condition on the ability to correctly postselect

the overall circuit.

Proof. In general, any postselected circuit ULO can be defined as a sequence of arbitrary

two-qubit gates

ULO =
m∏
a=1

U
[a]
iaja

, (5.25)

where ia, ja denote the qubits on which U [a] acts. For the postselection of a state output from

the collective ULO to correctly herald the successful operation of each individual U [a], it must

be the case that

UQ = PQ

(
m∏
a=1

U
[a]
iaja

)
PQ =

m∏
a=1

PQiajaU
[a]
iaja

PQiaja . (5.26)

Our task is therefore to show that Equation (5.26) only necessarily holds if the gate topology

defined by ULO does not contain a cycle.

Firstly, expanding a single two-qubit gate Uij in terms of the possible output states it can

map the input from

Uij = (PQij + PJij )Uij(P
Q
ij + PJij )

= PQij UijP
Q
ij︸ ︷︷ ︸

gate succeeds

+PJij UijP
Q
ij + PQij UijP

J
ij + PJij UijP

J
ij︸ ︷︷ ︸

gate fails

. (5.27)

3 A subquartic graph is a graph where each vertex has degree d ≤ 4.
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Figure 5.4: An example of a 3-qubit circuit which is not postselectable. The corresponding junk
flow labellings are shown in b) and c), depicting the two terms found in Equation 5.23 respectively.
As both terms are non-zero the circuit enacts a superposition of the desired CZ13CZ23CZ12

operation (b) and a junk operation (c), and hence cannot be correctly postselected.

Given that the loss of a photon in any gate of ULO can always be detected in the output state

(assuming no higher-order photon emissions), failure terms that do not conserve photon number

(such as PJi P
Q
j UijP

Q
i P

Q
j ) can be ignored, allowing us to further define each of the above terms

as

PQij UijP
Q
ij = PQQij UijP

QQ
ij (5.28)

PJij UijP
Q
ij = PJJij UijP

QQ
ij (5.29)

PQij UijP
J
ij = PQQij UijP

JJ
ij (5.30)

PJij UijP
J
ij = PQJij UijP

QJ
ij + PJQij UijP

QJ
ij + PJQij UijP

JQ
ij + PQJij UijP

JQ
ij

+ PJJij UijP
JQ
ij + PJJij UijP

QJ
ij + PJQij UijP

JJ
ij + PQJij UijP

JJ
ij

+ PJJij UijP
JJ
ij , (5.31)

where we have used PABij ≡ PAi PBj for brevity. By substituting the equivalent expansions for

each U
[a]
iaja

into (5.26), all possible case of gate successes and failures can be considered

UQ = PQ

(
m∏
a=1

PQiajaU
[a]
iaja

PQiaja + PJiajaU
[a]
iaja

PQiaja + PQiajaU
[a]
iaja

PJiaja + PJiajaU
[a]
iaja

PJiaja

)
PQ

=
∑

PQ

(
m∏
a=1

PAaia
PBaja U

[a]
iaja

P Caia P
Da
ja

)
PQ (5.32)

where Aa,Ba, Ca,Da ∈ {Q,J } and the sum taken over all terms in the first line’s expansion

(where only those combinations found in Equations (5.28), (5.29), (5.30) and (5.31) occur). Since

PAi P
B
i = δA,B and

[
Uij , P

Q
k

]
=
[
Uij , P

J
k

]
= 0 for k 6= i, j, we can immediately see that any term

where an output qubit projector does not equal that of any subsequent input projector on the

same qubit becomes zero. While it is clear that in all cases PQ
(∏m

a=1 P
Q
ia
PQjaU

[a]
iaja

PQiaP
Q
ja

)
PQ

is non-zero, we now show that other terms may be also.

To conceptualise the remaining terms, we can represent each by a junk flow labelling of the

circuit’s gate topology graph. On the circuit’s gate topology graph, each node a represents U
[a]
iaja

with edges {a, b} drawn from node a to b if a qubit output from U
[a]
iaja

is later input in U
[b]
ibjb

. In a
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junk flow labelling of the gate topology graph each edge label corresponds to the projector that

occurs between U
[a]
iaja

and U
[b]
ibjb

. Junk flow labellings of the gate topology thereby conceptualise

each and every configuration of postselected gate failures and consequent production of junk

states within a circuit. For example, Figure 5.4 depicts the two junk flow labellings for the

previous three CZ case. In this picture, we can observe that Equation (5.28) represents correct

gate operation, (5.29) a node which is the source of two junk states, (5.30) some sink of two

previously created junk states, and (5.31) some transfer of either one or two junk states or the

spreading (merging) of junk from one to two (two to one) qubit modes.

In order for a final output state to be a qubit Fock state (and a term not equal zero) each

source of junk states created must be converted back into a two-qubit state by some later gate.

Therefore, given that junk states can only be initially created and ultimately removed in a

pair, any circuit in which this occurs must have a topology graph containing at least one cycle.

This can be seen by noting that for postselection to fail each gate vertex which is a source of a

pair of junk states must be must be start of two disjoint paths that each end on a gate vertex

that is itself the end of two disjoint junk paths. Since both ends of every path must be paired

with that of another, it follows that a cycle must be formed. Hence gate topologies with cycles

may introduce additional terms into UQ thus preventing Equation (5.26) from being satisfied.

Finally, we note that the set of graphs that do not contain loops is the set of trees. �

While the above proof shows that a tree topology is a sufficient condition for postselectability,

it does not prove they are necessary; it may be possible to construct some cyclic topology and

choice of gates where all junk terms equal zero. Furthermore, as illustrated by Equations (5.19)

and (5.23), it may also be possible to find some subset of input states for which the desired

operation is achieved.

5.2.3 Postselection with EPP sources

In practise, an additional option for generating entanglement in a postselected architecture is

the use of EPP sources, as described earlier. Given that Lemma 5.2.1 makes no assumptions on

the state of photonic qubits input to the architecture, we can readily extend the condition of

tree topologies to circuits taking EPP sources as inputs. However, as shown in Equation (2.14),

even weakly-pumped EPP sources will occasionally produce higher-order photon pairs, which

must also be correctly detected and discarded by postselection.

For example, consider a hypothetical four-qubit ring architecture where two degenerate

EPP sources output the state |ψ〉12 |φ〉34 on which CZLO
13 CZLO

24 is applied. When both sources

fire correctly |ψ〉12 and |φ〉34 each contain a single photon in both qubits modes pairs (1, 2),

and (3, 4) respectively. Because there are no loops in the circuit’s architecture, such states

can always be correctly postselected. However, there is also some finite probability that one

source does not fire and the other fires twice, producing two non-qubit states. In this case, the

final postselection can fail if both CZLO
13 and CZLO

24 each redistribute a single photon from the
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Figure 5.5: Examples of graph state circuit postselection a) and b) Examples of how postselection
fails due to the cycles rule. Vertical dotted lines indicate that two boxes are part of the same
two-qubit gate. c) A circuit containing degenerate EPP sources that does not violate the
paths rule and so always successfully postselects for both instances of four-photon EPP source
emission. d) A circuit containing ND-EPP sources that breaks the sources cycle rule and so
fails to postselect for one instance of four-photon EPP source emission. Figure reproduced from
Ref. [3] with permissions; image credits to J. C. Adcock.

photon-rich to the photon-poor input qubit modes, thereby producing a valid qubit output

state.

To formalise the above concept, we now define an experiments’ gate graph, in which each

qubit mode is associated with a vertex and edges represent entangling gate between qubit

modes; edge labels can then be used to indicate the type and order of entangled gate applied.

In the following description we assume all definitions on circuits’ structure refer to that of their

gate graphs. Since any two gates acting on the same qubit modes produces a non-postselectable

circuit, we only consider experimental setups represented by simple, undirected graphs. For

EPP sources, nodes are depicted as grouped in pairs and joined by a source-edge; for ND-EPP

sources qubit modes are also coloured to indicate the photonic qubit’s frequency. For example,

Figure 5.5 depicts four circuit’s and their gate graph representations.

For the specific case of two-photon emissions, the above failure case is generalised by the gate

graph paths rule, stating that: gate graphs that contain a pair of disjoint paths connecting both

qubit modes from one EPP source to those of another are not guaranteed to be postselectable.

In the case of non-disjoint sets of connecting gates, then the specific ordering determines

postselectability. This rule generalises the previous case for circuits where extra photons from a

source which fires twice can be redistributed to a source that does not fire, perhaps via multiple

gates (with all other sources firing correctly, hence satisfying the photon-number postselection

condition).
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Figure 5.6: Summary of postselection rules with examples. a) Venn diagram showing summarising
the postselectability of degenerate and non-degenerate EPP sources. b) Examples of graph
states showing Image credits to J. C. Adcock.

The paths rule can be further generalised for the case of a ring of m EPP sources connected

by entangling gates. We shall show that postselection always fails for if the gate graph contains

a cycle with even m. Consider a set of m degenerate EPP sources with gates applied between

qubit mode pairs from different sources in a ring formation, such as depicted for m = 2, 3, 4 by

the states labelled 5 and 1 in Figure 5.6b and 5 in Figure 5.6c respectively. Since each qubit

mode is input into a single gate, then at most a single photon can be moved from a photon-rich

to photon-poor source, and so only second-order photon emissions need be considered. For

postselection to fail, both qubits modes of a source that fires twice must be connected to two

adjacent sources which don’t fire. It is easy to see that such a scenario can only by satisfied for

a cyclic circuit with m source-edges if m is even. This rule can be straightforward extended

to rings in which two qubit modes are connected via more than one gate, as depicted in the

bottom rightmost graph of Figure 5.6b. Since a circuit requires only one failure case to be

non-postselectable, the above rule generalises to any circuit containing a cycle with an even

number of source-edges, leading us to define the source cycle parity rule. Specifically, the source

cycle parity rule states that: circuits that contain a cycle with an even number of EPP sources

are not postselectable.

Taking zero as even, we can therefore see that the gate cycles rule is simply the source
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cycle parity rule for m = 0. Similarly, the paths rule is also just the source cycle parity rule for

m = 2. Even though both the gate cycles and paths rule are contained within the source cycle

parity rule, their distinction is instructive for distinguishing the vast variety of possible circuit

designs, as depicted by Figure 5.6.

Note that in the case of degenerate EPPs we specifically do not claim that satisfaction of

the above three rules guarantees a state is postselectable, since higher-order emission terms can

still cause failure. Given the combinatoric number of possible multi-photon emissions from n

EPP’s, a higher-order generalisation of this rule is not know and numerical analyses of circuits

must be applied. For example, state 2 of Figure 5.6b depicts a state which passes all three

rules yet fails to postselect due to a third-order emission term. However, due to the vanishing

likelihood of higher-order emissions, as earlier depicted in Figure 2.8, the above three rules

nevertheless capture a majority of probable postselection failures.

Finally, we turn to circuits using non-degenerate EPP sources. On the gate graphs of these

circuits the two qubit modes of a ND-EPP source are each assigned a colour and only gates

between like-coloured qubit modes may be applied. Hence the number of viable ND-EPP circuits

is a strict subset of the degenerate EPP case, and so all circuits which are non-postselectable in

the degenerate EPPs case are also non-postselectable with ND-EPPs. However, we shall show

that for circuits containing only ND-EPP sources, that violation of the source cycle parity rule

is sufficient to guarantee a circuit is non-postselectable; in other words, there are no ND-EPP

circuits that fail due to n > 2 higher-order emission terms that do not also fail the source cycle

parity rule. To see this, firstly note that, due to the requirement that only like-colour qubit

modes be interacted, only even-length cycles can ever be formed. All ND-EPP circuit cycles

must therefore have even length, and so cannot be postselected due to violation of the source

cycle parity rule. This leaves higher-order emissions on non-cyclic circuits.

We now show that it is not possible to redistribute any higher-order emissions without

creating a source cycle. Consider the scenario where one ND-EPP source fires p ≥ 2 times,

producing p red and p blue photons, and p− 1 sources do not fire. Redistribution of p photons

among p sources in non-cyclic gate configurations requires at least p− 1 gates, such that the

redistribution of both red and blue photons demands two non-cyclic gate configurations that

can be represented by two trees, one red and one blue and both with at least p− 1 edges. Since

emission occurs in pairs, we represent this by drawing p ≥ 2 source-edges between disjoint

red-blue pairs of nodes. It is easy to see that at most one edge can be drawn between a pair of

nodes before a cycle is formed that contains an even number of source-edges. It follows that

all circuits that are non-postselectable due to p ≥ 2 higher-order emissions must violate the

source cycle parity rule. It is easy to see how this argument generalises for multiple higher-order

emitters and multiple zero-emitters, such as depicted by both region 10 graphs depicted in

Figure 5.6.

The above rules are summarised in Box 4 with examples in Figure 5.6.
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POSTSELECTION RULES:

• Gate cycles rule: Gate arrangements containing cycles do not postselect. For
deterministic sources of photons, this condition is sufficient.

• Paths rule: Gate arrangements which disjointly connect both qubits of two EPP
sources with one another do not postselect.

