6 research outputs found

    Analyse und Erweiterung eines fehler-toleranten NoC für SRAM-basierte FPGAs in Weltraumapplikationen

    Get PDF
    Data Processing Units for scientific space mission need to process ever higher volumes of data and perform ever complex calculations. But the performance of available space-qualified general purpose processors is just in the lower three digit megahertz range, which is already insufficient for some applications. As an alternative, suitable processing steps can be implemented in hardware on a space-qualified SRAM-based FPGA. However, suitable devices are susceptible against space radiation. At the Institute for Communication and Network Engineering a fault-tolerant, network-based communication architecture was developed, which enables the construction of processing chains on the basis of different processing modules within suitable SRAM-based FPGAs and allows the exchange of single processing modules during runtime, too. The communication architecture and its protocol shall isolate non SEU mitigated or just partial SEU mitigated modules affected by radiation-induced faults to prohibit the propagation of errors within the remaining System-on-Chip. In the context of an ESA study, this communication architecture was extended with further components and implemented in a representative hardware platform. Based on the acquired experiences during the study, this work analyses the actual fault-tolerance characteristics as well as weak points of this initial implementation. At appropriate locations, the communication architecture was extended with mechanisms for fault-detection and fault-differentiation as well as with a hardware-based monitoring solution. Both, the former measures and the extension of the employed hardware-platform with selective fault-injection capabilities for the emulation of radiation-induced faults within critical areas of a non SEU mitigated processing module, are used to evaluate the effects of radiation-induced faults within the communication architecture. By means of the gathered results, further measures to increase fast detection and isolation of faulty nodes are developed, selectively implemented and verified. In particular, the ability of the communication architecture to isolate network nodes without SEU mitigation could be significantly improved.Instrumentenrechner für wissenschaftliche Weltraummissionen müssen ein immer höheres Datenvolumen verarbeiten und immer komplexere Berechnungen ausführen. Die Performanz von verfügbaren qualifizierten Universalprozessoren liegt aber lediglich im unteren dreistelligen Megahertz-Bereich, was für einige Anwendungen bereits nicht mehr ausreicht. Als Alternative bietet sich die Implementierung von entsprechend geeigneten Datenverarbeitungsschritten in Hardware auf einem qualifizierten SRAM-basierten FPGA an. Geeignete Bausteine sind jedoch empfindlich gegenüber der Strahlungsumgebung im Weltraum. Am Institut für Datentechnik und Kommunikationsnetze wurde eine fehlertolerante netzwerk-basierte Kommunikationsarchitektur entwickelt, die innerhalb eines geeigneten SRAM-basierten FPGAs Datenverarbeitungsmodule miteinander nach Bedarf zu Verarbeitungsketten verbindet, sowie den Austausch von einzelnen Modulen im Betrieb ermöglicht. Nicht oder nur partiell SEU mitigierte Module sollen bei strahlungsbedingten Fehlern im Modul durch das Protokoll und die Fehlererkennungsmechanismen der Kommunikationsarchitektur isoliert werden, um ein Ausbreiten des Fehlers im restlichen System-on-Chip zu verhindern. Im Kontext einer ESA Studie wurde diese Kommunikationsarchitektur um Komponenten erweitert und auf einer repräsentativen Hardwareplattform umgesetzt. Basierend auf den gesammelten Erfahrungen aus der Studie, wird in dieser Arbeit eine Analyse der tatsächlichen Fehlertoleranz-Eigenschaften sowie der Schwachstellen dieser ursprünglichen Implementierung durchgeführt. Die Kommunikationsarchitektur wurde an geeigneten Stellen um Fehlerdetektierungs- und Fehlerunterscheidungsmöglichkeiten erweitert, sowie um eine hardwarebasierte Überwachung ergänzt. Sowohl diese Maßnahmen, als auch die Erweiterung der Hardwareplattform um gezielte Fehlerinjektions-Möglichkeiten zum Emulieren von strahlungsinduzierten Fehlern in kritischen Komponenten eines nicht SEU mitigierten Prozessierungsmoduls werden genutzt, um die tatsächlichen auftretenden Effekte in der Kommunikationsarchitektur zu evaluieren. Anhand der Ergebnisse werden weitere Verbesserungsmaßnahmen speziell zur schnellen Detektierung und Isolation von fehlerhaften Knoten erarbeitet, selektiv implementiert und verifiziert. Insbesondere die Fähigkeit, fehlerhafte, nicht SEU mitigierte Netzwerkknoten innerhalb der Kommunikationsarchitektur zu isolieren, konnte dabei deutlich verbessert werden

    Ein flexibles, heterogenes Bildverarbeitungs-Framework für weltraumbasierte, rekonfigurierbare Datenverarbeitungsmodule

