11,168 research outputs found

    High-Performance VLSI Architectures for Lattice-Based Cryptography

    Get PDF
    Lattice-based cryptography is a cryptographic primitive built upon the hard problems on point lattices. Cryptosystems relying on lattice-based cryptography have attracted huge attention in the last decade since they have post-quantum-resistant security and the remarkable construction of the algorithm. In particular, homomorphic encryption (HE) and post-quantum cryptography (PQC) are the two main applications of lattice-based cryptography. Meanwhile, the efficient hardware implementations for these advanced cryptography schemes are demanding to achieve a high-performance implementation. This dissertation aims to investigate the novel and high-performance very large-scale integration (VLSI) architectures for lattice-based cryptography, including the HE and PQC schemes. This dissertation first presents different architectures for the number-theoretic transform (NTT)-based polynomial multiplication, one of the crucial parts of the fundamental arithmetic for lattice-based HE and PQC schemes. Then a high-speed modular integer multiplier is proposed, particularly for lattice-based cryptography. In addition, a novel modular polynomial multiplier is presented to exploit the fast finite impulse response (FIR) filter architecture to reduce the computational complexity of the schoolbook modular polynomial multiplication for lattice-based PQC scheme. Afterward, an NTT and Chinese remainder theorem (CRT)-based high-speed modular polynomial multiplier is presented for HE schemes whose moduli are large integers

    Fast Quantum Modular Exponentiation

    Full text link
    We present a detailed analysis of the impact on modular exponentiation of architectural features and possible concurrent gate execution. Various arithmetic algorithms are evaluated for execution time, potential concurrency, and space tradeoffs. We find that, to exponentiate an n-bit number, for storage space 100n (twenty times the minimum 5n), we can execute modular exponentiation two hundred to seven hundred times faster than optimized versions of the basic algorithms, depending on architecture, for n=128. Addition on a neighbor-only architecture is limited to O(n) time when non-neighbor architectures can reach O(log n), demonstrating that physical characteristics of a computing device have an important impact on both real-world running time and asymptotic behavior. Our results will help guide experimental implementations of quantum algorithms and devices.Comment: to appear in PRA 71(5); RevTeX, 12 pages, 12 figures; v2 revision is substantial, with new algorithmic variants, much shorter and clearer text, and revised equation formattin

    Realizing arbitrary-precision modular multiplication with a fixed-precision multiplier datapath

    Get PDF
    Within the context of cryptographic hardware, the term scalability refers to the ability to process operands of any size, regardless of the precision of the underlying data path or registers. In this paper we present a simple yet effective technique for increasing the scalability of a fixed-precision Montgomery multiplier. Our idea is to extend the datapath of a Montgomery multiplier in such a way that it can also perform an ordinary multiplication of two n-bit operands (without modular reduction), yielding a 2n-bit result. This conventional (nxn->2n)-bit multiplication is then used as a “sub-routine” to realize arbitrary-precision Montgomery multiplication according to standard software algorithms such as Coarsely Integrated Operand Scanning (CIOS). We show that performing a 2n-bit modular multiplication on an n-bit multiplier can be done in 5n clock cycles, whereby we assume that the n-bit modular multiplication takes n cycles. Extending a Montgomery multiplier for this extra functionality requires just some minor modifications of the datapath and entails a slight increase in silicon area

    Parametric, Secure and Compact Implementation of RSA on FPGA

    Get PDF
    We present a fast, efficient, and parameterized modular multiplier and a secure exponentiation circuit especially intended for FPGAs on the low end of the price range. The design utilizes dedicated block multipliers as the main functional unit and Block-RAM as storage unit for the operands. The adopted design methodology allows adjusting the number of multipliers, the radix used in the multipliers, and number of words to meet the system requirements such as available resources, precision and timing constraints. The architecture, based on the Montgomery modular multiplication algorithm, utilizes a pipelining technique that allows concurrent operation of hardwired multipliers. Our design completes 1020-bit and 2040-bit modular multiplications in 7.62 μs and 27.0 μs, respectively. The multiplier uses a moderate amount of system resources while achieving the best area-time product in literature. 2040-bit modular exponentiation engine can easily fit into Xilinx Spartan-3E 500; moreover the exponentiation circuit withstands known side channel attacks

    Faster 64-bit universal hashing using carry-less multiplications

    Get PDF
    Intel and AMD support the Carry-less Multiplication (CLMUL) instruction set in their x64 processors. We use CLMUL to implement an almost universal 64-bit hash family (CLHASH). We compare this new family with what might be the fastest almost universal family on x64 processors (VHASH). We find that CLHASH is at least 60% faster. We also compare CLHASH with a popular hash function designed for speed (Google's CityHash). We find that CLHASH is 40% faster than CityHash on inputs larger than 64 bytes and just as fast otherwise

    An algorithmic and architectural study on Montgomery exponentiation in RNS

    Get PDF
    The modular exponentiation on large numbers is computationally intensive. An effective way for performing this operation consists in using Montgomery exponentiation in the Residue Number System (RNS). This paper presents an algorithmic and architectural study of such exponentiation approach. From the algorithmic point of view, new and state-of-the-art opportunities that come from the reorganization of operations and precomputations are considered. From the architectural perspective, the design opportunities offered by well-known computer arithmetic techniques are studied, with the aim of developing an efficient arithmetic cell architecture. Furthermore, since the use of efficient RNS bases with a low Hamming weight are being considered with ever more interest, four additional cell architectures specifically tailored to these bases are developed and the tradeoff between benefits and drawbacks is carefully explored. An overall comparison among all the considered algorithmic approaches and cell architectures is presented, with the aim of providing the reader with an extensive overview of the Montgomery exponentiation opportunities in RNS

    Parallel Integer Polynomial Multiplication

    Get PDF
    We propose a new algorithm for multiplying dense polynomials with integer coefficients in a parallel fashion, targeting multi-core processor architectures. Complexity estimates and experimental comparisons demonstrate the advantages of this new approach

    Enhancing an Embedded Processor Core with a Cryptographic Unit for Performance and Security

    Get PDF
    We present a set of low-cost architectural enhancements to accelerate the execution of certain arithmetic operations common in cryptographic applications on an extensible embedded processor core. The proposed enhancements are generic in the sense that they can be beneficially applied in almost any RISC processor. We implemented the enhancements in form of a cryptographic unit (CU) that offers the programmer an extended instruction set. The CU features a 128-bit wide register file and datapath, which enables it to process 128-bit words and perform 128-bit loads/stores. We analyze the speed-up factors for some arithmetic operations and public-key cryptographic algorithms obtained through these enhancements. In addition, we evaluate the hardware overhead (i.e. silicon area) of integrating the CU into an embedded RISC processor. Our experimental results show that the proposed architectural enhancements allow for a significant performance gain for both RSA and ECC at the expense of an acceptable increase in silicon area. We also demonstrate that the proposed enhancements facilitate the protection of cryptographic algorithms against certain types of side-channel attacks and present an AES implementation hardened against cache-based attacks as a case study
    corecore