• Source cycles parity rule: Gate arrangements which contain an even number of
source-edges in a cycle do not postselect. This subsumes the above rules as cases
of zero and two sources respectively. This is a necessary condition in the case of
degenerate EPPs, and a sufficient one in the case of non-degenerate EPPs.

Box 4: A summary of the rules for postselected graph state experiments.

5.2.4 Accessing additional states with local complementation

Recall the two three-qubit gate topologies presented in the previous section, namely that of

CZLO
23 CZLO

12 and CZLO
13 CZLO

23 CZLO
12 , which were and were not respectively postselectable. If the

goal of the latter is to produce the 3-qubit ring graph state, then this can be equivalently

produced by applying local complementation to the central qubit of the 3-qubit linear graph

state, i.e. LC2CZ23CZ12 |+ + +〉. Since LC2 is a local operation, it may be implemented by

single qubit-mode operations and so does not affect the circuit’s postselection. This demonstrates

that while postselected experiments are limited to tree-like gate topologies, this limitation does

not extend to the graph states they produce.

The above observation raises the overall question: “Which graph states can be produced

by a postselected linear optical architecture?” First, we consider the lower bound of states

produceable without intermediate local complementations. From Lemma 5.2.1, it follows that

all the tree graph states can be postselected from single-photon resource states; we now show

the same holds for EPP’s, proving that the set of trivially postselectable graph states are those

LC-equivalent to tree graph states.

Lemma 5.2.2. All of the n-vertex tree graph states can be constructed from dn2 e entangled

postselected pairs using only bn2 c − 1 postselected CZ and fusion gates.

Proof. The proof shall be by induction; we shall show that all (n+ 2)-vertex trees for n ≥ 2

can be constructed from an n-vertex tree.

First, we note that all odd n-vertex trees can be constructed by deleting a node from a n+ 1

tree graph state, which corresponds to a Pauli Z measurement during postselection. Hence it is

sufficient to consider only the trees of even numbered vertices.

Next, observe that all n+ 2 trees must have at least one of two features: a pair of edges

(i, j) and (j, k) where either di = 1, dj = 2 and dk ≥ 2, or di = 1, dj ≥ 2 and dk = 1 (where dv
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is the degree of vertex v). This can be easily seen from the fact that all trees must have either

at least one leaf node (a vertex of degree one) that shares a parent node with another leaf

node, or a leaf node whose parent has one other non-leaf neighbour. It is easy to see that these

features respectively correspond to the graph state produced by applying CZjk or Fjk between

the two-qubit connected graph state on i, j and qubit k of the n-vertex tree graph state. This

completes the induction step, but it remains to prove the n = 2 base case. Here, it is easy to

see that the two 4-vertex trees, namely the line and star graph, correspond respectively to the

state produced by CZ and F applied between a pair of two-qubit connected graph states.

Because an n-vertex tree has n− 1 edges, dn2 e pairs have dn2 e edges and both entangling

gates add a single edge, then it follows that n− 1−dn2 e = bn2 c− 1 gates are needed to construct

the tree. Finally, we note that since no two leaf nodes are ever entangled, the cycles rule is

always satisfied and the state always postselectable. �

Finding an upper bound on the postselectable graph states is more of a challenge. Starting

with the set of tree gate topologies, local complementations may be implemented after each

entangling operation. We refer to a specific order of entangling gates and intermediate LC’s

as an experiment. To bound the number of distinct experiments, we consider the number

of local complementation operations needed prior to a given CZ or F gate. For CZ, then

[LCa,CZij ] = 0 ∀ a 6= i, j, as the operations trivially commute for a /∈ nG(i)∪nG(j)∪{i, j}, and

[
√
iZ,CZij ] = 0 for a ∈ nG(i)∪nG(j)\{i, j}; this leaves LCi and LCj available. As LC2

i = I, then

only sequences of local complementations alternating on i and j need be considered. Furthermore,

by considering the edge-local complementation operation ECij = LCiLCjLCi = LCjLCiLCj ,

with EC2
ij = I [225, 226], then it follows that at most five local complementations are needed

post-CZ. However, for fusion, [LCa,Fij ] = 0 only for a /∈ nG(i)∪nG(j)∪{i, j} and no equivalent

bound on the number of post-fusion LC’s is known. In this case, a local complementation search

algorithm (later described by Algorithm 5.1) is applied on vertex set nG(i) ∪ nG(j) ∪ {i, j} to

provide the relevant LC-equivalent graph states after fusion.

It is clear, from the above that finding an analytic upper bound on the number of graph

states is infeasible and so a numerical approach is needed. Since exhaustive enumeration of

experiments scales combinatorially with qubit number, the random sampling of a Monte Carlo

search is preferred. In this approach, depicted in Figure 5.7, each n-qubit experiment is a

randomly generated quadruple of a n-qubit resource state R, an experimental topology t (which

will be constrained based on the specific R), a gate labelling l, and a list of post entangling

gate LC operations c to apply. Given a single instance of (R, t, l, c), the corresponding graph G

is then straightforwardly constructed and appended to the set of accessible graph states L. If

G is not isomorphic to a previously found graph, its LC-orbit is also found (using algorithm

5.1) and recorded along with the experiment producing it and its success probability. If a

new experiment is found to produce a known orbit at higher probability, it replaces the one

previous recorded. This process is then repeated until no new classes are found (to some degree
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Figure 5.7: A single iteration of the Monte Carlo search algorithm for finding postselectable
graph states. Each experiment instance is a randomly generated quadruple of a resource graph
R, a experiment gate topology t, a gate labelling l and a list of post-gate LC operations c to
apply. After G is constructed, graph isomorphism is performed to check whether it has already
been found and if not G’s LC-equivalence class is added to the set of accessible classes L. Class’
construction recipes Hi and their associated success probabilities Pi are also found and updated
when higher probability experiments are discovered. This process can then be repeated until no
new classes are found. Figure reproduced from Ref. [3] with permissions; image credits to J. C.
Adcock.

of confidence).

From an experimental perspective it is also useful to identify the set of graph-state orbits

accessible for a given resource type. For example, Figure 5.8 depicts the 6-qubit graph states

accessible by postselected ND-EPP’s, degenerate EPP’s, and single photons. In this case,

degenerate EPP’s can produce all but one orbit of the 6-qubit graph states, namely orbit

19. Interestingly, orbit 19 is composed of the two graph-state instances of an AME(6,2) state

(the absolutely maximally entangled state of six qubits [228]), whereas the AME(5,2) graph

state, represented by the 5-vertex ring, can be easily created by a vertex deletion on the first

graph of orbit 17. Labelling LX as the graph states accessible by resource X, we observe that

LND−EPP ⊂ LSPS ⊂ LEPP. Specifically, local complementation does not allow ND-EPP circuits

to access any orbits which do not contain trees, whereas for single photon sources two further

orbits can be produced, and two more again for circuits using degenerate EPPs.

Figure 5.9 depicts the number of LC-classes accessible to postselection for up to 9 qubits.

We identify three important features of these results with respect to postselected architecture

design. Firstly, these results indicate that the ordering identified above for resources’ ability

for graph state generation holds with increasing n. This clearly indicates that degenerate EPP

sources are preferable to even heralded single photons sources for any postselected architecture.
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Figure 5.8: The set of all six-qubit graph states highlighted by the postselected resource states
they can be produced from. Each row depicts all the members of a single LC-orbit and is labelled
by a canonical index defined in Refs. [94, 227]. Note that in this case LND-EPP ⊂ LSPS ⊂ LEPP,
where LX are the graph states accessible by resource X. Figure reproduced from Ref. [3] with
permissions; image credits to J. C. Adcock.

Secondly, even though EPPs allow for a majority of graph states to be postselected for n ≤ 8,

the fraction of accessible graph states is found to decrease super-exponentially with n. This

shows that postselected architectures are not fundamentally tenable platforms for generating

most large graph states, even if higher gate probabilities could be hypothetically achieved.

Lastly, and most importantly for our purpose, the fact that |LSPS| grows exponentially faster

than |Tn| illustrates the importance of considering local complementation in the design of

graph-state architectures.

Finally, we note that in the above discussion we have only considered probabilistic state

generation due to postselection. In practise however there are many additional factors that

affect experimental state production rates. For example, in the above we did not consider

postselection failures due to detections of too many or too few photons, occurring due to higher-

order emissions and photon loss respectively. While both of these can be theoretically suppressed,

at present they represent a significant reduction in state generation rates. Furthermore, one

important consideration in the presence of photon loss is the incorrect heralding of qubit states

from a combination of higher-order emissions and loss.
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Figure 5.9: The number of (unlabelled) graph states that can be produced with postselected
linear optical circuits and various input resource states. Here Sn is the set of non-isomorphic
n-qubit LC-equivalence classes, LX are the number of LC-classes accessible by resource X,
and Tn the set of n-vertex trees. Inset: Graph counts shown as a fraction of |Sn|. Above: The
complete graphs of four to ten qubits. These results show that the fraction of graph states
which are postselectable decays super-exponentially with qubit number n. Note that in the case
of odd n, a single photon is included in addition to bn2 c EPPs or ND-EPPs. Figure reproduced
from Ref. [3] with permissions; image credits to J. C. Adcock.

5.3 Tools for exploring LC-orbits

Given the number of possible labelled n-node graphs, enumeration of LC-classes is infeasible

even for moderately sized graph states. For example, Table 5.1 lists the known counts of LC-

classes for n ≤ 13, with ≈ 7.34×1019 graphs split between 1,274,068 LC-classes for n = 12 [227].

Furthermore, even if one could perform such enumeration efficiently, the speed of classifying

a given graph state would still be bounded by the time taken to search the database for it.

In order to create fast tools for analysing large-scale quantum architectures, clearly a better

approach than enumeration is needed.

In practise, two questions commonly arise when developing graph-state architectures. Firstly,

given two graph states, to identify whether they are LC-equivalent, and if so find the local

unitary that relates them. We shall refer to this as the LC-check problem. Secondly, given some

initial graph state, find all LC-equivalent graph states that can be either produced from it,

or conversely, used to construct it—i.e. enumerate its LC-class. We shall refer to this as the

class-enumeration problem.
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Qubits LC-classes
Unlabelled

Trees
Labelled

Trees
Unlabelled

Graphs
Labelled
Graphs

2 1 1 1 1 1
3 1 1 2 2 4
4 2 2 16 6 38
5 4 3 125 21 728
6 11 6 1,296 112 26,704
7 26 11 16,807 853 1,866,256
8 101 23 262,144 11,117 251,548,592
9 440 47 4,782,969 261,080 ≈ 6.63× 1010

10 3132 106 100,000,000 11,716,571 ≈ 3.45× 1013

11 40,457 235 ≈ 2.36× 109 ≈ 1.01× 109 ≈ 3.56× 1016

12 1,274,068 551 ≈ 6.19× 1010 ≈ 1.64× 1011 ≈ 7.34× 1019

13 ??? 1301 ≈ 1.79× 1012 ≈ 5.03× 1013 ≈ 3.01× 1023

Table 5.1: Known counts of unique LC-classes [227, 229], unlabelled trees [230], labelled trees,
[231], and labelled [232] and unlabelled [233] simple connected graphs for n ≤ 13 nodes. Here
unique indicates that equivalent orbits are excluded (i.e. those which represent different LC-
classes, but are equivalent up to node relabelling). Exact counts of non-unique LC-classes are
not known but are lower bounded by the number of n-node labelled trees [234] given by nn−2.
Similarly the number of unique LC-classes is lower bounded by the number of unlabelled trees
which can be approximated as Cαnn−5/2 for C ≈ 0.535 and α ≈ 2.96 as n → ∞ [235]. Also
note that the number of unique LC-orbits is equal to the number of unique LC-classes. The
number of labelled and unlabelled trees are included as they represent lower bounds on the
number of isomorphic and non-isomorphic equivalence classes respectively.

An algorithm for the LC-check problem was provided by Van den Nest, et. al in Ref. [236]

with time complexity O(n4). In this, the generators of two n-qubit graph states |G〉 and |G′〉
are represented in their binary matrix forms

S =

(
I
Γ

)
and S′ =

(
I
Γ′

)
, (5.33)

where Γ (Γ′) is the adjacency matrix of G (G′) and I is the n-dimensional identity matrix.

Here the n columns of S (S′), denoted g1, . . . , gn are binary vector representations of the n

generators of GG (GG′) such that

gi = (ai | bi ) = ( a1, . . . , an | b1, . . . , bn ) ⇔ Ki ∝ XaiZbi ≡
n⊗
j=1

X
aj
j Z

bj
j , (5.34)

where gi ∈ Z2n
2 and proportionality indicates that generators’ phases are not represented4.