    Get PDF
    Scientific instruments as payload of current space missions are often equipped with high-resolution sensors. Thereby, especially camera-based instruments produce a vast amount of data. To obtain the desired scientific information, this data usually is processed on ground. Due to the high distance of missions within the solar system, the data rate for downlink to the ground station is strictly limited. The volume of scientific relevant data is usually less compared to the obtained raw data. Therefore, processing already has to be carried out on-board the spacecraft. An example of such an instrument is the Polarimetric and Helioseismic Imager (PHI) on-board Solar Orbiter. For acquisition, storage and processing of images, the instrument is equipped with a Data Processing Module (DPM). It makes use of heterogeneous computing based on a dedicated LEON3 processor in combination with two reconfigurable Xilinx Virtex-4 Field-Programmable Gate Arrays (FPGAs). The thesis will provide an overview of the available space-grade processing components (processors and FPGAs) which fulfill the requirements of deepspace missions. It also presents existing processing platforms which are based upon a heterogeneous system combining processors and FPGAs. This also includes the DPM of the PHI instrument, whose architecture will be introduced in detail. As core contribution of this thesis, a framework will be presented which enables high-performance image processing on such hardware-based systems while retaining software-like flexibility. This framework mainly consists of a variety of modules for hardware acceleration which are integrated seamlessly into the data flow of the on-board software. Supplementary, it makes extensive use of the dynamic in-flight reconfigurability of the used Virtex-4 FPGAs. The flexibility of the presented framework is proven by means of multiple examples from within the image processing of the PHI instrument. The framework is analyzed with respect to processing performance as well as power consumption.Wissenschaftliche Instrumente auf aktuellen Raumfahrtmissionen sind oft mit hochauflösenden Sensoren ausgestattet. Insbesondere kamerabasierte Instrumente produzieren dabei eine große Menge an Daten. Diese werden üblicherweise nach dem Empfang auf der Erde weiterverarbeitet, um daraus wissenschaftlich relevante Informationen zu gewinnen. Aufgrund der großen Entfernung von Missionen innerhalb unseres Sonnensystems ist die Datenrate zur Übertragung an die Bodenstation oft sehr begrenzt. Das Volumen der wissenschaftlich relevanten Daten ist meist deutlich kleiner als die aufgenommenen Rohdaten. Daher ist es vorteilhaft, diese bereits an Board der Sonde zu verarbeiten. Ein Beispiel für solch ein Instrument ist der Polarimetric and Helioseismic Imager (PHI) an Bord von Solar Orbiter. Um die Daten aufzunehmen, zu speichern und zu verarbeiten, ist das Instrument mit einem Data Processing Module (DPM) ausgestattet. Dieses nutzt ein heterogenes Rechnersystem aus einem dedizierten LEON3 Prozessor, zusammen mit zwei rekonfigurierbaren Xilinx Virtex-4 Field-Programmable Gate Arrays (FPGAs). Die folgende Arbeit gibt einen Überblick über verfügbare Komponenten zur Datenverarbeitung (Prozessoren und FPGAs), die den Anforderungen von Raumfahrtmissionen gerecht werden, und stellt einige existierende Plattformen vor, die auf einem heterogenen System aus Prozessor und FPGA basieren. Hierzu gehört auch das Data Processing Module des PHI Instrumentes, dessen Architektur im Verlauf dieser Arbeit beschrieben wird. Als Kernelement der Dissertation wird ein Framework vorgestellt, das sowohl eine performante, als auch eine flexible Bilddatenverarbeitung auf einem solchen System ermöglicht. Dieses Framework besteht aus verschiedenen Modulen zur Hardwarebeschleunigung und bindet diese nahtlos in den Datenfluss der On-Board Software ein. Dabei wird außerdem die Möglichkeit genutzt, die eingesetzten Virtex-4 FPGAs dynamisch zur Laufzeit zu rekonfigurieren. Die Flexibilität des vorgestellten Frameworks wird anhand mehrerer Fallbeispiele aus der Bildverarbeitung von PHI dargestellt. Das Framework wird bezüglich der Verarbeitungsgeschwindigkeit und Energieeffizienz analysiert

    Analysis of design alternatives on using dynamic and partial reconfiguration in a space application

    Get PDF
    Some of the biggest concerns in space systems are power consumption and reliability due to the limited power generated by the system's energy harvesters and the fact that once deployed, it is almost impossible to perform maintenance or repairs. Another consideration is that during deployment, the high exposure to electromagnetic radiation can cause single event damage effects including SEUs, SEFIs, SETs and others. In order to mitigate these problems inherent to the space environment, a system with dynamic and partial reconfiguration capabilities is proposed. This approach provide s the flexibility to reconfigure parts of the FPGA while still in operation, thus making the system more flexible, fault tolerant and less power-consuming. In this paper, several partial reconfiguration approaches are proposed and compared in terms of device occupation, power consumption, reconfiguration speed and size of memory footprints