The full binary stabilizer space spanned by the columns of S (S′) is denoted CS (CS′). Any

4 For the purposes of LC-equivalence, generator phases are ignored because they can always be achieved
by local Clifford operations. If the binary representation is used for simulation, such as in Ref. [98], then an
additional bit can be straightforwardly included to represent a generator’s ±1 phase.
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n-dimensional binary stabilizer space is its own symplectic dual with respect to the symplectic

inner product 〈u, v〉 = uTPv where u, v ∈ Z2n
2 , P =

(
0 I
I 0

)
, and STPS = 0 for a self-dual

binary stabilizer CS . In this representation, the local Clifford operations U =
⊗

i∈V Ui such

that |G′〉 = U |G〉 correspond to the nonsingular 2n× 2n binary matrix Q with block form

Q =

(
A B

C D

)
=

n⊕
i=1

Qi where Qi =

(
ai bi

ci di

)
(5.35)

where A = diag(a1, . . . , an), and similarly for B, C, and D, and submatrices Qi correspond to

local unitaries Ui. The invertibility of Ui requires that Qi is invertible, such that aidi + bici = 1.

In this form, finding U corresponds to solving S′ = QSR, where R ∈ Zn×n2 is an invertible

matrix that represents choosing the generators for CQS in the form of S′. However, from the self-

duality of CQS , this is equivalent to solving STQTPS′ = 0, or equivalently the n2 simultaneous

equations

n∑
i=1

ΓijΓ
′
ijbi + Γjkdk + Γ′jkaj + δjkcj = 0 (5.36)

for all j, k = 1, . . . , n, where the 4n unknowns ai, bi, ci, di must also satisfy aidi + bici = 1.

All possible solutions to (5.36) can be efficiently in computed by Gaussian elimination, such

that each solution provides a possible U , thereby proving the LC-equivalence of |G〉 and |G′〉.
Conversely, if no solutions exist then |G〉 and |G′〉 are not LC-equivalent.

Solving the class-enumeration problem can be straightforwardly achieved using a depth-first

search (DFS). A DFS visits every vertex on a graph by continually traversing edges to unvisited

neighbouring vertices and backtracking when no more exist, as depicted in Figure 5.10; it

has time complexity O(mn) for a n-qubit class graph with m members5. In this exhaustive

approach, all possible local complementations are applied until no new graphs are found.

However, the number of members m of any given LC-class can be combinatorially large in n,

causing class-enumeration to become inefficient for large graph states. The author is unaware

of any algorithm that improves on the above method.

However, enumerating all members of a class is unnecessary for many applications. Often

the most important feature of the class is the set of unique graph structures, i.e. the set of

non-isomorphic or unlabelled graphs, it contains. Finding these sets is equivalent to finding the

LC-orbit of a given graph and so shall be referred to as the orbit-enumeration problem. This

restriction immediately represents a significant reduction in the size of space to be explored by

a DFS, as depicted in Figure 5.11.

5 This can be seen by noting that a depth-first graph search takes time O(|V | + |E|). Since each of
the m members of the class can support n different LC operations, then |V | = m, |E| = mn and hence
O(|V |+ |E|) ≈ O(mn).
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Figure 5.10: A visual depiction of the depth-first search algorithm on a graph. At each step,
the algorithm traverses an edge to a neighbour of the current vertex, which are chosen in
some lexicographic order (in this case alphabetical). If a vertex has already been visited or
no unvisited neighbours remain, the algorithm returns back to previous vertex. This process
is continued until no unvisited vertices remain. Here the search starts at vertex A and the
direction and ordering of edge traversals are shown in colour.

Figure 5.11: The distribution of LC-class sizes when the class members are labelled and
unlabelled for 8-qubit graph states. The significant reduction in size of the largest classes
between labelled and unlabelled indicates that many isomorphic graphs exists per class.

An algorithm that solves orbit-enumeration is given by Danielsen in Ref. [237]. Danielsen’s

algorithm also uses a DFS, but instead applies graph canonisation6 to each graph produced

by local complementation. Graph canonisation of G is a relabelling of the nodes of G in

some standard way such that any graph isomorphic to G has the same canonical labelling, a
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Algorithm 5.1: Finding the LC-orbit of a graph

Input: A simple, connected graph G
Output: A graph Λ = (VΛ, EΛ) representing the LC-orbit of G

G← Canonical(G) // Returns canonically relabelled G
VΛ ← {G}
EΛ ← {}
RecursiveOrbitDFS(G,VΛ, EΛ)

Function RecursiveOrbitDFS(G,VΛ, EΛ)
ΘG ← Orbits(G) // Returns sets of co-orbital vertices in G
for θ ∈ ΘG do

v ← First(θ)
H ← LC(G, v) // Returns graph produced by LC of vertex v on G
H ← Canonical(H)
if H ∈ VΛ then

EΛ ← EΛ ∪ {(G,H)}
else

VΛ ← VΛ ∪ {H}
EΛ ← EΛ ∪ {(G,H)}
RecursiveOrbitDFS(H,VΛ, EΛ)

process commonly used to solve graph isomorphism (which is at least as computationally hard).

Applying graph canonisation to each post-LC graph therefore reduces the scope of the DFS to

the set of non-isomorphic graphs. However, graph canonisation must still be performed m̃n

times in Danielsen’s algorithm, where m̃ is the size of the orbit. Given that graph canonisation

is as computationally hard as graph isomorphism (known not to be solvable in polynomial

time), this still presents a challenge for very large n. For example, using Table 5.1, one can see

that the average LC-orbit contains greater than 128,000 members for n = 12, thereby requiring

graph-canonisation to be performed an average of 1.5 million times per orbit.

Our improvement to Danielsen’s algorithm replaces performing n graph-canonisations per

LC-orbit member with a single instance of finding each member’s orbit, with pseudocode

provided in Algorithm 5.1. The orbits of a graph G are sets of vertex labels that can be

permuted and yet leave G unchanged, where such a permutation is known as an automorphism

of G. The set of all automorphisms is known as the automorphism group of G, denoted by

Aut(G), and two nodes are within the same orbit if and only if there is an automorphism of G

that takes one to the other. Intuitively, orbits represent vertex symmetries within the state, as

can be seen from an example provided in Figure 5.12. Because of these symmetries, co-orbital

vertices (those within the same orbit) produce isomorphic graphs under local complementation.

Hence, once the orbits of G are known, the local complementation of at most one co-orbital

6 The canonical labelling of a graph G is a labelling of the graph edges such that any graph isomorphic to G
has the same canonical labelling. Graph canonisation is commonly used to solve graph isomorphism and is at
least as computationally hard.
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from each orbit is needed to produce the complete set of unlabelled graphs adjacent to G within

the LC-orbit. Two examples of LC-orbits are provided in Figure 5.13.

The computational complexity of finding a graph’s orbits is as least as much as finding a

canonical labelling. However, the graph isomorphism software nauty [238, 239] commonly used

to find canonical labellings (such as in Danielsen’s algorithm) also finds the graph’s orbits during

the process. Hence the two problems have equivalent runtimes in practise and our alternative

algorithm represents a real-world reduction in runtime of O(n).

5.4 Qudit graph states

Previously, we have only considered entangled states consisting of qubits. This focus was

motivated by the prevalence of qubits as the fundamental units of quantum information within

many architectures for quantum technologies. However, many quantum systems can be readily

expressed as d-dimensional quantum systems, known as qudits, and can produce a wider array of

computational basis states spanning larger Hilbert spaces. For example, the dual-rail encoding

of single-photon qubits can be straightforwardly extended to a d-rail encoding for single-photon

qudits. We now consider the graph state representation of such systems and show how our

algorithm can be straightforwardly extended to find the LC-orbit for prime and prime-power

dimension qudit graph states.

5.4.1 Prime dimension qudit graph states

Initially we shall only consider qudits of prime dimension p, which we shall refer to as p-qudits.

Labelling a qudit’s computational basis states as {|0〉 , |1〉 , . . . , |p− 1〉}, the generalised qudit

Pauli operators can be defined7 as

Z |k〉 = ωk |k〉 and X |k〉 = |k + 1〉 , (5.37)

where ω = e2πi/p is the pth root of unity, and addition and multiplication are performed modulo

p. The operators obey the commutation relation ZX = ωXZ, from which it follows that

ZaXb = ωabXbZa. The p-dimensional Pauli group Pp is therefore defined as

Pp = {ωcXaZb | a, b, c ∈ Zp}, (5.38)

with the Pauli group over n p-qudits denoted by Pnp . To transform between Z and X eigenbases,

a generalised Hadamard, known as the Fourier gate, is also defined as

F =
1√
d

p−1∑
l,k=0

ωkl |k〉〈l| ⇒ F : X → Z, Z → X−1. (5.39)

7 Note that this representation is not unique and other choices are available. For further discussion on this,
see Ref. [240].
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Figure 5.12: An example of a graph G and its associated automorphisms and orbits. Here the
automorphisms are displayed in their disjoint cycles form where each parenthesised sequence
of vertices defines a cyclic permutation of their labels. In this example, it is clear that the
orbits represent the two symmetries on the graph, namely horizontal and vertical reflections.
However, given that such visual symmetries depend on a specific drawing of the graph, such an
intuition will fail for more complicated graphs in general and so require Aut(G) to be found.
Image concept from Ref. [241].

Figure 5.13: Depictions of the LC-orbits for the a) 6-node ring graph and b) 6-node line graph,
highlighted in red respectively. Members sharing edges in the orbit are separated by a single LC
operation. Self loops represent a LC operation that produces a new graph which is isomorphic
but not identical to the original (in contrast to LC applied to a degree-1 node). While the
vertically symmetric structure of b) is not fully understood, we note that the this symmetry is
reflected in the graphs’ orbits. Specifically, if the nodes that were originally the inner-most two
on the linear graph are co-orbitals in a graph within the top half of the orbit, then they are
also co-orbitals in their equivalent member in the bottom half. On the other hand, the LC-orbit
of the ring-graph does not appear to have any explicit symmetries or notable structure.
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Denoting the Z and X eigenbases as |k〉 and
∣∣k̄〉 respectively, F performs the transformation

∣∣k̄〉 = F † |k〉 =
1√
p

p−1∑
l=0

ω−kl |l〉 . (5.40)

Similarly, the generalised phase gate P acting as P |k〉 = ωk
2 |k〉 is defined as

P =

p−1∑
k=0

ωk
2 |k〉〈k| ⇒ P : X → XZ, Z → Z. (5.41)

The controlled operations are similarly extended; for example, the p-dimensional controlled-Z

operation between qudits i and j is defined by

CZij =

p−1∑
k=0

|k〉〈k|i ⊗ Zkj =

p−1∑
k,l=0

ωkl |k〉〈k|i ⊗ |l〉〈l|j , (5.42)

such that CZij = CZji, [CZij , Zk] = 0 ∀ i, j, k, and

CZaij : Xi → XiZ
a
j , Zi → Zi Xj → Zai Xj , Zj → Zj . (5.43)

Also note that Xp = Zp = CZpij = I. Lastly, in combination with F , P , CZij the p-dimensional

Clifford group acting on multiple qubits is completed by the Sq gate

Sq =

p−1∑
k=0

|q̄k〉〈k| ⇒ Sq : X → X q̄ Z → Zq, (5.44)

where qq̄ = 1 mod p and so Sq |k〉 = |q̄k mod p〉 for any choice of q = 1, . . . , p− 1 [242].

Whereas qubit graph states are defined by simple, undirected graphs, p-qudit graph states

are defined by weighted, undirected graphs with no self-loops. A weighted graph G is defined

by a set of vertices V and edges E where each edge (i, j) ∈ E has an associated weight

Γij = 0, . . . , p− 1, defining the adjacency matrix Γ ∈ Zn×np for n = |V |. The graph state defined

by G is then given by

|G〉 =
∏

(i,j)∈E

CZ
Γij
ij

⊗
v∈V
|+〉v , (5.45)

where |+〉 = |0̄〉 = 1√
p

∑p−1
k=0 |k〉 and CZ

Γij
ij |a〉i |b〉j = ωΓijab |a〉i |b〉j . It is easy to see that in the

case of p = 2 this reduces to the qubit graph state case. Similarly to qubit graph states, a qudit

graph state has stabilizers SG generated by

GG = {Ki}i∈V where Ki = Xi

⊗
j∈NG(i)

Z
Γij
j . (5.46)

As in the qubit case, all prime-dimensional qudit stabilizer states (those prepared using only

operations from the qudit Clifford group) are locally equivalent to some qudit graph state [100].
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Figure 5.14: The actions of local complementation and edge multiplication on qudit graph
states, as defined by Equations (5.47) and (5.48) respectively. Note that all arithmetic is taken
modulo p with an edge weight of zero indicating that no edge exists. Image concept from Ref.
[100].

LC equivalence of prime dimension qudit graph states

The notion of local Clifford equivalence can also be extended to graph operations in the case of

prime-dimensional qudits. In Theorem 5 of Ref. [100] it is shown that two p-qudit graph states

are equivalent up to the action of local Clifford operations if and only if one can be obtained

from the other by some finite sequence of local complementations (LC) and edge multiplications

(EM), defined by:

LCa
v : Γij 7→ Γij + aΓviΓvj ∀ i, j ∈ NG(v), i 6= j (5.47)

EMb
v : Γvi 7→ bΓvi, Γjv 7→ bΓjv ∀ i, j ∈ NG(v) (5.48)

where a, b = 1, . . . , p−1 and all arithmetic is performed modulo p. We shall refer to these as the

EMLC operations, and two graphs that are related by them as EMLC-equivalent. Examples of

both operations are shown in Figure 5.14. It is easy to see that for the case of p = 2 then EM1
v

is a trivial graph operation and LC1
v is the standard local complementation described in Section

5.1. Similarly to the qubit case, these operations allow a qudit graph state’s EMLC-class to be

defined, albeit with more than one possible graph operation linking adjacent members of the

class.

If equivalence up to qudit relabelling is also considered, a qudit graph’s EMLC-orbit can

also be defined. It is easy to see that Algorithm 5.1 can be straightforwardly extended to

Algorithm 5.2 by inclusion of the full set of possible graph operations allowed on for a given p.

We note that a weighted graph’s automorphism orbits similarly provide groupings of nodes

which produce isomorphic graphs under EMLC operations. Practically, these orbits are found

using nauty by representing the weighted graph as a edge-coloured graph which can be mapped

to a node-coloured graph with an equivalent automorphism group (for details, see Section 14 of

Ref. [238]).

Finally, it was shown in Ref. [100] that the LC-check algorithm originally proposed in Ref.
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Algorithm 5.2: Finding the EMLC-orbit of a given prime-dimensional qudit graph state.

Input: A connected weighted graph G (with no self-loops) and dimension d
Output: A graph Λ = (VΛ, EΛ) representing the LC-orbit of G

G← Canonical(G) // Returns canonically relabelled G
VΛ ← {G}
EΛ ← {}
EMLCd ← {LCa}a=1,...,d−1 ∪ {EMb}b=2,...,d−1

RecursiveOrbitDFS(G,VΛ, EΛ)

Function RecursiveOrbitDFS(G,VΛ, EΛ,EMLCd)
ΘG ← Orbits(G) // Returns sets of co-orbital vertices in G
for θ ∈ ΘG do

v ← First(θ)
for LocalOp ∈ EMLCd do

H ← LocalOp(G, v) // Applies local operation to vertex v on G
H ← Canonical(H)
if H ∈ VΛ then

EΛ ← EΛ ∪ {(G,H)}
else

VΛ ← VΛ ∪ {H}
EΛ ← EΛ ∪ {(G,H)}
RecursiveOrbitDFS(H,VΛ, EΛ)

[236] for qubit graph states can be readily extended to qudit graph states. This is achieved

by generalising the binary representation defined in Equation (5.34) for prime dimension p so

that gi ∈ Z2n
p and X and Z represent the d-dimensional Pauli operators defined in Equation

(5.37). Any solution to the n2 simultaneous equations of Equation (5.36) (now modulo p) then

similarly provides some p-dimensional local Clifford unitary, thereby proving EMLC equivalence

between the input graph states.

5.4.2 Prime-power dimension qudits

We now consider the task of generalising the local complementation properties of prime

dimension graph states to prime-power dimension d = pm where p is prime and m a positive

integer. Firstly, in order to define a graph state’s stabilizers, we must generalise Pauli group for

dimension d, which can be generally achieved by constructing a nice error basis [240]. Here we

shall consider two choices of group construction based on the generalised Pauli operators,

X(a) |k〉 = |k ⊕ a〉 , Z(b) |k〉 = ωb�k |k〉 (5.49)
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where ω is a (as of yet undetermined) root of unity and ⊕ and � represent addition and

multiplication within some number system. From the above definition, it follows that

X(a)X(a′) = X(a⊕ a′), (5.50)

Z(b)Z(b′) = Z(b⊕ b′), and (5.51)

Z(a)X(b) = ωa�bX(a)Z(b) (5.52)

We shall see that different choices of number system construct distinct Pauli groups.

Heisenberg-Weyl Pauli groups

An intuitive choice of number system is Zd, the ring of integers modulo d, in which case ⊕ and

� represent the familiar addition and multiplication operations + and × modulo d, and we

find that

X(1) |k〉 ≡ X |k〉 = |k + 1〉 ⇒ X(a) = Xa (5.53)

Z(1) |k〉 ≡ Z |k〉 = ωk |k〉 ⇒ Z(b) = Zb, (5.54)

where ω = e2iπ/d, X(0) = X(d) = Z(0) = Z(d) = I and ZX = ωXZ. As shown in Refs.

[243, 244], a set of associated Clifford operations can be defined, such as the d-dimensional

single-qudit Fourier (F) and multiplicative (S) gates and two-qudit SUM gate, where

F |k〉 =
1√
d

d−1∑
i=0

ωki |i〉 , Sq |k〉 = |q̄k〉 for q̄q = 1 (5.55)

SUM |i〉 |j〉 = |i〉 |i+ j〉 . (5.56)

We shall refer to this group as the Heisenberg-Weyl (HW) Pauli group.

While this construction is commonly used for the construction of higher-dimension graphical

QECCs [245–247], the specific structure of the group makes it unsuitable for our purposes.

Firstly, in general, the number n of stabilizer generators defining a H-W stabilizer states may

be greater than n [243]. For example, for the d = 22 = 4 ququart state |ψ〉 = |0〉, we find

that Sψ = {Z,Z2, Z3, I} with Gψ = {Z}, whereas if we consider the state |φ〉 = 1√
2
(|0〉+ |2〉)

such that Sφ = {Z2, X2, Z2X2, I} with Gφ = {Z2, X2}. While this fact does not prohibit the

construction of graph states and the local complementations between them, it does prohibit

the set of graph states from representing the set of all stabilizer states up to local Clifford

operations. For example, since operations from the Clifford group cannot change the size of a

stabilizer state’s generating set, there is no graph state with is LC equivalent to |φ〉.
Secondly, the previous restriction aside, it is also the case that the EMLC rules presented

in Section 5.4.1 cannot be naively extended to HW prime-power qudits. We now prove this

by contradiction. Let us assume that the previous EMLC rules can be readily extended to

arbitrary prime-power dimension d = pm, that is LCa
v and EMb

v for a, b ∈ Zd. Consider the
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smallest non-trivial graph state of two vertices and a single edge. If the edge has weight pn for

n < m, then it follows that the action of EMpm−n
v updates the edge weight to pm−npn = pm = 0,

producing the graph state represented by two disconnected vertices. It follows that the local

operation EMpm−n
v is sufficient to disentangle two qudits, or equivalently (EMpm−n

v )† is sufficient

to generate entanglement from local operations, leading to the desired contradiction. Hence, the

EMLC graph operations of Bahramgiri and Beigi [100] cannot be readily extended to such states.

Finally, we note that this contradiction does not rule out some other set of local-equivalence

operations on such graph states, and leave such an operation’s existence as an open question

for future research.

Finite field Pauli groups

An alternative choice of number system is that of finite fields. A finite field, or Galois field, Fpm
is a finite set of pm elements that are closed under addition, multiplication, subtraction and

division (other than division by zero). For each q = pm there is exactly one finite field up to

isomorphism and if m = 1 then Fp is equal to the field of integers modulo p, Zp. Finite fields are

constructed as follows. If F is a field, then F [x] is the polynomial ring, or set of polynomials with

coefficients in F . Just as each integer can be uniquely represented by some prime factorisation,

each non-constant polynomial f(x) =
∑n

i=0 aix
i ∈ F[x] of degree n can be uniquely represented

as f(x) = p1(x)a1p2(x)a2 . . . pk(x)ak where each pi(x) is irreducible8. Similarly, just as the finite

field of the integers modulo p prime is given by Z/p = {0, 1, . . . , p− 1}, where p is irreducible

with respect to multiplication, the finite field Fpm = Fp[x]/P where characteristic p is defined

for some irreducible polynomial P ∈ Fp[x] of degree m. It can be shown that irreducible

polynomials exist for all characteristics, and can be found using the Euclidean algorithm. Once

the elements of the field are defined, the field’s addition and multiplication tables can then be

straightforwardly calculated. For more details on the theory of finite fields, see Refs. [248, 249].

As an example, the finite field of four elements F4 for p = m = 2 can be constructed from the

irreducible polynomial P = x2 + x+ 1 = 0, such that F4 = F2[x]/(x2 + x+ 1) = {0, 1, x, x+ 1}.
From x2 + x + 1 = 0 and the fact that each f(x) ∈ F2[x] is its own additive inverse, the F4

values of higher order polynomials can be easily calculated, such as

x2 = x+ 1, x3 = xx2 = x2 + 1 = x+ 2 = x, x4 = xx3 = x2 = x+ 1, etc. (5.57)

Similarly, it is easy to calculate the multiplication and addition tables for F4 as depicted in

Table 5.2.

By associating each basis state |k〉 with an element of Fpm , the generalised Pauli operators

of Equation (5.49) are defined for finite fields. This is achieved by the use of finite field addition

⊕ = ⊕G, and multiplication � = �G, (where G stands for Galois) with ω = e2iπ/p, where

8 A polynomial f(x) of degree n is reducible if there exists some g(x), h(x) ∈ F[X] where f(x) = g(x)h(x)
and g(x) and h(x) have degrees less than f(x). If no such factorisation exits, then f(x) is irreducible.
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+ 0 1 x x+ 1

0 0 1 x x+ 1
1 1 0 x+ 1 x
x x x+ 1 0 1

x+ 1 x+ 1 x 1 0

× 0 1 x x+ 1

0 0 0 0 0
1 0 1 x x+ 1
x 0 x x+ 1 1

x+ 1 0 x+ 1 1 x

Table 5.2: Addition and multiplication for the elements of F4.

ωa = ωa0 for a ∈ Fpm (where the abbreviation a ≡ a(x) has been used) [250]. We refer to this

construction as the finite field (FF) Pauli group. We also note that other choices of operators

exist from Equation (5.49) for the construction of the FF Pauli group, such as that of Ref. [251].

Unlike the HW Pauli groups, a single X(a) or Z(a) FF Pauli group operator is no longer

sufficient to generate all others via the step-wise multiplication defined in Equations (5.53) and

(5.54). This can be seen by noting that X(a)r = X(ar mod p) for any integer r, and similarly

for the Z-operators, such that |〈{X(a)}〉| = |〈{Z(a)}〉| = p ∀ a ∈ Z. Hence, the stabilizers for a

single pm-qudit FF stabilizer state is defined by a set of m generators. For example, consider the

4-qudit FF stabilizer state |ψ〉 = |0〉. As before, it is clear that Sψ = {Z(0), Z(1), Z(x), Z(x+1)},
but because Z(a)2 = Z(0) = I ∀ a ∈ F4 and Z(1)Z(x) = Z(x + 1), then Gψ = {Z(1), Z(x)}.
Because the number of generators exceeds the number of qudits, FF n pm-qudit stabilizer states

have no direct graph-state representation as n vertex graphs.

However, importantly for our purposes, every finite field Fpm is equivalent to a vector space

over Fp of dimension m, such that Fpm is isomorphic to Fmp , where each element a(x) ∈ Fpm is

represented by a vector a from the mapping

a(x) = a0 + a1x+ a2x
2 + . . .+ am−1x

m−1 ↔ a = (a0, a1, a2, . . . , am−1) (5.58)

where a ∈ Fmp . For example, for F4 = F2
2 we find that

0↔ (0, 0), 1↔ (1, 0), x↔ (0, 1), x+ 1↔ (1, 1). (5.59)

Since Fpm is equivalent to Fmp it follows that every pm-dimensional FF Pauli group is

equivalent to Pmp , the m-fold tensor product of the prime-dimensional Pauli group Pp, as

defined by Equation (5.38). Using the vector representation, each pm-qudit, can therefore be

decomposed to m p-qudits, such that |k〉 = |k0k1 . . . km−1〉. We shall refer to the set of p-qudits

associated with a single pm-qudit as a m-family. Similarly operators defined over Fpm are

mapped to Pmp via

X(a) ≡
m−1⊗
i=0

Xai
i and Z(b) ≡

m−1⊗
i=0

Zbii , (5.60)

where operator subscripts denote the p-qudit on which the operator acts. It is easy to show
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that these operators reproduce those of Equation (5.49),

X(a) |k〉 =
m−1⊗
i=0

(Xai
i |ki〉) =

m−1⊗
i=0

|ki ⊕p ai〉 = |k ⊕p a〉 (5.61)

Z(b) |k〉 =
m−1⊗
i=0

(Zbii |ki〉) =
m−1⊗
i=0

ωbi�pki |ki〉 = ω
∑m−1
i=0 bi�pki |k〉 = ωb�pk |k〉 . (5.62)

where ⊕p and �p denote modulo p addition and multiplication respectively (where a�p bp =

a · b mod p for vectors), and so Equations (5.51) and (5.52) are also satisfied. It follows that

the set of pm-qudit Clifford operations are equivalent to the set of Clifford operations on m

p-qudits. For example, applying the above mapping to a FF 4-qudit or ququart, F4 basis states

are mapped to those of two qubits via

|0〉 ≡ |00〉 , |1〉 ≡ |01〉 , |x〉 ≡ |10〉 , |x+ 1〉 ≡ |11〉 , (5.63)

and similarly the FF ququart Pauli operators are mapped to operators in P2
2 via

X(0) ≡ I⊗ I, X(1) ≡ I⊗X, X(x) ≡ X ⊗ I, X(x+ 1) ≡ X ⊗X, (5.64)

Z(0) ≡ I⊗ I, Z(1) ≡ I⊗ Z, Z(x) ≡ Z ⊗ I, Z(x+ 1) ≡ Z ⊗ Z. (5.65)

5.4.3 Prime-power qudit graph states

Using the above equivalence, we define the set of FF pm-qudit graph states as the set of pm-qudit

states that can be represented as p-qudit graph states where no edges exist within each family

of m p-qudits. Under this definition, a single pm-qudit in the state
∣∣k̄〉 =

∣∣k̄0k̄1 . . . k̄m−1

〉
is

defined by the empty p-qudit graph of m vertices (where
∣∣k̄i〉 = F † |ki〉 as per Equation (5.39)).