    Autonomous on-board data processing and instrument calibration software for the Polarimetric and Helioseismic Imager on-board the Solar Orbiter mission

    Get PDF
    This is an open access article. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.A frequent problem arising for deep space missions is the discrepancy between the amount of data desired to be transmitted to the ground and the available telemetry bandwidth. A part of these data consists of scientific observations, being complemented by calibration data to help remove instrumental effects. We present our solution for this discrepancy, implemented for the Polarimetric and Helioseismic Imager on-board the Solar Orbiter mission, the first solar spectropolarimeter in deep space. We implemented an on-board data reduction system that processes calibration data, applies them to the raw science observables, and derives science-ready physical parameters. This process reduces the raw data for a single measurement from 24 images to five, thus reducing the amount of downlinked data, and in addition, renders the transmission of the calibration data unnecessary. Both these on-board actions are completed autonomously. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.This work was carried out in the framework of the International Max Planck Research School for Solar System Science at the Max Planck Institute for Solar System Research. Solar Orbiter is a mission led by the European Space Agency with contribution from the National Aeronautics and Space Administration (NASA). The Polarimetric and Helioseismic Imager instrument is supported by the German Aerospace Center (DLR) under grant Nos. 50 OT 1201 and 50 OT 1901. The Spanish contribution has been partly funded by the Spanish Research Agency under projects under grant Nos. ESP2016-77548-C5 and RTI2018-096886-B-C5, partially including European FEDER funds. IAA-CSIC members acknowledge and funds from the Spanish Ministry of Science and Innovation “Centro de Excelencia Severo Ochoa” Program under grant No. SEV-2017-0709. The solar data used in the tests are the courtesy of NASA/SDO HMI science team. Parts of the work shown in this paper have been introduced at the SPIE Astronomical Telescopes + Instrumentation conference.42 EditorialPeer reviewe

    Run-time reconfigurable, fault-tolerant FPGA systems for space applications

    Get PDF
    Cozzi D. Run-time reconfigurable, fault-tolerant FPGA systems for space applications. Bielefeld: Universität Bielefeld; 2016.The aim of this thesis is to investigate the use of Dynamic Partial Reconfiguration (DPR) on Commercial Off-the-Shelf (COTS) FPGAs in space applications. Reconfigurable systems gained interest in a wide range of application fields, including aerospace, where electronic devices are exposed to a harsh working environment. COTS SRAM-based FPGA devices represent an interesting hardware platform for this kind of systems since they combine low cost with the possibility to utilize state-of-the-art processing power as well as the flexibility of reconfigurable hardware. FPGA architectures have high computational power and thanks to their ability to be reconfigured at run-time, they became interesting candidates for payload processing in space applications. The presented Dynamic Reconfigurable Processing Module (DRPM) has been developed to investigate the use of the DPR approach for satellite payload processing. This scalable platform combines dynamically reconfigurable FPGAs with the required avionic interfaces (e.g., SpaceWire, MIL-STD-1553B, and SpaceFibre). In particular, a novel communication interface has been developed, the Heterogeneous Multi Processor Communication Interface (HMPCI), which allows inter-process communication with small latency and low memory footprint. Current synthesis tools do not support fully the DPR capabilities of FPGAs. Therefore, this thesis introduces INDRA 2.0: an INtegrated Design flow for Reconfigurable Architectures. The key part of INDRA 2.0 is DHHarMa: a Design flow for Homogeneous Hard Macros, which generates homogeneous hard macros for Xilinx FPGAs starting from a high-level description (e.g., VHDL). In particular, the homogeneous DHHarMa router is explained in detail, providing novel terminologies and algorithms, which have enabled the generation of homogeneous routed designs. Results have been shown that Design flow for Homogeneous Hard Macros (DHHarMa) can route homogeneously a communication infrastructure utilizing just between 1% and 31% more resources than the Xilinx router, which cannot provide a homogeneous solution. Furthermore, the permanent faults that can occur on FPGAs have been investigated. This thesis presents OLT(RE)2: an on-line on-demand approach to testing permanent faults induced by radiation in reconfigurable systems used in space missions. The proposed approach relies on a test circuit and custom placer and router. OLT(RE)2 exploits DPR to place the test circuits at run-time. Its goal is to test unprogrammed areas of the FPGA before using them. Experimental results of OLT(RE)2 have shown that is possible to generate, place, and route the test circuits needed to detect on average more than 99 % of the physical wires and on average about 97 % of the programmable interconnection points of a large arbitrary region of the FPGA in a reasonable time. Moreover, the test can be run on the target device without interfering the functional behavior of the system
    corecore