In this picture the graph states of two pm-qudits are represented by the set of balanced weighted

bipartite graphs between two m-families with edge weights taken from Zp. Since there are

m2 possible edges in such a graph, each of which with edge weight 0 to p− 1 the number of

possible two pm-qudit graph states is given by pm
2
. A complete graph with no self loops has

n(n− 1)/2 edges, so it follows that there are (pm
2
)n(n−1)/2 = pm

2n(n−1)/2 possible graph states

of n pm-qudits.

Importantly, this mapping allows the associated local complementation operations of prime

qudit graph states introduced in Section 5.4.1 to be extended to prime-power qudit graph

states. However, because intra-family entanglement may be generated freely (as a local pm-qudit

operation), this must be included in any local equivalence operation on the p-qudit graph state.

To include such operations, we replace local complementation with a new equivalence operation

called controlled complementation (CC). Controlled complementation describes the process of

the applying a single intra-family CZ between a pair of target and control vertices followed by

qudit local complementation of the control vertex followed by the removal of any intra-family

CZ’s. Defining a family of p-qudit nodes as f = {f0, . . . , fm−1} and the set of all families as F ,
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Figure 5.15: Controlled complementation applied between two ququarts. Each ququart is
mapped to its equivalent qubit version, where qubits of the same ququart share the same colour.
The decomposition of a single controlled complementation on control and target qubits 3 and
4 into a local complementation between two sets of CZ operations (which are local ququart
operations). Red shading indicates the subgraph induced by the neighbourhood of node 3 and
solid and dashed coloured edges those which will be removed and added by complementation
respectively.

we define controlled complementation between control c and target t vertices (which may be

the same) as

CCa
ct =

∏
(i,j)∈EF

CZij · LCa
c · CZct, (5.66)

where EF = E′ ∩ (
⋃
f∈F Kf ) is the set of intra-family edges present in the post-LC edge set E′,

Kf the complete graph of vertex set f , and we set CZct = I if c = t.

In the case of an even prime-power, controlled complementation can be represented by the

qubit graph state edge update rule

CCct : E →
CZct︷ ︸︸ ︷

(E ∪ {(c, t)})
LCc︷ ︸︸ ︷

∆ENc

∏
CZij︷ ︸︸ ︷

\
⋃
f∈F

Kf , (5.67)

where ENc is the set of edges of the subgraph induced by the neighbourhood of c. For example,

Figure 5.15 depicts the decomposition of a controlled complementation into its constituent qubit

operations for a two-ququart graph state. By repeated application of controlled complementation

the full local equivalence class may be explored. For example, Figure 5.16a depicts the exploration

of one of the two non-trivial ququart local equivalence classes. The set of all two-ququart graph

states, grouped by equivalence class are depicted in Figure 5.16b.

We shall now show that controlled complementation with edge multiplication are sufficient to

reproduce all local graph operations on prime-power graph states. Firstly, it is straightforward

to see that the set of local pm-qudit graph operations can be decomposed into the set of

local p-qudit graph state operations and the set of intra-family non-local p-qudit graph state

operations. We therefore can represent the set of local operations on pm-qudit graph states as

the set of local p-qudit graph state operations which are preceded and succeeded by arbitrary

intra-family CZ’s. Given this definition, consider edge multiplication. Since the multiplication

of an inter-families edge weight is independent of any intra-family edges and the operation does

not create or remove any edges, edge multiplication is not affected by any intra-family CZ’s.
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Figure 5.16: Ququart controlled complementation classes. a) Exploring one of the two non-trivial
ququart equivalence classes via controlled complementation. b) All the two-ququart graph
states, grouped by local equivalence.

Next, consider local complementation. It is clear that if some set of {CZ
wcti
cti
}ni=1 operations

are applied before the local complementation of some vertex c then the inclusion of vertices

{ti}ni=1 in c’s neighbourhood will change the subgraph complemented and hence the set of

inter-family edges. We now show that applying some
∏n
i=1 CZ

wcti
cti

followed by a single LCa
c

can be decomposed into applying the CZ-LC sequence
∏n
i=1

(
CZFLCai

c CZ1
cti

)
LCa0

c , where CZF

represents the removal of any intra-family entanglement, and so controlled complementation

need only be considered between a control and a single target.

Firstly, let us address the latter case of applying some sequence of {LCai
c CZ1

cti}. Consider c’s

neighbourhood subgraph Nc before any CZ is applied. This subgraph’s weighted edges (including

those of zero weight) can be partitioned into the set of inter-family edges and intra-family

edges. Since all intra-family edges are freely removed after complementation, we can limit our

discussion to the inter-family edges, and as such we define the set of weighted inter-family edges

in c’s neighbourhood subgraph (prior to the first CZ) as the set

Ec = {(u, v, wuv) : u, v ∈ Nc, u 6' v}, (5.68)

where u 6' v denotes that u and v are not contained within the same vertex family. Applying

LCa0
c , we find that the set of weighted edges is updated via

LCa0
c : Ec → E0

c = {(u, v, wuv ⊕p a0wucwvc) : u, v ∈ Ec}. (5.69)

Next, after CZ1
ct1 the set of inter-family edges becomes Ec ∪Et1 where Et1 is the is the set of

edges between t1 and c’s neighbours in other families, where Eti is given by

Eti = {(u, ti, wuti) : u ∈ Nc \ fc}, (5.70)

where fc is the family containing vertex c. Applying LCa1
c here, we find that

LCa1
c : E0

c → E1
c = {(u, v, wuv ⊕p a0wucwvc ⊕p a1wucwvc) : u, v ∈ Ec} (5.71)

Et1 → E′t1 = {(u, t1, wut1 ⊕p a1wuc) : u ∈ Nc \ fc}, (5.72)
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where we have used the fact that ωt1c = 1. Repeating this sequence of applying each CZ1
cti

followed by LCai
c for all n targets, we find the final sets of inter-family edge weights are given

by Enc ∪ (
⋃n
i=1E

′
ti) where

Enc = {(u, v, wuv ⊕p a0wucwvc ⊕p
n⊕
i=1

aiwucwvc) : u, v ∈ Ec} (5.73)

E′ti = {(u, ti, wuti ⊕p aiwuc) : u ∈ Nc \ fc}. (5.74)

On the other hand, if only a final LCa
c is applied after

∏n
i=1 CZ

wcti
cti

, the same edge weights

are given by

Enc = {(u, v, wuv ⊕p awucwvc) : u, v ∈ Ec} (5.75)

E′ti = {(u, ti, wuti ⊕p awucwcti) : u ∈ Nc \ fc}. (5.76)

The two edge sets of E′ti and Enc are therefore made equivalent by setting ai = awcti and

a0 = a	p
⊕n

i=1 ai respectively (where 	p denotes subtraction modulo p). It follows that the

graph resulting from complementation of a vertex c in a family after any arbitrary sequence of

intra-family CZ’s can also be reached by some finite sequence of CCa
ct.

From the perspective of exploring a graph’s local equivalence class, the above result provides

a significant reduction in the set of irreducible operations that can be applied to any given

pm-qudit graph state. As such, Algorithm 5.2 for fast exploration of equivalence classes can be

adapted for prime-power qudit graph states.

Firstly, graphs input to Orbits must distinguish between family graph members by a node

partitioning or colouring. For example, without any such partition, the first and last graph

of Figure 5.15 are both 4-vertex path graphs and thus indistinguishable. In this case, such a

symmetry can be broken by applying the vertex colouring {(1, 3), (2, 4)}. In general, each family

member is assigned an index and nodes are partitioned by into sets of like-index members across

all families. For qudit graphs of odd prime power, such graphs have both an edge and vertex

colouring, referred to as a total colouring. Totally coloured graphs may be processed by nauty

through a mapping to a layered node-coloured graph where there are multiple colours within a

given layer (again, see Section 14 of Ref. [238] for further details). Hence, it is straightforward

to find the orbits of prime-power qudit graphs from their prime qudit graph representation.

Second, the set of local operations EMLCp is replaced with

EMCCpm = {CCa
ct}a=1,...,p−1, t=1,...,m ∪ {EMb}b=1,...,p−1 (5.77)

where subscript indices denote which family member vertex the operation is applied on and c is

the vertex CCa is applied to.

5.5 Applications for prime-power graph states

We now discuss a selection of applications of the above results.
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Op. Value

G5


K1 X Z Z X I
K2 I X Z Z X

K3 X I X Z Z

K4 Z X I X Z

L5

{
X̄ X X X X X

Z̄ Z Z Z Z Z

Operator Value

GΨ



K ′1 =K2K3K4K5 Z X Z I I
K ′2 =K1K2K5 I Z X Z I
K ′3 =K2K3K5 I I Z X Z

K ′4 =K3K4K5 Z I I Z X

K ′5 =K4K1K5 X Z I I Z

Table 5.3: The operators that define the [[5, 1, 3]] 5-qubit code (left) and the zero-dimensional
[[5, 0, 3]] quantum code (right). For the [[5, 0, 3]] code we have taken K5 = X̄ and have chosen a
different set of generators that exposes the state’s graph representation as a 5-node ring.

5.5.1 Quantum error correcting codes

One important property of LC-orbits is that they represent equivalent self-dual additive quantum

codes. A quantum code describes a protocol for the encoding of k logical qudits onto n physical

qudits such that each logical state is resilient to errors on the constituent physical qudits. This

is achieved by ensuring that each pair of logical states are encoded by physical states which

are separated by at least d local operations, where d is known as the code’s distance. Such

a code is defined by a set of n − k stabilizer generators G and 2k logical operators L and is

referred to as an [[n, k, d]] quantum code or stabilizer code [18]. Two quantum codes are referred

to as equivalent if and only if there exists some qudit relabelling and/or set of local Clifford

operations that takes the generators of one code to another. For a further introduction to

quantum codes and how they can be derived from classical codes, see Appendix A.

On a zero-dimensional or self-dual additive quantum code where k = 0, the n stabilizer

generators Gψ define a single n qudit stabilizer state |ψ〉. Although these quantum codes do

not encode logical qudits, they are still useful to consider as k > 0 quantum codes can be

derived from them [252]. Since each stabilizer state can be mapped to a graph state with only

local operations, it follows that each self-dual additive stabilizer code also has some graph-code

representation defined by a simple undirected graph [199, 245, 253]. It follows that LC-equivalent

graph states represent equivalent graph-codes. However, we note that because quantum code

equivalence also includes arbitrary qudit relabellings, two graph-codes may be equivalent even

if the graph states they represent are not LC-equivalent. Therefore, two graph states represent

equivalent graph-codes if and only if they are equivalent up to local complementation and qudit

relabelling. A graph-code equivalence class is therefore given by the set of unlabelled graphs

which are equivalent under local complementation, that is the graph state’s LC-orbit [96].

As an example, consider the 5-qubit [[5, 1, 3]] code with stabilizer generators G5 and logical

operators L5 as defined in Table 5.3; this is the smallest quantum code that can correct an

arbitrary error on a single qubit. The [[5, 1, 3]] can be derived from the zero-dimensional [[5, 0, 3]]
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Figure 5.17: Constructing prime-power AME states. a) The tensor product of two different
AME(4, 3) states produces a AME(4, 9) state. b) An example of a AME(4, 4) state which cannot
be produced by the tensor product of two AME(4, 2) (which do not exist), but is equivalent to
some partition of the 8-qubit ring graph state.

quantum code with generators GΨ = G5 ∪ {XXXXX} as also provided in Table 5.3. While

not immediately obvious, by an appropriate choice of generators it can be seen that the state

stabilized by GΨ is in fact a graph state, specifically that of the 5-vertex ring. It follows that the

set of graph states equivalent to the 5-vertex ring can be used to derive a family of quantum

codes equivalent to the [[5, 1, 3]] code.

An important family of graph-codes are those defined on Absolutely Maximally Entangled

(AME) states, derived from classical maximum distance separable (MDS) codes, and can be

used to construct optimal quantum error correcting codes saturating the quantum Singleton

bound [254]. Generalising the entanglement properties of a Bell state, an AME state is a pure

state whose reduced state on up half the qudits are all maximally mixed, such that the set of n

d-qudit AME states is given by

AME(n, d) = {|ψ〉 ∈ Cnd : |S| ≥ dn/2e ∀ S ⊂ {1, . . . n} ⇒ TrS (|ψ〉〈ψ|) ∝ I}. (5.78)

AME(n, d) states do not exist for all choices of n and d. For example, for d = 2 qubits it is has

been analytically proven that there are no AME states for n = 4 or n ≥ 7 [255]. Furthermore, it

was shown by Helwig that prime-power AME(n, pm) states could be constructed from the m-fold

tensor product of an AME(n, p) state by an appropriate grouping of p-qudits [228], as depicted

in Figure 5.17. It was also shown by Helwig that AME(n, pm) states can be constructed from

partitioning of nm p-qudit states even when AME(nm, p) do not exist. For example, Figure

5.17b depicts the a partition of an 8-qubit that is equivalent to a AME(4, 4) state.

Such constructions of AME states can be equivalently represented as prime-power graph

states. Since intra-family entanglement operations and qudit-local gates cannot change any

measure of inter-family entanglement, it follows that prime-power local complementation

operations (controlled complementation and edge multiplication) can be applied to produce

distinct but equivalent prime-power AME states. It follows that the adaptation of Algorithm

5.2 for prime-power qudits described in Section 5.4.3 can be readily applied to discover families
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of equivalent optimal quantum error correcting codes. In certain cases, the exploration of such

classes provides valuable information on the optimal construction strategies of such states.

For example, every prime-qudit graph state member of equivalence class of the AME(4, 4)

state depicted in Figure 5.17b is completely connected, confirming that it is not equivalent to

any state which is tensor decomposable, as expected. Furthermore, the class’ minimal edge

representatives are given by the eight non-isomorphic partitions of an 8-vertex ring where no

two neighbours are grouped.

5.5.2 Quantum networks

Prime-power graph states may also be applied to model the entanglement available to quan-

tum networks, commonly considered in quantum communication and for certain light-matter

quantum computation architectures. In the basic model of a quantum network, entanglement

is distributed between physically separated repeater nodes, each of which contains some local

array of qudits on which the node can act [256]. Entanglement across the network is initially

generated via the creation of entanglement between pairs of qudits in neighbouring repeater

nodes. Through a series of local quantum operations, measurements and classical communica-

tion, entanglement can be produced between non-neighbouring repeater nodes. It is clear to see

that such a model is equivalent to that of prime-power graph states.

Consider the task of constructing some target network graph state containing arbitrary

edges between the qubits of non-neighbouring repeater nodes. A naive strategy to achieve this

would require the individual routing of each edge through the network, allowing the target

state to be iteratively built, edge by edge. However, it may be possible to achieve the target

state or another close to it via local complementation operations. Such a technique is especially

relevant in the case of a faulty or high-loss network but containing quantum memories with high

coherence timed, such that inter-node entanglement is highly probabilistic but highly stable

once established. In this scenario, any successful entanglement can be more effectively exploited

by controlled complementation operations than by consumption from measurement. This can be

understood by observing that such entanglement can be used as a basis to propagate intra-node

entanglement in lieu of successful inter-node entanglement. For example, consider Figure 5.18,

where entanglement is generated between two disconnected nodes by a single intra-node CZ and

a set of local gates without consuming any initial entanglement. Clearly from the perspective

of the prime-power qudit state no additional entanglement has been generated, however, since

in such a scheme entanglement is generated between nodes’ prime qudits, the operation is

equivalent to a successful entangling operation.

The above insight is especially relevant in the case of a dynamically constructed quantum

network state. As noted in this chapter’s introduction, local operations do not generally

commute with entangling gates and so local complementation may be applied to increase the

space of states a given network’s construction protocol can access. In cases where a network’s
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Figure 5.18: Controlled complementation on quantum network states. Nodes are grouped by
red dashed lines. This depicts a protocol for creating a single additional edge between two
otherwise disconnected nodes without consuming any initial entanglement.

inter-node loss rates and distances are anisotropic (which is highly likely in practise) such

techniques allow for dynamic state preparation strategies to be designed that maximally leverage

a network’s entanglement at any given stage of construction. For example, one can consider a

naive strategy that simple constructs the network’s maximum edge representative after each

round of entanglement. However, while such a process is straightforward given knowledge of the

global state, in a networked architecture the challenge would be to achieve this with minimal

inter-node communication. We leave the development and efficacy of any such a protocol as an

open question.

5.5.3 Design of linear optics experiments

A final use of exploring prime-power graph states is in the preparation of experimentally

realisable photonic states. There are many quantised degrees of freedom available to a single

photon, such as path, polarisation, frequency, orbital angular momentum, etc. Because of this,

it is common to construct states photonic states which are defined over multiple physical basis

in order to increase each photon’s local dimension [257–259]; this is commonly referred to as

creating hyperentangled states.

For example, in Ref. [126] Joo, et. al. consider circuits for the postselected generation of

photonic 4-qudits or quadbits over photon’s path and polarisation bases. In this commonly

considered scheme, each four-dimensional quadbit is define by the logical basis states

|0〉 ≡ |H〉1 , |1〉 ≡ |V 〉1 , |2〉 ≡ |H〉2 , |3〉 ≡ |V 〉2 , (5.79)

where H and V denote horizontal and vertical polarisations and the photon’s spatial mode is

subscripted. In their original work, they adapt a Heisenberg-Weyl definition of the Pauli group,

however one can similarly assign the same photonic basis with elements of the finite field F4

|0〉 ≡ |00〉 ≡ |H〉1 , |1〉 ≡ |01〉 ≡ |V 〉1 , |x〉 ≡ |10〉 ≡ |H〉2 , |x+ 1〉 ≡ |11〉 ≡ |V 〉2 . (5.80)

In fact, such a representation more directly represents the physical reality of a single photon

encoding both a path and polarisation qubit.
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Under this definition, we can consider the FF version of Joo, et. al.’s HW two quadbit Bell

state, defined as

∣∣Φ+
HES

〉
=

1

2

3∑
k=0

|k〉
∣∣k̄〉 (5.81)

=
1

2
(|H〉1 |H〉3 + |V 〉1 |V 〉3 + |H〉2 |H〉4 + |V 〉2 |V 〉4) (5.82)

=
1

2
(|HH〉+ |V V 〉)⊗ (|13〉+ |24〉). (5.83)

where |̄i〉 = 1
2

∑
j∈F4

ωjk |j〉, ω = −1 are the eigenstates of the FF Pauli X operators and HES

stands for hyperentangled state. In this picture it is clear that
∣∣Φ+

HES

〉
is produced by separately

entangling the path and polarisation degrees of freedom of both photons.

Scaling this up to approach up to larger states, Joo et. al. also consider the 4-quadbit cluster

state

|QdC4〉 =
1

2

3∑
k=0

|k〉
∣∣k̄〉 ∣∣k̄〉 ∣∣k̄〉 . (5.84)

When depicted in the prime-power graph state picture it is straightforward to see that such a

state is produced by creating separate GHZ-like entanglement among the four photon’s path

and polarisation degrees of freedom. A question one might ask is whether the scheme presented

in Ref. [126] to create |QdC4〉 represents the optimal preparation procedure. By applying our

class search algorithm, we find that such a state is in fact one of the class’ minimal edge

representatives (MERs). Specifically, the set of MERs contains the set of states represented

by two separable GHZ states formed between different combinations of the photons’ path

and polarisation bases. Since creating entanglement between two physically distinct degrees of

freedom is usually less straightforward than between two similar ones, it is unlikely that such

state could be produced by less complex linear interferometers. It follows that such a scheme is

certainly optimal with respect to the number of postselected entangling gates, and furthermore

likely also with respect to experimental simplicity.

Conversely, hyperentangled states where different degrees of freedom are entangled may have

applications in other quantum technologies, such as quantum metrology or sensing. In this case

such states may be created from easier-to-produce states using only deterministic local rotations.

Such an approach may also find use in the design of automated searches for new experiments,

such as MELVIN, which explored the creation of high-dimensional optics experiments via an

autonomously learning search algorithm [260]. Given an arbitrary high-dimensional optical

target state, our algorithm may be applied to not only find the minimum edge representative,

but also those with the lowest amount of entanglement across distinct degrees of freedom,

thereby reducing the complexity of interferometer sought.

Lastly, we address the design of near-future postselected experiments. As the results of

Section 5.2 show, the fraction of postselectable entangled states vanishes as the number of
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qubits increases. One approach to circumventing this limit is to consider higher-dimensional

photonic states (hyperentangled or otherwise), where entanglement may be simulated by local

operations. For example, a postselected n 2m-qudit state can be used to simulate a nm qubit

state. Because the non-cyclic entangling gate topology is only required at the level of the

2m-qudits, the space of accessible states is vastly greater than that of an equivalent nm-photon

experiment (at the cost of more complex local qudit interferometers). Furthermore, the m-fold

reduction in photon coincidence required per event also provides a significant advantage for

experiments based on probabilistic sources.

5.6 Conclusion and outlook

In this chapter we have seen how local complementation can be applied to architectures

generating large entangled states in a number of different scenarios. Specifically, first we saw in

the context of a postselected linear optical architectures that the use of local complementation

between postselected two-qubit entangling gates allows for a greater number of entangled states

to be produced than one would naively expect. Next, to enable the enumeration of equivalence

classes for larger entangled states, we presented an improved algorithm for searching a given

graph-state’s LC-orbit. From here, we extended the concept of local complementation from

prime dimensional states to those of prime-power dimension, thereby allowing the previously

discussed tools to be applied to such states. Finally, we finished with a speculative discussion

of how prime-power states may be applicable to various quantum technologies.

Going forward, a number of open questions still remain. In the context of large-scale

entanglement generation, there remains the task of developing algorithms for optimal state

generation that include the ability to perform local operations in between non-local entangling

gates. Given the large size of possible states one could produce with even a moderate number

of qubits and entangled gates, it is unlikely that any algorithm could enumerate all such

states efficiently. However, it is very possible that good heuristic methods leveraging dynamic

programming methods could be developed to find optimal or near-optimal construction strategies

without the need for an inefficient exhaustive search.

Another interesting observation in the above work was that the only non-postselectable

6-qubit graph states were the two absolutely maximally entangled AME(6,2) states (representing

optimal error correcting codes). Such an observation could suggest that there is some more

fundamental link between the class of non-postselectable states and the degree of entanglement

in a state and/or its ability to detect and/or correct errors as a quantum error correcting

code. If such an association may be found, it may therefore be possible to find an analytical

upper-bound on the set of state produceable using postselectable linear optical circuits.

And finally, another interesting question is whether the van Den Nest and Bahramgiri-Beigi

LC-check algorithms for verifying the local-equivalence of prime-dimensional states can be
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readily extended to prime-power dimension states. Given that both algorithms make heavy

use of the specific structure of single-qudit operations when described by matrices acting on

base-d vectors, it is not immediately clear how to extend these algorithms to include the set of

intra-family non-local qudit operations. However, if the algorithm can be updated to include

such gates, there does not seem to be any fundamental reason why such an algorithm could not

be found.
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Conclusion

Overview of presented work

Throughout this thesis we have considered the challenge of designing a realistic architecture for

LOQC. Specifically, the contribution of this work is three-fold.

Firstly, chapters 1 and 2 presented a unified theoretical overview of the modern LOQC

architecture. In combination with the thesis of Gimeno-Segovia [16], this work provides a near-

complete description of the specific challenges associated with the design of a realistic LOQC

architecture. While it is not expected that this description will remain state-of-the-art for long,

or even be so entirely at writing, its implicit purpose is to demonstrate how initially distinct

theories and models are interfaced to produce a larger architectural model. Furthermore, such a

model provides a framework for the translation of parameters between different abstractions in

the architecture, which as we shall see allows more sophisticated estimation of device resource

costs.

Secondly, the main contribution of chapters 3, 4, and 5 is the development of novel architec-

tural models that address realistic constraints in the LOQC architecture. These results provide

two key insights into the development of large-scale LOQC architectures as well as a set of

limitations on current postselected devices. Specifically, in Chapter 3, the realistic constraint of

finite device size was addressed within the context of renormalisation. Perhaps surprisingly, it

was found that a device size of O(10) cluster-state layers is sufficient to approximate a practically

infinite low-loss single qubit channel using simple pathfinding heuristics. It is straightforward to

see how such a result may be extended to the renormalization of a 2D or 3D cluster state lattice

without much moderation. Importantly, this work identified previously unknown trade-offs

between fusion probabilities, device size and renormalisation block size. Also, the identification

of pathfinding simulation heuristics provide a significant reduction in cost of analysing the use
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of novel percolated lattices.

In Chapter 4, the unsolved problem of unheralded photon loss during the renormalization

process was addressed by the presentation of a novel approach to teleportation known as

stabilizer pathfinding (SPF). In the heralded loss case, SPF was shown to provide optimally

loss-tolerant teleportation, showing significant improvement over previously-known teleportation

heuristics. In the unheralded loss case, the measurement patterns provided by SPF allow the

construction of sophisticated measurement strategies that can dynamically avoid lost qubits

when they are found. Remarkably, it was found that some lattice structures maintained high

rates of successful teleportation (> 90%) even in the face of moderate unheralded loss (5–10%).

We also provided evidence to suggest that such cluster state lattices in fact have inherent

loss-tolerance thresholds, indicating that such results are also valid in the large-scale regime.

In Chapter 5, we address the use of postselected entangling gates in current proof-of-principle

LOQC demonstrations. In this work we show that a vanishingly small proportion of graph states

can be successfully postselected within a postselected architecture, which notably prevents

the postselection of universal MBQC states. However, we also demonstrate that the space of

postselectable states can be increased through the use of the free action of local complementation.

This provides evidence to suggest that the construction of graph states more generally can be

aided by application of local operations between entangling gates.

Finally, this work provides two practical tools for the simulation of graph state architectures

(such as LOQC). In Chapter 4, in addition to the theoretical framework of SPF, we provide

computational tools for the analyses of heralded and unheralded loss-tolerant teleportation

on arbitrary stabilizer states. In addition to LOQC, such a tool can be leveraged for other

graph-state architectures such as quantum networks used in QKD. Also, in Chapter 5, we

provide improved computational tools for the analysis of graph state local equivalence classes

that can be used for the optimisation of graph state architectures. Furthermore, we extend the

theory of local complementation from prime dimension qudits to prime-power dimension qudits

and also include computational search tools for such states.

A summation of parts

As an example of how the presented results can (and should) be convolved to further optimise

the LOQC architecture, consider the use of local complementation to increase the loss tolerance

of a percolated single-qubit channel. Here, we consider a model for the construction of a

percolated cluster state lattice in which each sequential layer of qubits is created and entangled

(within a layer and to the previous), followed by a round of local operations. In such a model,

local complementation may therefore be applied to alter the intermediate percolated cluster

state prior to entanglement with the next sequential layer. This model thereby attempts to

represent the constraints of the windowed, layer-by-layer LOQC state construction schemes

presented in Chapter 3. Within this model, our task is to design a strategy to maximise the
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Figure 6.1: Stabilizer pathfinding on percolated hexagonal lattices. Here we compare the
teleportation rate of max-tolerance SPF under unheralded loss on instances of p = 75%
edge-percolated 4×4 diamond lattice with and without the application of intermediate local
complementations during construction. In the case where LCs are applied after the construction
of each layer (red), we find an up to around 6% increase in teleportation rate when compared
to the same lattices constructed without LCs (blue). These are both also compared to the
teleportation rates on the same lattice in the deterministic p = 100% case (dashed black).
The simulation was performed over more than 250 instances of the percolated lattice, and the
teleportation rate of each percolation instance was analysed over 1000 Monte Carlo repetitions
at each loss probability.

loss tolerance of teleportation across such a state using only local operations.

Specifically, here we shall consider increasing the teleportation probability across instances

of edge-percolated hexagonal (i.e. brickwork diamond, as considered in Chapter 4) under

unheralded qubit loss. In this case the construction will be composed of five stages First, each

vertical layer of qubits generated is probabilistically entangled within the layer and to its

previous (except for the first layer) as per Figure 4.5d, followed by a round of local operations.

Finally, the input and output qubits are created and entangled with the four qubits in the first

and last layers respectively. Informed by the apparent correlation between the higher-degree

lattices and higher teleportation rates presented in Chapter 4, we apply a local complementation

strategy that at each stage produces the state’s maximum edge representative, thereby aiming to

maximise the overall connectivity of the final graph state. We shall refer to the state constructed

in this way as LC-built.

Our simulation was performed over more than 250 instances of edge-percolated 4×4 hexagonal

lattices produced at an edge probability of 75% (where pc ≈ 65% [261]), and for each instance

SPF was applied to both the lattice built with and without local complementation. Monte Carlo

simulations of teleportation under unheralded loss were performed using the max-tolerance

185



CHAPTER 6. CONCLUSION

measurement strategy for both variants over a range of qubit loss probabilities, with results

depicted in Figure 6.1. We find that on average such a strategy provides a gain in teleportation

success rate of up to around 6%. Although such a gain is not a drastic increase, when compared

to the same simulation in the non-percolated case (with an edge probability of 100%), one

can see that it reduces the penalty paid by non-deterministic entangling gates by at least

50% across all loss probabilities. Furthermore, the large variance in teleportation success rates

shows that in some cases the LC-built percolated lattice is in fact more loss-tolerant than

a deterministically built equivalent without local complementation. If the specific structures

of the most loss-tolerant LC-built instances can be better understood, this could lead to

the development of improved complementation protocols that further improve on the naive

edge-maximising strategy applied here. Such a result provides an optimistic outlook for the

optimisation of realistic LOQC architectures in the future.

Next, we consider applying the works presented in thesis to yield new estimations on the

size and specifications of an LOQC device. Before we begin our description, we note that

the following estimates are based on simplifying assumptions, and are only intended to be

approximate. However, the follow is nevertheless presented as an exercise in the estimation of

architecture-spanning parameters and highlighting areas for further study and/or optimisation

within the architecture.

We begin with the result of Barrett and Stace, stating quantum error correction can

be achieved for a Raussendorf qubit loss probability of 25% [165], and hence a probability

of successful renormalisation prenorm > 75%. Since we have not studied the performance of

SPF on 3D graph state lattices, here we make two key assumptions. Firstly, we assume that

the end-to-end teleportation rate T
[i]
2D across axis i on some 2D lattice is a lower bound on

the end-to-end teleportation rate T
[i]
3D along the same axis of the lattice’s 3D variant. This

assumption is motivated by the fact that p3D
c ≈ 25% < p2D

c = 50% for the cubic lattice and

p3D
c ≈ 39% < p2D

c ≈ 65% for diamond [185, 261, 262]. Second, we assume that probability of

simultaneous and compatible teleportation across all three axis of the renormalization block is

lower bounded by the combined probability of teleportation across each axis individually, that is

at its minimum value prenorm ≈ T [x]
3DT

[y]
3DT

[z]
3D ≈ T 3

3D (where the last approximation assumes that

percolation probabilities are isotropic1). The assumption that prenorm > T 3
3D is motivated by

the fact that for p > pc if a single giant connected component can be found spanning one of the

block’s axes with high probability, then the probability that it spans the other two is also high,

and it is certainly higher than the probability of finding three individual (and possibly disjoint)

paths. However, the non-trivial aspect of this assumption is whether such an intuition may also

be extended to the case of teleportation using SPF in the case of unheralded loss. Specifically,

this assumes that the probability of achieving loss-tolerant block renormalization via SPF

is strictly greater than the combined probability of finding three independent measurement

1 While technically not true on the anisotropic brickwork diamond lattice, this approximation is valid to a
first-order given T

[z]
3D ≈ 62.5% and T

[y]
3D = T

[z]
3D ≈ 63.8% [16]
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patterns that teleport across each axes of the block. Under these assumptions, we therefore

require that T 3
3D > prenorm such that T3D > 3

√
0.75 ≈ 90%.

Next, we further assume that the results of Figure 6.1 can be extended to the n×n case.

This assumption is in part motivated by the conjectured existence of loss-tolerant thresholds

in the unheralded loss case as per the results of Chapter 4 as well as the evidence that local

complementation can be leveraged to bridge at least part of the gap between the percolated and

deterministic case. Furthermore, if no threshold exists and teleportation rate T is decreasing

with increasing n, then a different lattice or architectural model will need to be sought entirely.

Otherwise, in the case that T is constant with increasing n then assumption is valid and if a

threshold exists and T is increases with n then this assumption represents a lower bound on T .

Consulting Figure 6.1, we find that in the LC-built case T > 90% is achieved for an overall

qubit loss rate (including detector inefficiencies) of pq ≈ 2.5%. This estimate represents a first

attempt to translate the requirements of high-level quantum error correction to the top of the

low-level LOQC scheme and (if the assumptions can be shown to hold) provides a ball-park

figure to be aimed for by multiplexing schemes and other aspects of the low-level architecture.

Specifically, such a figure can be used to derive per-switch loss rates depending on the particular

MUX scheme, as performed in Ref. [16].

We now turn to logical qubit resource estimates. Let us assume that all ancillary qubits

engaged in fusion also are produced with an equal qubit loss rate of up to pq ≈ 2.5% (although

we note that such an assumption does not hold for RMUX schemes). Consulting Figure 2.17,

we find that a detector efficiency η = 1− pq ≈ 97.5% allows boosted fusion success probabilities

of p
[1]
f ≈ 67.5%, or p

[2]
f ≈ 70%; given that the significant ancillae state costs of N = 2 boosted

fusion, we shall assume the use of N = 1 boosted fusion here. From the work of Ref. [15], we

can see that long-range percolation is found for a renormalization block side length L = 6 at

pf = 75%. By a conservative estimate, we therefore assume a block side-length of L = 10–20

would be sufficient to ensure the existence of long-range percolating paths at pf = 67.5%. If we

assume a block of 10×10×10 Raussendorf lattice is needed for quantum error correction, this

implies a cost of between 106 and 107 physical qubits per logical qubit. Finally, from Figure

3.10a, we see that limited lookahead pathfinding on a diamond lattice with multi-layer edges

requires W > 15 to achieve successful pathfinding at L = 10–20, and as such we estimate a

device size of W = 30–50 would be required. Taking these estimates together, this implies an

active block size of O(108) physical qubits per logical qubit.

Fin(ish)

From the above estimates at least one thing is patently clear, more development of the LOQC

architecture is needed to reduce resource requirements and improve device specifications. One

of the most promising and unexplored avenues for such improvements would be a reduction

in the resources required for renormalization, or even a new approach entirely. If the number
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of physical qubits per renormalization block could be reduced from O(103)–O(104) to O(10)–

O(102), this would represent a significant reduction in resource and specification costs in both

the low- and high-level architecture. For example, if such gains can be made and logical qubits

of O(105)–O(106) physical qubits achieved, then the results of Table 1.1 suggest that a full-scale,

universal LOQC device could be achieved with as little as O(1010) physical qubits. Although

such a number seems almost ludicrously large given the size of current-day devices, we note that

this is precisely the same order of magnitude of transistor count in modern-day microprocessors,

GPU’s and FPGA’s.

So, will we ever realise such a device? In lieu of an ultimately unsatisfying answer to such a

question, I leave the reader with three quotes, perhaps aptly from a scientist, a technologist,

and a fool:

“Prediction is very difficult, especially about the future.”

– Niels Bohr

“Most people overestimate what they can do in one year and underestimate what

they can do in ten years.”

– Bill Gates

“Don’t let your dreams be dreams. Nothing is impossible. Do it. Just do it.”

– Shia LaBeouf
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Quantum Error Correcting Codes

In general, quantum error correcting codes (QECCs) describe schemes for encoding logical

quantum states on large entangled ensembles of individual physical states. After encoding,

logical states become tolerant to certain set of Pauli errors on their individual qubits, thereby

increasing the lifetime of the logical state beyond that of its constituent qubits. QECCs are

crucial to many quantum applications because they provide increased tolerance to unavoidable

interactions between qubits’ and their environments. Here we provide a brief introduction to

quantum error correcting codes and their relationship with their classical counterparts.

A.1 Introduction to classical codes

To understand quantum error correction, we will first need to understand the basics of classical

error correction theory. The following content is based on the works of Refs. [169, 237, 248, 249,

254, 263], which can be referred to for a deeper introduction.

In classical error correction, a code C defines a map between length-k messages and length-n

codewords, such that the encoded codeword has greater tolerance to errors than the unencoded

messages. Both message and codeword are defined over an alphabet A = Fp of p letters, such

that C : Ak → An where n ≥ k. We refer to such a Fp code as having length n and dimension

k, or a [n, k]p code for short. The set of n by m matrices whose n rows are elements of Am are

denoted An×m. Here Fp is the finite (Galois) field of p elements which is closed under addition

and multiplication and whose elements obey commutative, associative and distributive laws

and have additive and multiplicative inverses. For prime p, Fp = Zp is equal to the integers

modulo p, such that Am = GF(pm) defines the vector space Zmp where Zp = {0, . . . , p − 1}.
While we shall not cover the general case for non-prime p here, we shall consider the special

case of F4 = {0, 1, x, x2}, where x2 = x + 1, x3 = 1 and conjugation defined by ā = a2 with
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+ 0 1 x x2

0 0 1 x x2

1 1 0 x2 x
x x x2 0 1
x2 x2 x 1 0

× 0 1 x x2

0 0 0 0 0
1 0 1 x x2

x 0 x x2 1
x2 0 x2 1 x

a ā

0 0
1 1
x x2

x2 x

a Tr(a)

0 0
1 0
x 1
x2 1

Table A.1: Addition, multiplication, conjugation and trace tables for the elements of F4.

tables for multiplication and addition of elements given in Table A.1. For example, in this

section we shall consider a [5, 2]4 code C5 over F4, thereby mapping messages to codewords via

C : F2
4 → F5

4.

A code can be compactly defined by a k × n generating matrix G that maps each message

m to a codeword c = mG. The rows of G provide the basis codewords of C such that all

codewords are a linear combinations of basis codewords, or C = {mG | ∈ Ak}. where Ik is

the k-dimensional identity matrix and A ∈ Ak×(n−k). A code over A = Fp is linear if it is

non-empty and closed under Fp-addition and scalar multiplication by a ∈ Fp, and thereby

forms a k-dimensional subspace of the vector space An. By an appropriate choice of basis, the

generating matrix of a linear code can be written in the standard form

G =
[
Ik A

]
(A.1)

For example, the C5 code is linear and can be equivalently generated by matrix

G′5 =

[
1 x x 1 0

0 1 x x 1

]
or G5 =

[
1 0 x x 1

0 1 1 x x

]
, (A.2)

where the latter is given in standard form. Furthermore, a code is additive if it is closed under

Fp-addition, or equivalently forms an additive subgroup of An. For example, the C5 code is

both a [5, 2]4 linear code and a [5, 4]4 additive code, with the latter generated the matrix

G∗5 =


1 x x 1 0

0 1 x x 1

1 0 1 x x

x 1 0 1 x

 . (A.3)

Note that the message vectors for an additive code must be binary.

A code can also be defined by an n− k×n parity check matrix H that maps each codeword

to the null vector 0, such that C = {c ∈ An | cHT = 0}. Similarly to the generating matrix, H

can also always be written in the standard form

H =
[
−AT In−k

]
. (A.4)

190



A.1. INTRODUCTION TO CLASSICAL CODES

Note that for F4, each element is its additive inverse (see Table A.1), and so −AT = AT . For

example, the parity check matrix for the above [5, 2]4 code is

H5 =

 x 1 1 0 0

x x 0 1 0

1 x 0 0 1

 . (A.5)

The parity check matrix allow one to check if a given word w is in the code, such that if

wHT 6= 0, then an error must have occurred. Specifically, w = c + e can be written as a

linear combination of the original codeword c and some error vector e, such that wHT =

cHT + eHT = 0 + eHT = eHT , where eHT is known as the error syndrome. Error syndromes

therefore provide information on which error is most likely to have occurred, from which

attempts at error corrections can be made. In the case of a linear code, if eHT = 0 for e 6= 0,

then wHT = 0 and so w ∈ C for w 6= c. In this case an undetectable error has occurred. Note

that such operations are also the set of codeword operations that enable processing of encoded

messages.

To quantify the magnitude of errors a code can correct, the metric of Hamming distance is

defined. Given u,v ∈ An, the Hamming distance between u and v, denoted dH(u,v) is defined

as the number of elements on which u and v differ. The minimum distance dmin(C) of a code C
is the minimum Hamming distance taken over all pairs of C’s codewords. It follows that a code

with minimum distance d can detect up to s = d− 1 errors, such that d ≥ s+ 1, and correct

up to t = bd−1
2 c errors, such that d ≥ 2t + 1. For a codeword v ∈ An its Hamming weight

w(v) is the number of non-zero elements it contains, with the minimum weight wmin(C) the

minimum weight taken over all non-zero v ∈ C. In general, finding dmin(C) requires computing

dH(u,v) ∀ u,v ∈ C, however for a linear code it can be shown that dmin(C) = wmin(C). A linear

[n, k]p code with minimum distance d is known as a [n, k, d]p code. For example, the C5 code

contains 15 codewords of weight 4 and the all-zero codeword, and so is a distance d = 4 code.

An important bound on linear codes is given by the Singleton bound, which provides a limit on

the maximally achievable minimal Hamming distance between any two codewords, stating that

d ≤ n− k + 1. (A.6)

Two codes C and C′ are equivalent if their codewords are equal up to i) permutation of the

n codeword digits, i.e. reordering of codeword letters and ii) multiplication of all ith codeword

digits by a scalar, i.e. relabelling alphabet letters on a codeword’s ith digit.

For every linear code C there exists a dual code C⊥ with respect to the inner product such

that

C⊥ = {u ∈ An | u · v = 0 ∀ v ∈ C}, (A.7)

and therefore equal to the set of all parity checks on C. Hence, if G and H are the generator

and parity check matrices of C, then H and G are those of C⊥ respectively. If C is a [n, k]p
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linear code, then C⊥ is a [n, n− k]p linear code. For example, C⊥5 is generated H5, which has

the standard form  1 0 0 2 2

0 1 0 1 2

0 0 1 2 1

 , (A.8)

and is a [5, 3, 3]4 linear code. If C ⊆ C⊥, then C is called self-orthogonal, and self-dual if C = C⊥.

For codes over F4, it will also be useful to define a code’s dual with respect to the Hermitian

inner product C⊥H = {u ∈ An | u · v̄ = 0 ∀ v ∈ C}. Specifically, a linear code C over F4 which

is self-orthogonal with respect to the Hermitian inner product (or Hermitian self-orthogonal) is

also an additive code which is self-orthogonal with respect to the Hermitian trace inner product

(or trace self-orthogonal) [252], which is defined by

u ∗ v = Tr (u · v̄) =

n∑
i=1

uiv̄i + ūivi, (A.9)

where the trace map Tr : F4 → Z2 takes a to a+ ā and v̄ denotes conjugation in F4 (see Table

A.1). For example, the linear [5, 2]4 code is Hermitian self-orthogonal and so represents an

additive [5, 4]4 code which is trace self-orthogonal.

A.2 From classical to quantum codes

Soon after their initial discovery [171, 264–266], it was shown that the problem of finding qubit

QECCs is equivalent to finding self-orthogonal additive codes over F4 [252]. This equivalence

provides a correspondence between classical codes which encode some set of classical messages

and quantum code states which encode some subspace of quantum messages or states. While

the full proof is more involved, this can be intuitively understood by the following steps.

Firstly, each n-letter codeword is associated with an n-fold Pauli operator. To see this, each

u ∈ Fn4 is represented by the binary vector p = (a | b) through the map φ : Z2n
2 → F4, such

that u = φ(p) = a + xb. Then each p ∈ Z2n
2 is taken to be the binary representation of an

n-fold Pauli P ∈ Pn, such that P = XaZb (a variant of which is used in Equation (5.34)). The

mapping can thus be explicitly written as

p = (a1 + xb1, . . . , an + xbn) ∈ Fn4 ↔ P =

n⊗
i=1

Xai
i Z

bi
i ∈ Pn. (A.10)

By recalling that x2 = 1 +x, each letter of p is thus mapped to a local Pauli operator via 0↔ I,
1↔ X, x↔ Z, and x2 ↔ Y . From here it is straightforward to see that additive combinations

of codewords represent products of their associated Pauli operators (up to unimportant phases),

and hence a code’s generating matrix G is thereby associated with the generators G of some

subset of Pauli operators.
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Secondly, for G to represent the stabilizer generators G for some set of quantum states,

it must be true that [A,B] = 0 ∀ A,B ∈ G. In the binary representation, the commutation

of Pauli operators A and B is represented by a zero symplectic inner product 〈 · , · 〉 of their

respective vectors α = (aα | bα ) and β = (aβ | bβ ), defined by

〈α,β〉 = aα · bβ + aβ · bα = αT · P · β, (A.11)

where P =
(

0 I
I 0

)
. In F4, the equivalent operation between u = φ(α) and v = φ(β) is the trace

inner product, such that φ(α) ∗ φ(β) = 〈α,β〉.
It follows that

[A,B] = 0 ⇔ 〈α,β〉 = 0 ⇔ φ(α) ∗ φ(β) = 0, (A.12)

and hence G is associated with a valid set of stabilizer generators G if and only if u ∗ v =

0 ∀ u,v ∈ C.
We next identify the class of codes on which these conditions are satisfied. First, recall that

the trace dual of an code C is given by

C⊥Tr = {u | u ∗ v = 0 ∀ v ∈ C, u ∈ Fn4}, (A.13)

and so for trace self-orthogonal codes where C ⊆ C⊥Tr , it must be true that u ∗v = 0 ∀ u,v ∈ C.
If C is both additive and trace self-orthogonal it then follows the basis codewords in G provide a

valid set of stabilizer generators G and C represents the complete set of stabilizers S = 〈GG〉. For

example, the additive trace self-orthogonal [5, 4]4 code with generator matrix G∗5 is associated

with the stabilizer generators

G5 =

{XZ ZX I,
I XZ ZX,

X I XZ Z,

ZX I XZ}

(A.14)

Finally, it remains to associate the quantum state defined by G with a quantum code. For

an additive self-orthogonal [n, n− k] code over F4, G has n− k rows of length n corresponding

to a set of n− k stabilizer generators G that act on n qubits. The set of 2k physical basis states

{|Ψq〉} stabilized by G defines a set of logical basis states for k qubits with basis states

|q〉 = |q0 . . . qk〉 such that K |Ψq〉 = |Ψq〉 ∀ K ∈ G, (A.15)

where |Ψq〉 is the physical codeword state that encodes the logical message state |q〉 and q ∈ Zk2
are the message vectors. The space spanned by all codeword states Q = span({|Ψq〉}) is known

as the code space. For example, the set of states stabilized by G5 can be defined by a single
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logical qubit with basis states

|0̄〉 =
1

4
( |00000〉+ |10010〉+ |01001〉+ |10100〉+ |01010〉 − |11011〉 − |00110〉 − |11000〉

− |11101〉 − |00011〉 − |11110〉 − |01111〉 − |10001〉 − |01100〉 − |10111〉+ |00101〉)

|1̄〉 =
1

4
( |11111〉+ |01101〉+ |10110〉+ |01011〉+ |10101〉 − |00100〉 − |11001〉 − |00111〉

− |00010〉 − |11100〉 − |00001〉 − |10000〉 − |01110〉 − |10011〉 − |01000〉+ |11010〉).

Similarly, an equivalence between a logical unitary Ū and some physical unitary U is defined

such that ∣∣q′〉 = Ū |q〉 ⇔
∣∣Ψq′〉 = U |Ψq〉 , (A.16)

where multiple choices of U may exist for a given Ū . The set of encoded Pauli operators that

form a basis for all Ū are known as the states’ logical operators. For example, the logical

operators for the states stabilized by G5 are given by

X̄ = XXXXX and Z̄ = ZZZZZ.

Note that equivalent X̄ ′ (Z̄ ′) logical operators can be produced products of X̄ (Z̄) and any

S ∈ 〈G〉.
Now consider applying some error operation E to a quantum code in state |Ψ〉 stabilized by

G. If {E,K} = 0,K ∈ G, then E |Ψ〉 = EK |Ψ〉 = −KE |Ψ〉 and so the post-error state E |Ψ〉
is in the −1 eigenspace of some subset of stabilizer generators. The presence of such an error

is detected by any −1 eigenvalue yielded from the parity-check measurement of an operator

in G. But if [E,K] = 0 ∀ K ∈ G, then E |Ψ〉 = EK |Ψ〉 = KE |Ψ〉 and so G also stabilizes the

post-error state such that E |Ψ〉 ∈ Q. Note that the set of all operators that commute with

S ∈ S is known as the centralizer of S, denoted C(S). In this case there are then two possible

scenarios. Either, E |Ψ〉 = |Ψ〉 ⇒ E ∈ S and has no effect on any encoded logical state, or

E |Ψ〉 = |Ψ′〉 ∈ Q and so E ∈ C(S) \ S performs some logical operation on the encoded state.

In the latter case, because [E,K] = 0 ∀ K ∈ G, the error will not be detected by parity-check

measurements and so is an undetectable error.

By noting that the operators C(S) \ S are represented by the codewords C⊥Tr \ C, it follows

that the minimum distance d (i.e. number of single-qubit Pauli operations) between quantum

codewords is given by d = wmin

(
C⊥Tr \ C

)
. A quantum code that defines k logical qubits from a

code space of n physical qubits with minimum codeword distance d is referred to as a [[n, k, d]]

code. Similarly to a classical code, a [[n, k, d]] quantum code can detect s = d− 1 errors and

correct up to t = bd−1
2 c errors. For example, wmin

(
C⊥Tr

5 \ C5

)
= 3 and so G5 defines a [[5, 1, 3]]

quantum code, known as the 5-qubit code, as defined in Table 5.3. It is further possible to show

that the 5-qubit code is the smallest possible quantum code that can correct any single-qubit

Pauli error.
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An an important family of codes is the self-dual quantum codes. Consider a trace self-dual

additive code C over F4 where C = C⊥Tr . If an additive code over F4 is trace self-dual, then it

must be an [n, n, d] code and so represents a zero-dimensional [[n, 0, d]] self-dual quantum code,

where |G| = n [96]. In this case, the subspace stabilized by G contains only a single stabilizer

state, creating a one-to-one correspondence between the set of stabilizer states and self-dual

quantum codes.
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